説明

Fターム[5H018CC06]の内容

無消耗性電極 (49,684) | 電極の全体形状 (773) | 積層構造を有するもの (669)

Fターム[5H018CC06]に分類される特許

21 - 40 / 669


【課題】金属支持型電解質・電極接合体の耐久性を向上させるとともに内部抵抗を小さくし、さらに、短絡を回避する。
【解決手段】多孔質体からなる金属基板12上に、第1層16aと第2層16bからなる電極を形成する。第1層16aは、金属基板12の上端面の起伏を埋没する。第1層16aの上端面には、若干の起伏が転写されたり、バインダ量が少ないので剥離が生じたりするが、これらの起伏や剥離は、第2層16bによって埋没される。従って、第2層16bの上端面が略平坦となるので、該第2層16b上に形成される中間層18や固体電解質20も略平坦となる。従って、固体電解質20の厚みを小さくしても、該固体電解質20に起伏が生じることや、起伏に応力が集中してクラックが発生することが回避される。なお、前記電極は、例えば、カソード側電極16である。 (もっと読む)


【課題】電極及びその近傍からの排水性をこれまで以上に十分に且つ安定的に向上させることが可能な燃料電池を提供する。
【解決手段】燃料電池の単位セルは、電解質膜を挟んでカソード2aとアノードとが配置されたMEAの両面外側にガス拡散層22が一体に形成されたものであり、その両側にカソードセパレータ及びアノードセパレータが設けられている。また、ガス拡散層22は、カソード2a側に配置された撥水部221と、カソードセパレータ側に配置された基材部222とを有している。そして、撥水部221には細孔Hが複数形成されており、その孔径分布範囲が0.1μm〜0.6μmとされていることにより、撥水部221における透水圧が十分に低く抑えられるとともに、撥水部221における細孔Hの飽和度が過度に高まることが抑制される。 (もっと読む)


【課題】本発明の課題は、白金単独の燃料電池用触媒層と同等以上の触媒能を有し、しかも安価な燃料電池用触媒層を提供することである。
【解決手段】本発明の燃料電池用触媒層は、金属炭窒酸化物を含む層(I)と白金を含む層(II)とを有することを特徴とする。また、前記層(I)における金属炭窒酸化物と前記層(II)における白金との単位面積当たりの質量比(金属炭窒酸化物/白金)が、2〜500であることが好ましい。さらに、前記層(II)における白金の単位面積当たりの質量が、0.005〜0.2mg/cm2であることが好ましい。 (もっと読む)


【課題】熱応力に対する構造信頼性を向上可能な燃料電池用燃料極を提供する。上記燃料極の製造に適した製造方法、材料を提供する。
【解決手段】燃料極3は、構造体31と、電子導電体32とを少なくとも含有する。構造体31は、コア部311と、コア部311の外周を覆う表層312とを備える。コア部311の主成分は酸素イオン導電体、表層312の主成分はプロトン導電体である。燃料極3は、コア部311とコア部311の外周を覆う表層312とを備え、コア部311の主成分が酸素イオン導電体、表層312の主成分がプロトン導電体である構造体31から構成される粉末と、電子導電体32から構成される粉末とを少なくとも含む混合物を焼成することにより製造することができる。 (もっと読む)


【課題】アパタイト型複合酸化物からなる電解質を具備する固体酸化物形燃料電池の発電性能を向上させる。
【解決手段】電解質・電極接合体10を構成するカソード側電極16は、固体電解質20に臨んで等方性伝導層22に隣接する第1層16aと、該第1層16aに隣接する第2層16bとを有する。この中の第2層16bは、柱状形状粒38からなるために第1層16aに比して疎らである。一方、第1層16aは緻密体であり、このため、第2層16b及び等方性伝導層22に対して大きな接触面積で接触する。好適には、第1層16a及び第2層16bは、双方とも白金からなる。 (もっと読む)


【課題】隣接する部材を損傷しない、凹凸形状を有する金属多孔質体を提供する。
【解決手段】金属焼結体の骨格11により辺が構成されてなる複数の多面体状の気孔が相互に連続状態に形成されている板状の金属多孔質体10であって、表裏面の少なくとも一方の面に任意の凹凸形状が形成されているとともに、この最外面が骨格11の側面で形成されており、骨格11の間に形成される空隙12は、その空隙率が60%以上99%以下である。 (もっと読む)


【課題】高い出力密度と発電効率を有する燃料電池を、低コストで製造する。
【解決手段】アノードとカソードと電解質膜とを有する膜電極接合体と、アノードに燃料を供給するための燃料流路を有するアノード側セパレータと、カソードに酸化剤を供給するための酸化剤流路を有するカソード側セパレータとを具備し、アノードがアノード触媒層とアノード拡散層とを含み、カソードがカソード触媒層とカソード拡散層とを含み、燃料流路および酸化剤流路の少なくとも一方は、複数の平行な直線部分を有し、アノード触媒層またはカソード触媒層は、複数の直線部分と正対する複数の帯状の第一領域と、隣接する第一領域の間の少なくとも一つの第二領域を有し、第一領域の単位面積あたりの触媒量が、第二領域の単位面積あたりの触媒量に比べて平均的に大きい、高分子電解質型燃料電池。 (もっと読む)


【課題】燃料電池の高温作動時における発電性能を向上する。
【解決手段】膜電極接合体12と、膜電極接合体12のアノード側に配置されアノード側のガス拡散層16と、膜電極接合体12のカソード側に配置されるカソード側のガス拡散層17と、カソード側のガス拡散層17に対向して設けられ、酸化ガスが流れる酸化ガス流路を形成するカソード側セパレータ21とを積層して備え、アノード側のガス拡散層16は、前記酸化ガス流路の入口部付近と積層方向において対応する第1のガス拡散層部16aと、前記酸化ガスの流れ方向において第1のガス拡散層部16aより下流側に位置する第2のガス拡散層部16bとを有し、第1のガス拡散層部16aの厚さ方向の熱抵抗が、第2のガス拡散層部16bの厚さ方向の熱抵抗よりも小さい、燃料電池。 (もっと読む)


【課題】耐久性を向上可能な燃料電池セルを提供する。
【解決手段】燃料電池セル10において、ジルコニウムを含む固体電解質層12と、空気極15との間に、セリウムとジルコニウムを含むバリア層14とを備え、該バリア層14の前記空気極との接合領域Xにおけるジルコニウム濃度の最大値は、前記固体電解質層12におけるジルコニウム濃度の最大値を“1”とした場合に“0.08以上0.4以下”とする。前記接合領域Xにおけるジルコニウム濃度の最大値を“0.08以上”にすることによって、バリア層14と空気極15との界面剥離を抑制でき、最大値を“0.4以下”に規定することによって、バリア層14と空気極15との間における高抵抗層の形成を抑制することができる。 (もっと読む)


【課題】金属支持型電解質・電極接合体を作製する際、元素が拡散することや反りが発生することを回避する。
【解決手段】金属基板12と、カソード側電極16となるテープ状成形体との積層物44を得た後、該積層物44を、赤外線加熱炉42にて急速加熱する。この際には遮熱板48を用いる等してテープ状成形体を選択的に加熱するとともに、昇温速度を15〜100℃/秒に設定する。最終的な到達温度は、700℃以上、例えば、900〜1000℃とすればよい。また、この温度に到達した後、60秒〜30分間の保持を行えばよい。 (もっと読む)


【課題】セル特性を向上可能な燃料電池セルを提供する。
【解決手段】燃料電池セル10は、燃料極11と、固体電解質12と、中間層13と、固体電解質層と共焼成されたバリア層14と、空気極15と、を備える。空気極15は、バリア層上に配置されており、バリア層との接合界面15aにおいて前記バリア層に接合される複数の接合部15bと、前記複数の接合部の間に設けられる複数の気孔15cと、を備え、接合界面における単位長さ当たりの前記複数の接合部15bの接合占有率は、30%〜80%に規定されている。 (もっと読む)


【課題】膜電極接合体の触媒層とガス拡散層との間の十分な接合強度を得る。
【解決手段】電解質膜の表面に触媒層が形成された触媒層形成電解質膜と、触媒層に接合されたガス拡散層と、を有する膜電極接合体である。ガス拡散層は、拡散基材層と、拡散基材層上に形成されて触媒層に接合された接合層と、を備える。ガス拡散層を所定の接合圧力で触媒層へ接合する場合に、変形量=(接合圧力/硬度)・変形寄与厚み・塑性変形率で表される接合層の変形量が接合層の表面粗さよりも大きくなるように、接合層の表面粗さ、硬度、塑性変形率、および、変形寄与厚みが規定されている。 (もっと読む)


【課題】 強度を向上させることができると共に、コストを抑制することができる固体酸化物形燃料電池および固体酸化物形燃料電池の製造方法を提供する。
【解決手段】積層された複数の緻密な金属基板2と、複数の金属基板2の最上面に配置された燃料極3と、燃料極3の一方面に配置された電解質4と、電解質4の一方面に配置された空気極5と、を備え、複数の金属基板2を構成する各金属基板2には厚み方向に貫通する貫通孔6が複数形成されており、各金属基板2における少なくとも1つの貫通孔6は、積層方向に隣接する金属基板2における貫通孔6のいずれかと互いに連通している固体酸化物形燃料電池1。 (もっと読む)


【課題】アニールされたポリマー電解質膜(PEM)を含んでなる膜電極アセンブリ(MEA)を提供する。
【解決手段】アニールされたポリマー電解質膜(PEM)を含んでなる膜電極アセンブリ(MEA)が提供され、さらに、MEAはアニールされた触媒層を含有してもよい。この触媒層はアニールされたPEMと接触してアニールされている。さらに、製造方法が提供される。本発明によるMEAは、水素燃料電池のような電気化学的電池において使用されてよい。 (もっと読む)


【課題】 固体酸化物形燃料電池の変形を防ぐ構成を提供する。
【解決手段】ガス透過可能な金属で形成された支持基板2と、支持基板2の一方面に配置された燃料極3と、支持基板2の他方面に配置された裏面層7と、燃料極3上に配置された電解質4と、電解質4上に配置された空気極6と、を備え、燃料極3及び裏面層7は、金属及びセラミックスを含有している固体酸化物形燃料電池1。 (もっと読む)


【課題】強度を低下させることなく、ガス透過性、排水性能を確保することができ、固体高分子形燃料電池の性能向上に寄与するガス拡散層を形成することができる微細多孔質層シートと、このようなシートの製造方法、さらにはこれを用いた燃料電池用ガス拡散層やと膜電極接合体を提供する。
【解決手段】ガス拡散層基材上に積層して用いられる燃料電池用の微細多孔質層シートにおいて、炭素材料とバインダを含む微細多孔質層(MPL)を少なくとも2層備えた多層構造とし、ガス拡散層基材側に位置する第1層(最下層)の微細多孔質層41におけるバインダ含有量を上層側に位置するこれ以外の微細多孔質層42におけるバインダ含有量よりも少なくする。 (もっと読む)


【課題】反応ガス連通孔からバッファ部を介して反応ガス流路全体に反応ガスを均一且つ確実に供給することができ、簡単な構成で、良好な発電性能を保持することを可能にする。
【解決手段】燃料電池10は、第1セパレータ14及び第2セパレータ16間に電解質膜・電極構造体18を挟持する。電解質膜・電極構造体18は、樹脂枠部材42を備えるとともに、前記樹脂枠部材42には、燃料ガス入口連通孔22aに隣接して入口バッファ部56が設けられる。入口バッファ部56は、燃料ガス入口連通孔22aに隣接する第1バッファ領域56aと、燃料ガス流路32に隣接する第2バッファ領域56bとを有するとともに、前記第1バッファ領域56aは、前記第2バッファ領域56bよりも積層方向の開口寸法が大きく設定される。 (もっと読む)


【課題】通常トレードオフ関係にあるガス拡散層のドライアウト耐性とフラッディング耐性を両立させることができ、固体高分子形燃料電池の性能向上に寄与するガス拡散層と、このようなガス拡散層を用いた燃料電池用膜電極接合体を提供する。
【解決手段】ガス拡散層基材31の上に、粒状炭素材料を含む第1微細多孔質層33と鱗片状黒鉛を含む第2微細多孔質層34を備えた2層構造の微細多孔質層32を形成してガス拡散層30とする。そして、このガス拡散層30を触媒層20を介して電解質膜10の両面に積層して膜電極接合体1とする。 (もっと読む)


【課題】固体酸化物電池の製作方法の提供。
【解決手段】サポート(1)上にアノードサポート層をテープキャストするステップと、サポート(2)上にアノード層をテープキャストするステップと、サポート(3)上に電解質層をテープキャストするステップとを有し、当該方法は、前記アノードサポート層の上部に前記アノード層を積層するステップ、前記アノード層から前記サポート(2)を取り外すステップ、前記アノード層の上部に前記電解質層を積層するステップ、および前記多層化構造を焼結するステップ、までのステップを有し、または、当該方法は、前記電解質層の上部に前記アノード層を積層するステップ、前記アノード層から前記サポート(2)を取り外すステップ、前記アノード層の上部に前記アノードサポート層を積層するステップ、および前記多層化構造を焼結するステップまでのステップを有する方法。 (もっと読む)


【課題】通常トレードオフ関係にあるガス拡散層の導電性とガス透過性を両立させることができ、固体高分子形燃料電池の性能向上に寄与するガス拡散層と、その製造方法を提供する。
【解決手段】ガス拡散層基材32と、該基材32の表面に形成された微細多孔質層31を有する燃料電池用ガス拡散層30において、上記バインダと少なくとも鱗片状黒鉛を含む炭素材料から成る微細多孔質層シートを上記基材32に貼着することによって微細多孔質層31を形成する。 (もっと読む)


21 - 40 / 669