説明

Fターム[5H018CC06]の内容

無消耗性電極 (49,684) | 電極の全体形状 (773) | 積層構造を有するもの (669)

Fターム[5H018CC06]に分類される特許

41 - 60 / 669


【課題】電解質・電極接合体を構成するアノード側電極において、燃料ガスの流通経路、電荷の伝導経路及び十分な強度を確保する。
【解決手段】電解質・電極接合体10は、気孔率が20〜40%であり、且つ長径が1〜4μmである多孔質体からなるアノード側電極12を具備する。なお、水銀ポロシメータ法によって求められるアノード側電極12の微分細孔容積が、気孔径1μm以下で最大となる(モード径が1μm以下である)。また、アノード側電極12に含まれる大径気孔24は、ポリメタクリル酸メチル等の樹脂材からなる造孔材を用いて形成される。必要に応じて、アノード側電極12と固体電解質16との間、固体電解質16とカソード側電極20との間に、それぞれ、平坦化層14、中間層18を介装するようにしてもよい。 (もっと読む)


【課題】アノードにおける反応で発生した酸素によって白金触媒が酸化されて触媒能が低下することを抑制し、それにより固体高分子電解質膜・触媒金属複合電極の寿命を延ばすことができる製造方法を提供する。
【解決手段】固体高分子電解質膜1の両面に、白金イオンの還元により析出した白金を含む触媒層2が形成され、且つアノードとなる触媒層の表面上の少なくとも給電体接触部に金層3が形成されている固体高分子電解質膜・触媒金属複合電極とする。アノードとなる触媒層の表面上の少なくとも給電体接触部に、酸化還元電位の高い金層が形成されているので、触媒層に含まれる白金の酸化を効果的に抑制することができる。 (もっと読む)


【課題】アノードでの局所H2枯渇及びセルリバーサルに対してより耐性を有する改良された膜電極アセンブリを提供する。
【解決手段】燃料電池は、アノード層32と、アノード層上に配置されたポリマー性イオン伝導膜と、ポリマー性イオン伝導膜上に配置されたカソード層38と、カソード層、アノード層、又はその両方における担体炭素よりも速い速度で腐食する有効量の反応性材料と、を含む。反応性材料はカソード触媒層に近接するか又はカソード触媒層内に分配される。変形例において、反応性材料はアノード層にも近接する。 (もっと読む)


【課題】燃料電池内で発生するフラッディングを抑制することができる燃料電池を提供する。
【解決手段】電解質膜10と電解質膜10の両側に配置されるアノード極12及びカソード極14とを備える膜電極接合体16と、膜電極接合体16の両側に配置される細孔層18,20と、細孔層18,20の外側に配置される反応ガス流路となる多孔体流路層22,24と、を備え、少なくともアノード極12側の細孔層18と多孔体流路層22との間にはガス拡散層21が配置されず、アノード極12側の細孔層18と多孔体流路層22とは接しており、アノード極12側の細孔層18は撥水性を有し、アノード極12側の多孔体流路層22は親水性を有する燃料電池1を用いる。 (もっと読む)


【課題】空気雰囲気で保管された電池スタックを再起動する際に発生するカーボン腐食を抑制することができ、長期に亘り電池性能の低下を抑制する。
【解決手段】実施形態の固体高分子形燃料電池は、固体高分子電解質膜100と、電解質膜100の一方の面に接触して配置された触媒層210、及び該触媒層210の電解質膜100と反対側の面に配置されたガス拡散層220を有する燃料極200と、電解質膜100の他方の面に接触して配置された触媒層310、及び該触媒層310の電解質膜100と反対側の面に配置されたガス拡散層320を有する酸化剤極300と、を具備している。そして、酸化剤極300の触媒層310に、該触媒層310を平面方向に分断するように絶縁層が設けられている。 (もっと読む)


【目的】高分子系電解質膜に大量のリン酸を予め含浸させることなく、長期にわたってセルの出力電圧が維持される中温型プロトン交換膜形燃料電池を提供することにある。
【解決手段】固体高分子形燃料電池14によれば、酸化剤電極30の酸化剤触媒層26と酸化剤ガス拡散層28との間に、その酸化剤触媒層26から酸化剤ガス拡散層28への液体のリン酸の移動を抑制するための少なくとも一層から成るリン酸移動抑制多孔質層42が設けられていることから、液体のリン酸が酸化剤触媒層26から酸化剤ガス拡散層28へ移動することが抑制されるので、高分子系電解質膜18および酸化剤触媒層26内に含まれる液体のリン酸が枯渇することが抑制され、高分子系電解質膜18に大量のリン酸を予め含浸させる必要がなく、長期にわたってセルの出力電圧が維持される利点がある。 (もっと読む)


【課題】多孔質体がセパレータから剥離し難い構造の燃料電池を提供する。
【解決手段】燃料電池の反応ガスの流路となる多孔質体28と、多孔質体28の主面と接するセパレータ34と、多孔質体28の周縁及びセパレータ34と接し、多孔質体28より緻密度の高い緻密層30と、を備え、多孔質体28及び緻密層30はセパレータ34に接合されている燃料電池1を用いる。 (もっと読む)


【課題】燃料極に含まれるNi成分の電解質層側への拡散抑制効果をより高めた固体電解質形燃料電池を提供すること。
【解決手段】この固体電解質形燃料電池は、固体電解質層であるLSGMの粒界にMgOを点在させている。LDCを挟んでLSGMと反対側に形成されている燃料極から拡散されるNi成分は、この点在しているMgO粒子によって捕捉され、電解質層中を空気極側へ拡散することが抑制される。 (もっと読む)


【課題】空気極等の電極の外側表面(主面側の表面)に十分なガスを供給することができる燃料電池セル及び燃料電池を提供する。
【解決手段】燃料電池セルの空気極41は、正方形の板状であり、且つ、固体酸化物体37側の下層61と下層61の外側の表面を覆う上層63とから構成されている。このうち、下層61は、平面形状が正方形で、その四方の側面は厚み方向に対して垂直である。一方、上層63は、平面形状が正方形であり、その厚み方向の外側に正方形の主面(外側表面)65を備えるとともに、その四方の側方に側面を備えている。特に、この上層63の側面のうち、酸化剤ガスの導入側及び排出側の流路に沿った両側面67、69は、酸化剤ガスをスムーズに外側表面65側に導くために、外側表面65側ほど中央側(上層63の平面における中央側)に傾斜するように、平板状の傾斜面を有するように構成されている。 (もっと読む)


【課題】簡単な工程で、多孔質拡散層を高精度に位置決めすることができ、高品質な電解質膜・電極構造体を効率的且つ確実に製造することを可能にする。
【解決手段】電解質膜・電極構造体10の製造方法は、ロール状に巻回された長尺状のガス拡散層28a、28bの外周縁部に位置決め部を設ける工程と、前記位置決め部を基準にして、前記ガス拡散層28a、28bの表面に下地層26a、26bを塗布する工程と、前記位置決め部を基準にして、一対の前記ガス拡散層28a、28bの間に固体高分子電解質膜18を挟持して積層体を得る工程と、前記積層体をホットプレスすることにより、一対の前記ガス拡散層28a、28bと前記固体高分子電解質膜18とを一体化させる工程と、前記ガス拡散層28aの外周縁部70を、予め設けられた分離部位から切り離す工程と、一体化された前記積層体の外周トリミング部を、前記位置決め部を含んで除去する工程とを有する。 (もっと読む)


【課題】燃料電池内で発生するフラッディングやドライアップを抑制することができる燃料電池を提供する。
【解決手段】電解質膜10と電解質膜10の両側に配置されるアノード極12及びカソード極14とを備える膜電極接合体16と、膜電極接合体16の両側に配置される細孔層18,20と、アノード極側の細孔層18の外側に配置されるガス拡散層22とを備え、前記カソード極側の細孔層20の外側にはガス拡散層が配置されない燃料電池1であって、前記アノード極側及びカソード極側の細孔層18,20に、親水性を付与する。 (もっと読む)


【課題】ナノ構造複合体空気極を含む固体酸化物燃料電池及びその製造方法を提供する。
【解決手段】本発明は、a)燃料極支持体と、b)燃料極支持体上に形成された固体電解質層と、c)固体電解質層上に形成されたナノ構造複合体空気極層と、を含み、複合体空気極層は、電極物質と電解質物質とが分子単位で混合されていながら、互いに反応または固溶されて単一物質を形成しないことを特徴とする固体酸化物燃料電池及びその製造方法に関するものであって、低温作動が可能であり、高性能を有し、安定性に優れる燃料電池を提供することができる。 (もっと読む)


【課題】少ない焼成回数で、層間の接着強度を向上させることが可能な燃料電池単セルの製造方法、層間の接着強度に優れた燃料電池単セルを提供する。
【解決手段】固体電解質層11と、固体電解質層11の一方面に設けられた燃料極層12と、固体電解質層11の他方面に中間層13を介して設けられた空気極層14とを有する燃料電池単セル1を製造するにあたり、空気極層14は、中間層13に接する緻密質電極層141と、緻密質電極層141に接し、かつ、緻密質電極層141よりも多孔質な多孔質電極層142とから構成する。焼成により中間層13になる未焼成の第1層23と、焼成により緻密質電極141層になる未焼成の第2層241と、焼成により多孔質電極層142になる未焼成の第3層242とが、この順で積層されてなる積層体2を焼成する工程を経る。 (もっと読む)


【課題】 電解質膜に触媒インクを均一に塗布できる共に電解質膜の損傷を防止できる膜電極接合体の製造方法、及び膜電極製造装置を提供する。
【解決手段】 電極接合体製造装置1及び膜電極接合体30の製造方法においては、電解質膜10に張力を付与された状態において電解質膜10に触媒インクB1及び触媒インクB2を塗布する。このため、電解質膜10に対して触媒インクB1及び触媒インクB2を均一な厚みで塗布することができる。さらに、膜電極接合体製造装置1及び膜電極接合体30の製造方法においては、電解質膜10に触媒インクB1及び触媒インクB2を塗布した後に、電解質膜10に付与した張力を開放する。このため、後の工程において電解質膜10を乾燥させる際に、電解質膜10の収縮が阻害されないので、電解質膜10の損傷を防止することができる。 (もっと読む)


【課題】ガス拡散性を低下させることなく利便性を向上させた膜−電極接合体を提供することを課題とする。
【解決手段】イオン伝導性高分子電解質膜2と、イオン伝導性高分子電解質膜2の両面に形成された触媒層3と、各触媒層3上に形成された接着層5と、接着層5を介して触媒層3上に接着された導電性多孔質基材4と、を備えている。 (もっと読む)


【課題】高温かつ無加湿状態で優れた発電性能を有する燃料電池用触媒層、及びそれを用いた基材付き燃料電池用触媒層、燃料電池用ガス拡散電極、燃料電池用触媒層−電解質膜積層体、燃料電池用膜電極接合体と燃料電池、並びにその製造方法を提供する。
【解決手段】燃料電池用触媒層2は、電解質と触媒とを含む燃料電池用触媒層2であって、上記電解質が、イオン液体と固体酸とリン酸類とを含む。また、燃料電池用触媒層2は、固体酸とイオン液体とリン酸類と触媒とを含む触媒層形成用組成物を用いて触媒層2を形成すること、又は、上記触媒層形成用組成物がイオン液体及びリン酸類からなる群から選ばれる一種以上の電解質を含まない場合は、上記触媒層形成用組成物を用いて形成した触媒層にイオン液体及びリン酸類からなる群から選ばれる一種以上の電解質を塗布することにより製造する。 (もっと読む)


【課題】燃料電池の製造に有用であるガス拡散層を提供する。
【解決手段】1ミクロン以下の厚さを有する親水性表面層、および、その下に、少なくとも5ミクロンの厚さを有するフルオロポリマーを含んでなる疎水性の第2の層を含んでなる燃料電池ガス拡散層。 (もっと読む)


【課題】逆電流の発生を抑制し、カソード触媒層の劣化を抑制することができる膜電極接合体及び燃料電池を提供する。
【解決手段】燃料電池10及び膜電極接合体50は、アノード触媒層26とアノードガス流路38との間に酸素拡散防止層が設けられている。この酸素拡散防止層は、アノード触媒層26に比して酸素の拡散性が低くされており、水素を良好に拡散させる一方で酸素の拡散を抑制する機能を有している。燃料電池システムの停止時において、アノード触媒層26に入り込む酸素の量を減少させる。また、停止時に入り込んだ酸素は酸素拡散防止層27によって拡散が妨げられることにより、カーボンを劣化させる反応を遅延させる。 (もっと読む)


【課題】700℃以下の中低温域においても発電効率40%以上を実現する電気化学セル及びその発電方法を提供する。
【解決手段】上記電気化学セルが燃料ガスと界面を有する燃料極、緻密なイオン伝導体(電解質)、空気(酸素)と界面を有する空気極がその順番に積層されている構造を有し、燃料極と空気極は接触することなく電解質によって分離され、燃料ガスとの界面である燃料極表面全面あるいは一部に電気化学反応を促進する多孔質構造の機能層が積層されている構造を有する電気化学セル。
【効果】気体水素燃料を利用する電気化学発電システムにおいて、気体水素燃料ガスの燃料極内部拡散による抵抗を大幅に低減し、700℃以下の中低温域においても発電効率40%以上を単セルレベルで実現することを可能とする、環境・エネルギー問題の解決に資する高効率な電気化学反応システムを提供できる。 (もっと読む)


【課題】優れた気孔性を持ち、強度に優れるとともに支持体層の厚さを減らすことができる金属酸化物−イットリア安定化ジルコニア複合体を含む固体酸化物燃料電池を提供する。
【解決手段】金属酸化物−3モル%イットリア安定化ジルコニア複合体25重量%〜75重量%、及び金属酸化物−8モル%イットリア安定化ジルコニア複合体75重量%〜25重量%でなる金属酸化物−イットリア安定化ジルコニア複合体を燃料極層または燃料極層の支持体層として採用した固体酸化物燃料電池。 (もっと読む)


41 - 60 / 669