説明

Fターム[5H018CC06]の内容

無消耗性電極 (49,684) | 電極の全体形状 (773) | 積層構造を有するもの (669)

Fターム[5H018CC06]に分類される特許

81 - 100 / 669


【課題】特別の撥水化処理を施すことなく、高撥水性を備えかつガス拡散性と排水性に優れた、燃料電池用の拡散層を得る。
【解決手段】COの超臨界流体または亜臨界流体中でカーボン粒子10と撥水性を有するパウダー状の樹脂材料(例えばPTFE)20とを攪拌混合して混合材料を得る。それをノズル6を利用して、触媒層57の上に塗布する。塗布の過程でCOはガス化して混合体から抜けることにより、高撥水性であり所要の空孔を備えた拡散層57が得られる。 (もっと読む)


【課題】触媒層カーボンの酸化を抑制しつつ、犠牲酸化による強度低下等を抑制する。
【解決手段】MEA10と、ガス拡散シート12と、セパレータ20とを備える燃料電池セルにおいて、ガス拡散シート12の発電面内に、セパレータ20の水素含有ガス流路として機能する凹部22aの延在方向に略垂直となるように、触媒層カーボンよりも低結晶化度のカーボンを犠牲剤として添加する。冷媒流路24として機能する凸部24がリブとして機能し、犠牲酸化に伴う強度低下を補強する。 (もっと読む)


【課題】 耐久性に優れるSOFCを提供する。
【解決手段】安定化ジルコニア材料からなる固体電解質層の一方の面に酸素極層、他方の面に燃料極層を設けてなる固体酸化物形燃料電池において、前記燃料極層は、外部から飛来したSiが前記固体電解質層に到達することを抑制するための、Si捕集機能を有することを特徴とする、固体酸化物形燃料電池。 (もっと読む)


【課題】微細構造担体の上にナノ構造体を含む触媒による、燃料電池カソード触媒を提供する。
【解決手段】ナノスコピック触媒粒子を担持した微細構造化担体ウィスカを含むナノ構造化要素を含む燃料電池カソード触媒が提供される。ナノスコピック触媒粒子は、第1および第2の層の交互適用によって製造され、第1の層は白金を含み、第2の層は、鉄と、第VIb族金属、第VIIb族金属、並びに、白金および鉄以外の第VIIIb族金属よりなる群から選択された第2の金属との合金または均質混合物あって、第2の層における第2の金属に対する鉄の原子数比が0〜10であり、第2の層に対する第1の層の平面相当厚さの比が0.3〜5であり、第1および第2の層の平均二層平面相当厚さが100Å未満である。白金の真空蒸着ステップと、鉄と第2の金属の合金または完全混合物の真空蒸着ステップとを交互に行う。 (もっと読む)


【課題】燃料電池において、触媒層カーボンの酸化を抑制する。
【解決手段】MEA10、ガス拡散シート12、セパレータ20を備える燃料電池において、ガス拡散シート12内に、MEA10のアノード触媒層のカーボンよりも低結晶化度のカーボンを添加する。低結晶化度のカーボンの添加量は、ガス拡散シート12の厚さ方向に変化し、MEA10側をセパレータ20側よりも相対的に少なくして排水性を確保する。 (もっと読む)


【課題】金属セパレータの酸化による劣化を抑制することができ、電圧降下を小さくすることが可能な燃料電池スタックを提供する。
【解決手段】燃料電池スタック1は、固体電解質層21と、固体電解質層21の一方面に設けられた燃料極層22と、固体電解質層21の他方面に設けられた空気極層23とを備えた単セル2を、金属セパレータ3を介して複数積層してなる。空気極層23は、固体電解質層21に接して配置される多孔質層231と、多孔質層231における金属セパレータ3側の面に接して配置される緻密質層232とを有する。空気極層23は、多孔質層231と緻密質層232との境界に、酸化剤ガスを流すガス流路233を有する。上記の燃料電池スタック1を複数積層配置し、燃料電池を構成する。 (もっと読む)


【課題】レドックスサイクルを繰り返しても剥離しにくい発電性能のよいNi−セリア系燃料極を提供する。
【解決手段】燃料極層と電解質との間にセリア系第1中間層を設けた固体酸化物形燃料電池の燃料極構造において、前記セリア系第1中間層と燃料極層との間にセリア系第2中間層を設け、前記セリア系第2中間層の厚さをセリア系第1中間層の2〜3倍の厚さとし、前記セリア系第2中間層のNi量をX、セリア系第1中間層に含まれるNi量をY、燃料極層に含まれるNi量をZとした場合、Y<X<Zの関係を満たし、製造時にセリア系第2中間層に含まれるNiOwt%を35〜55wt%としたことを特徴とする固体酸化物形燃料電池の燃料極構造。 (もっと読む)


【課題】SOFCの動作温度を低下させることによる出力電圧の低下を抑制できるSOFCを提供できるSOFC用空気極材料を提供する。
【解決手段】空気極1と、燃料極2と、空気極1と燃料極2との間に配置された電解質層3とを備え、前記空気極1が、集電層1aと集電層1aの電解質層3側に配置された活性層1bとを含む固体酸化物型燃料電池の活性層1bに用いられる空気極材料であり、APr1−x (AはBa, Sr, Caから選ばれた1種であり、BはSm,Gd,Y,Yb,Scから選ばれた1種であり、Xは0以上0.3以下である)の式で表されるペロブスカイト型酸化物を含む固体酸化物型燃料電池用空気極材料とする。 (もっと読む)


【課題】機械的強度を確保しつつ、構成部材間の熱抵抗や電気抵抗を減少させることができる固体酸化物形電気化学セルおよびその製造方法を提供する。
【解決手段】実施形態の固体酸化物形電気化学セル10は、電子絶縁性とイオン伝導性を有する固体電解質膜11と、固体電解質膜11の一方の主面11aに形成され、水素極触媒金属からなる平均粒径が0.1μm〜5μmの金属粒子、および固体電解質膜11と同種のイオン伝導性を有する酸化物からなる平均粒径が1nm〜100nmの酸化物粒子を含む水素極12とを備える。さらに、水素極12に積層して一体的に形成され、金属多孔質体からなる水素極側集電層14と、固体電解質膜11の他方の主面11bに形成された酸素極13と、酸素極13に積層して形成された酸素極側集電層15とを備える。 (もっと読む)


【課題】Aサイトにランタノイド系元素、Bサイトにコバルト元素を有するペロブスカイト型酸化物を空気極に用いた場合の反応劣化の問題を解決し、さらに熱膨張係数をある程度低減することで、SOFC用空気極の低温特性を向上させる。
【解決手段】燃料極と、固体電解質と、空気極とがこの順に積層されてなる固体電解質型燃料電池セルにおいて、空気極は、希土類添加セリアとペロブスカイト型酸化物(ABO3)とを10wt%:90wt%〜60wt%:40wt%の割合で含有する活性層と、活性層上に形成された集電層とを有する。活性層は、集電層と固体電解質との間に配置され、ペロブスカイト型酸化物は、Aサイトにランタノイド系元素、Bサイトにコバルト元素を有し、さらにBサイトにのみ2価の金属元素を有する。 (もっと読む)


【課題】本発明は、燃料電池のシステム効率を低下させることなく、長期にわたりギ酸の排出量が少ない燃料電池用膜/電極接合体を提供することを目的とする。
【解決手段】固体高分子電解質膜と、固体高分子電解質膜の一方の面上に設けられた触媒と固体高分子電解質を含むアノードと、固体高分子電解質膜の他方の面上に設けられた触媒と固体高分子電解質を含むカソードと、アノードの前記固体高分子電解質膜と反対側の面上に配置されたアノード拡散層と、カソードの前記固体高分子電解質膜と反対側の面上に配置されたカソード拡散層と、を備える燃料電池用膜/電極接合体において、アノード拡散層とアノードの間に、パラジウムと固体高分子電解質を含むギ酸酸化電極を形成する。 (もっと読む)


【課題】クロムを含むセパレータを用いた場合であっても、低コストで発電効率の低下を防ぐことができる固体酸化物形燃料電池セル用単セルおよび固体酸化物形燃料電池を提供する。
【解決手段】空気極13が、活性層13aと、この活性層13aの電解質11と接触する面と反対側の面に設けられ、Srを含む材料からなる集電層13bとを備える。これにより、この集電層13bでクロムとの反応が優先的に行われるため、電解質11と空気極13との界面におけるクロムとの反応を抑制することができるので、結果として、低コストで発電効率の低下を防ぐことができる。 (もっと読む)


【課題】アノード側電極とカソード側電極で電解質を挟んで構成され、且つカソード側電極と固体電解質の間に中間層が介装される電解質・電極接合体(MEA)において、カソード側電極に優れた電気的特性を発現させる燃料電池を提供する。
【解決手段】MEAを構成するカソード側電極14は、固体電解質16に積層された中間層18上に形成される。このカソード側電極14は、少なくとも、中間層18に隣接する第1層22aと、該第1層22aに隣接する第2層22bとを有する。第1層22aにおける第2層22bに臨む側の端面には、気孔が開口することによって凹部24が存在する。一方、第2層22bにおける第1層22aに臨む側の端面には、凸部26が存在する。この凸部26が凹部24に進入して該凹部24を充填することにより、第1層22aと第2層22bとの接触面積が大きくなる。 (もっと読む)


【課題】ジルコニウム系酸化物からなる電解質をアノード側電極とカソード側電極で挟んで構成され、且つカソード側電極と固体電解質の間にセリウム系酸化物からなる中間層が介装される電解質・電極接合体(MEA)に優れた電気的特性を発現させる。
【解決手段】MEA10は、例えば、8YSZ等のジルコニウム系酸化物からなる固体電解質16を、アノード側電極12とカソード側電極14とで挟んで構成される。固体電解質16とカソード側電極14との間には、セリウム系酸化物からなる中間層18が介装される。この中間層18には、固体電解質16から拡散したZrが含まれることがあるが、その拡散量は、最大でも40原子%に抑制される。このような中間層18上に形成されるカソード側電極14は、例えば、中間層18に隣接する第1層22aと、該第1層22aに隣接する第2層22bとを有する。 (もっと読む)


【課題】 Ptを使用することなく高い触媒活性を示す燃料電池用触媒、およびその製造方法、並びに前記触媒を用いた膜電極接合体および燃料電池を提供する。
【解決手段】 樹脂由来の炭素系触媒と、担体とを有しており、前記炭素系触媒は、前記担体の表面の少なくとも一部を被覆しており、比表面積が100〜800m/gであることを特徴とする燃料電池用触媒により、前記課題を解決する。本発明の燃料電池用触媒は、炭素系触媒の原料となる樹脂と金属錯体と担体との混合物を非酸化性雰囲気中で、600〜1200℃で焼成し、その後に金属を除去する工程を有する本発明の製造方法によって製造できる。 (もっと読む)


【課題】 固体電解質層をより薄膜化した場合でも、固体電解質層に穴があくことを防止し、燃料電池の発電効率を高めることができる固体電解質型燃料電池セル、固体電解質型燃料電池スタック、及び固体電解質型燃料電池セルの製造方法を提供すること。
【解決手段】 空気極7と、燃料極1と、固体電解質層5とを備えるとともに、燃料極1と固体電解質層5との間に活性層3を備え、燃料極1を支持基体とする支持膜型の固体電解質型燃料電池セルにおいて、 燃料極1の空孔の平均気孔径が、活性層3の空孔の平
均気孔径より大であることを特徴とする。 (もっと読む)


【課題】優れた発電性能を有する燃料電池用の発電層を得ることができる固体酸化物形燃料電池用の発電層の製造方法を提供する。
【解決手段】本発明に係る固体酸化物形燃料電池用の発電層の製造方法は、固体電解質層1と、酸化剤極層2と、燃料極層3とを少なくとも備える発電層の製造方法であって、固体電解質材料粒子を含む第1のスラリーと、酸化剤極材料粒子を含む第2のスラリー及び燃料極材料粒子を含む第3のスラリーの少なくとも1つとを重層塗布する重層塗布工程と、前記重層塗布工程を実施して得られる重層グリーンシート9を焼成する焼成工程とを有する。 (もっと読む)


【課題】製造コストが低く、剥離の問題が生じず、厚さ方向で炭素短繊維の質量比率に傾斜をつけることで、発電時に生成水を効率よく排出し、かつ十分なガス透気度及び導電性を持った多孔質電極基材及びその製造方法を提供する。
【解決手段】以下の(1)〜(3)の工程を含む、多孔質電極基材の製造方法。
(1)炭素短繊維(A)と、炭素繊維前駆体短繊維(b)及び/又はフィブリル状炭素前駆体繊維(b´)とを分散して前駆体シートを製造する工程。
(2)組成の異なる前駆体シートを2枚以上積層し、交絡処理して積層した前駆体シートを製造する工程。
(3)積層した前駆体シートを1000℃以上で炭素化する工程。 (もっと読む)


【課題】電気メッキ法を採用することにより、従来の無電解メッキ法のみにより得られる高分子電解質の表面や内部に形成した金属層(メッキ層)と比較して、表面抵抗の抑制や、高分子電解質に対する密着性の向上、短時間で金属層の膜厚(メッキ厚)の確保、工程数の簡略化、メッキ厚や電極形状を容易に調整でき、更に、異種金属を容易に積層できる高分子電解質複合体の製造方法、及び、前記製造方法により得られる高分子電解質複合体を提供する。
【解決手段】高分子電解質の少なくとも表面より内部に、電気メッキ法により、金属層を形成する工程を含むことを特徴とする高分子電解質複合体の製造方法。 (もっと読む)


【課題】産業上有益な炭窒化物混合物粒子または炭窒酸化物混合物粒子を高品質で製造できる方法を提供する
【解決手段】燃料電池用触媒に含まれる炭窒化物混合物粒子および炭窒酸化物混合物粒子は、粒径が1〜100nmと小さく、さらに粒径分布及び組成分布が均一である。上記炭窒化物混合物粒子の製造方法として、キャリアーガス導入口104からキャリアーガス、金属化合物原料および炭素源導入口105から金属化合物原料および炭素源、窒素源導入口106から窒素源が導入され、これらは反応ガス導入口107で混合されて反応ガスとなり、チャンバー103内に供給される。レーザ101により発生されたレーザ光が集光レンズ102を通ってチャンバー103内の反応ガスに照射される。反応ガスにレーザ光が照射された部分が反応部となる。この反応部で反応ガスが熱源であるレーザ光により加熱されて、炭窒化物混合物粒子が生成する。 (もっと読む)


81 - 100 / 669