説明

Fターム[5H027BA11]の内容

燃料電池(システム) (64,490) | 燃料(負極活物質)の製造、供給 (14,178) | 電気分解によるもの (232)

Fターム[5H027BA11]に分類される特許

61 - 80 / 232


【課題】水素循環経路内の不純物を適切に排出しつつ、アノードオフガスに含まれる水素を効率よく循環させる技術を提供する。
【解決手段】不純物濃縮制御装置は、電解質膜をガス拡散電極で挟んだ膜電極接合体(31)を介して対設されるアノード側室(32)及びカソード側室(33)を含み、アノードオフガスを導入路(25)からアノード側室に取り込み、アノード側室内のアノードオフガス中の水素を電気化学反応によりアノード側室からカソード側室へ移動させることによりアノードオフガス中の水素と水素以外の不純物とを分離させる水素分離手段(7)と、アノード側室内の滞留ガスを循環経路外へ導く排気路(27)へ排気する排気手段(17)と、膜電極接合体のアノードの少なくとも2箇所の局所電流を検出する電流検出手段(15)と、この電流検出手段により検出された少なくとも2箇所の局所電流値に基づいて排気手段における滞留ガスの排気量を制御する制御手段(20)と、を備える。 (もっと読む)


【課題】エタノールを原料としてメタノールを製造する容易な製造装置を提供する。
【解決手段】エタノールを、固体高分子膜を使って電気分解するか、又はさらに酸化剤を加えて電気分解するかのいずれかの方法を用いて酢酸に変換し、生成した酢酸に触媒としてヨウ化水素とイリジウムを添加して加熱し、一酸化炭素ガスを発生させて回収する、メタノールの製造装置。上記製造装置において、エタノール分解槽を冷却することにより、エタノールと生成酢酸を比重により分離する方法を採ることもできる。 (もっと読む)


【課題】簡単な構成で、水電解装置から発生した酸素に混在した水素を、燃料として効率的に利用することを可能にする。
【解決手段】水電解システム10は、純水を電気分解することによって高圧水素を製造する水電解装置12と、前記水電解装置12のアノード側に発生した酸素とカソード側から固体高分子電解質膜38を透過して前記アノード側で前記酸素に混在した水素との混合ガスを排出する戻り配管72と、前記戻り配管72に接続され、前記混合ガスを燃焼させる触媒燃焼器76と、前記触媒燃焼器76から発生する燃焼熱により加熱される水を貯留する貯湯槽78とを備える。 (もっと読む)


【課題】 従来の水素生成デバイスにおいては、光触媒電極から発生する気泡によって、水素生成効率が低下していた。そこで、光触媒電極で発生した気泡の除去と、反応物質の拡散の促進を実現する水素生成デバイスが必要とされていた。
【解決手段】 本発明の光触媒水素生成デバイスは、光透過セル5と、水溶液1と光触媒電極2と、対極3とからなる水素生成デバイスにおいて、水溶液1を物理的攪拌することを特徴とする。この構成によって、光触媒電極に付着した気泡を除去し、光触媒電極と水溶液との接触率を向上させ、水素生成効率を高めることができる。 (もっと読む)


【課題】 圧力損失が小さく、圧力損失による触媒性能の低下を抑制しうる燃料電池用水素製造用触媒と、これを用いた燃料電池用水素の製造方法とを提供する。
【解決手段】 本発明の燃料電池用水素製造用触媒は、所定の間隔を持って螺旋状に巻回するコイル状筒材11と該コイル状筒材11の軸方向に沿って接合された支柱12とを備え、アルミナを主成分とする担体10に、ニッケルおよび白金族元素の少なくとも一方が担持されてなる。本発明の燃料電池用水素の製造方法は、前記本発明の触媒の存在下、炭化水素類と水蒸気とを反応させる。 (もっと読む)


【課題】本発明は、燃料電池の発電動作を停止するとき、燃料ガスに含まれる可燃ガス成分を低減させて停止時の燃料ガスへの引火や一酸化炭素中毒を防止し、かつ、小型化を図ることができるようにする。
【解決手段】本発明は、燃料電池と、燃料ガスの流路における最も低い温度を示す部位における温度を取得するための第一の温度取得部S4とを備えたものであり、燃料電池の発電動作を停止するとき、第一の温度取得部S4によって取得した温度が、水凝縮温度以上であるか否かを判定する最低温度判定手段60aと、この最低温度判定手段60aにより、第一の温度取得部S4によって取得した温度が水凝縮温度以上であると判定したときには、燃料極を含む燃料ガスの流路区間における燃料ガスの流通を閉止する流通区間閉止手段60b及び閉止した流路区間内におけるガス濃度を低減させるガス濃度低減手段60cとを有している。 (もっと読む)


本発明は、少なくとも1個の選択的プロトン伝導性膜を含み、かつ該膜の各側上に少なくとも1種の電極触媒を含む気密性膜電極アセンブリを用いることによって、水素含有反応混合物Rから電気化学的に水素を分離する方法に関し、反応混合物R中に含まれる水素の少なくとも一部を、膜の保持側でアノード触媒と接触させてプロトンに酸化し、かつこのプロトンは、膜を通過させて透過側でカソード触媒と接触させて、(I)水素に還元するか、および/または(II)酸素により水に変換し、この際、酸素は、膜の透過側で接触する酸素含有流O由来のものである。さらに本発明は、少なくとも1個の膜電極アセンブリを備えた反応器に関する。 (もっと読む)


【課題】水蒸気の電気分解で発生した水素を貯蔵した上で発電に利用する水素電力貯蔵システムにおいて、発電時に発生する熱を有効に利用して総合効率を向上させる。
【解決手段】水素電力貯蔵システム30は、水素と酸化剤ガスとを用いて発電する発電部および水蒸気を電気分解する電解部(電力/水素変換装置11)を具備する。水素電力貯蔵システム30は、電気分解により生成された水素を貯蔵し、当該水素を発電時に発電部に供給する水素貯蔵部12と、発電に伴って発生する高温の熱を貯蔵し、当該熱を電気分解時に電解部に供給する高温蓄熱部13と、高温蓄熱部13で熱交換された後の低温の熱を貯蔵し、当該熱で電解部に供給する水蒸気を発生させる低温蓄熱部31とを具備する。 (もっと読む)


本発明は、1〜4個の炭素原子を有する脂肪族炭化水素を芳香族炭化水素に変換する方法に関し、この場合、この方法は、以下の工程:a)1〜4個の炭素原子を有する少なくとも1種の脂肪族炭化水素を含む出発材料流Eを、触媒の存在下で、非酸化的条件下で、芳香族炭化水素および水素を含む生成物流Pに変換し、かつb)少なくとも1個の選択的プロトン伝導性膜および該膜の各側に少なくとも1個の電極触媒を含む気密性膜電極アセンブリを用いて、反応の間に生じた水素の少なくとも一部を生成物流Pから電気化学的に分離し、その際、水素の少なくとも一部は、膜の保持側でアノード触媒と接触してプロトンに酸化し、かつ該プロトンは、膜を通過した後に、透過側でカソード触媒と接触して酸素により水に変換され、この際、該酸素は膜の透過側で接触する酸素含有流O由来のものである。 (もっと読む)


【課題】システム停止状態が長期に亘っても起動特性が良好で、発電電力量を維持することができる燃料電池発電システムを提供する。
【解決手段】PEFC7の電解質の水分量の減少度合いに応じて、第1,第2のメンテナンス(湿潤)発電開始指令を発生し、第1のメンテナンス発電開始指令が発せられたとき、太陽光発電部5の発電電力の範囲内で水素製造部4で製造される水素ガスの量に見合ってメンテナンス発電を実行させるとともに、第2のメンテナンス発電開始指令が発せられたとき、太陽光発電部5の発電電力量を超える電力を系統電力1から水素製造部4で受電させ、水素ボンベ8の燃料は消費しないようにした。 (もっと読む)


【課題】簡単な構成で、電解質膜の損傷を可及的に阻止することを可能にする。
【解決手段】水電解装置10を構成する単位セル12は、電解質膜・電極構造体32をアノード側セパレータ34及びカソード側セパレータ36により挟持する。アノード側セパレータ34には、アノード側給電体40の外方を周回して、第1シール部材62aを配置するための第1シール溝64aが形成されるとともに、カソード側セパレータ36には、カソード側給電体42の外方を周回して、第2シール部材66aを配置するための第2シール溝68aが形成される。第1シール溝64aと第2シール溝68aとは、積層方向に対し固体高分子電解質膜38を挟んで互いに異なる位置に設定される。 (もっと読む)


【課題】簡単な構成で、水素中の水分が水吸着装置を通過することを確実に阻止し、所望のドライ水素を効率的に供給することを可能にする。
【解決手段】水電解システム10は、純水供給装置12から供給される純水を電気分解することによって高圧水素を製造する水電解装置14を備える。水電解装置14の配管34cには、気液分離器18、冷却器20及び水吸着装置22が、水素の流れ方向に沿って配置される。冷却器20と水吸着装置22との間には、第1背圧弁36が配置される一方、前記水吸着装置22の下流側には、第2背圧弁42が配置される。 (もっと読む)


【課題】 燃料電池などの燃料としての水素を安価に且つ安定して得ることができる熱分解用触媒を提供する。
【解決手段】 耐熱性で不活性な繊維、例えばSi(シリカ)繊維の表面にゼオライト(例えばNa−Y型)が付着若しくはコーティングされ、且つ前記ゼオライトを構成する一部の元素(例えばNa)が1価のアルカリ金属イオン(例えばLi)とイオン交換されている。 (もっと読む)


電流源に接続された一対の電極と、電極と流体連通する電解質と、第1の電極で形成される第1のガスと、第2の電極で形成される第2のガスと、分離機と、第1および第2のガス回収容器と、を備える、電解セル。分離機は、電解質の密度と電解質および第1のガスの合わせた密度との間の相違に起因して、電解質および第1のガスの流れを、第2の電極に対して遠位であり、かつ第1のガス回収容器に向かう方向に方向付けるための、第1の傾斜面を含む。分離機は、電解質の密度と電解質および第2のガスの合わせた密度との間の相違に起因して、電解質および第2のガスの流れを、第1の電極に対して遠位であり、かつ第2のガス回収容器に向かう方向に方向付けるための、第2の傾斜面を含む。
(もっと読む)


【課題】電解質に二酸化炭素が溶解することにより生じる電解質膜の変質を回復させる運転方法を提供する。
【解決手段】電解質膜10と、その両側に配置された一対の電極であるアノード極12とカソード極14とを備えるアルカリ型の燃料電池の起動時に、電解質膜中の炭酸イオン及び/又は炭酸水素イオンを除去し、水酸化物イオンを増加させるためのイオン制御手段を備える。イオン制御手段としては、例えば、燃料電池のアノード極12とカソード極14との間に電圧を強制的に印加する手段50を用いる。 (もっと読む)


【課題】水素吸蔵電極を直接、被電解水に浸しながら電解し、水素を発生させて吸蔵するに際し、負電極としての水素吸蔵電極が酸化され難い材料で安価な材料にすると共に、吸蔵しやすくし、さらに吸蔵した水素を取り出しやすい構造にすること、更に単純な構造の脱着可能な水素吸蔵電極を有する水素吸蔵装置、およびその水素吸蔵電極を利用した電池を提供する。
【解決手段】負極としての水素吸蔵電極2について、粒状または多孔性のグラファイトなどのカーボン系材料を用いる構造として被電解水6との接触面積を大きくする。さらにこの水素吸蔵電極は、水素吸蔵装置の本体から脱着可能な構造にして、十分水素を蓄えた水素吸蔵電極を効率の良い水素吸蔵物質に水素を移し替えるようにして利用する電池に適用する。 (もっと読む)


【課題】発電時と電解時との間で熱をより有効に利用できるようにすると共に、電力の貯蔵効率を向上させることができ、電解と発電の切り替えによる固体酸化物電解質の破損の虞が少ない電力貯蔵システム及びその運用方法を提供する。
【解決手段】固体酸化物電解質15を有して水蒸気電解セルと発電セルとを兼用する電解兼発電セル2と、電解兼発電セル2に燃料ガス及び空気をそれぞれ供給するガス供給手段3と、電解兼発電セル2に水蒸気を供給する水蒸気供給手段と、電解兼発電セル2より排出される排ガスと電解兼発電セル2に供給される燃料ガス及び空気とそれぞれ熱交換を行う第1再熱熱交換器、第2再熱熱交換器を備えるもので、電解兼発電セル2の内部温度を、内部に熱媒体を流通させて所定温度に制御する温度制御系11を備えている。 (もっと読む)


【課題】燃料電池反応と高温水蒸気電解反応とを交互に高効率で行うことができ、固体電解質燃料電池(SOFC)及び電気化学セル(SOEC)の双方として実用可能な電気化学セルを提供する。
【解決手段】電気的に絶縁性であって電子絶縁性と酸素イオン導電性を呈する電解質膜11と、電解質膜11の一方の主面側に形成された酸素極12と、電解質膜11の他方の主面側に形成されたニッケルとセリア系セラミック材料とのサーメットを含む水素極13と、酸素極12及び水素極13それぞれの、電解質膜11と反対側の主面側に形成された一対の集電材14,15とを具え、一対の集電材14,15を介して酸素極12、電解質膜11及び水素極13間を流れる電流の電流密度が±0.6A/cm未満となるように電気化学セルを構成する。 (もっと読む)


【課題】固体高分子形の水電解装置と燃料電池とを一体化させた可逆セルにおいて,運転モードの切り替えを短時間でかつ容易に行う。
【解決手段】固体高分子形の水電解装置と燃料電池とを一体化させた可逆セル1において、水電解装置運転から燃料電池運転への運転モードの切り替えにあたって,水電解装置運転の終了後、燃料電池運転を行う前に、可逆セル1内部の反応ガス流路に気体を供給して、流路内に残留した電解水をセル内部から排出し、その後、燃料電池運転時に酸化剤極となる側の反応ガスの流路14にのみ、空気を供給し、セル内部基材を乾燥させる。 (もっと読む)


【課題】装置構成を簡略化できるとともに、運転効率を大幅に向上させることができる。
【解決手段】水電解装置11と、燃料電池12と、容器13と、浄化層14と、容器13本体内を第1の部屋16と第2の部屋17とに分離する仕切板15と、水素タンク21と水素配管22a,bとを備える水素貯蔵部20と、酸素タンク31と酸素配管32a,bとを備える酸素貯蔵部30と、容器13から排出された循環水を、燃料電池12及び水電解装置11を通過して第1の部屋16に送給する第1の送給管25と、容器13から排出された循環水を、燃料電池12及び水電解装置11を通過して第2の部屋17に送給する第2の送給管35と、一方の端部が燃料電池12より下流側の第1の送給管25に接続される水素供給管26と、一方の端部が燃料電池12より下流側の第2の送給管35に接続される酸素供給管36とを備える電力貯蔵装置10。 (もっと読む)


61 - 80 / 232