説明

Fターム[5H029CJ28]の内容

二次電池(その他の蓄電池) (156,093) | 製造、処理 (11,469) | 製造、処理時の雰囲気又は状態を特定 (799)

Fターム[5H029CJ28]に分類される特許

121 - 140 / 799


【課題】 高容量で、良好な電池特性を有する非水二次電池を提供する。
【解決手段】 正極が、Ni、MnおよびMgを必須の構成元素とする特定のLi含有遷移金属酸化物を含有する正極合剤層を有しており、負極は、SiとOとを構成元素に含む材料(Siに対するOの原子比xは、0.5≦x≦1.5)および黒鉛を含有する負極合剤層を有しており、SiとOとを構成元素に含む材料は、炭素材料と複合体を形成しており、負極合剤層において、SiとOとを構成元素に含む材料と黒鉛との合計を100質量%としたとき、SiとOとを構成元素に含む材料の比率が3〜20質量%である非水二次電池により、前記課題を解決する。 (もっと読む)


【課題】 出入力特性に優れた非水電解液二次電池用電極板を提供する。
【解決手段】 集電体と、前記集電体の少なくとも一部に形成され、活物質を含む電極活物質層とを備える非水電解液二次電池用電極板について、温度150℃かつ気圧1Torrの空気中で1時間保持され、次いで、温度25℃、相対湿度60%RHかつ気圧760Torrの空気中で10分間保持された非水電解液二次電池用電極板のカールフィッシャー法で測定された水分量を該非水電解液二次電池用電極板の電極活物質層の重量で除算して算出された含水率が、0.15%以上1.0%以下であることで、出入力特性に優れた非水電解液二次電池用電極板がえられる。 (もっと読む)


【課題】ジフルオロリン酸塩を含有する電解液を用いたリチウムイオン二次電池の製造方法において、第2自己放電工程における放置開始後の電池電圧上昇期間を短縮することができるリチウムイオン二次電池の製造方法を提供する。
【解決手段】下記の(1)及び(2)の少なくともいずれかの条件を満たすリチウムイオン二次電池の製造方法である。(1)電池列拘束工程では、電極体110の平坦外面(第1平坦外面110b及び第2平坦外面110c)にかかる圧力が650〜8150kPaの範囲内の値となるように、電池列200を押圧治具30,40で挟んで拘束状態にする。(2)第2自己放電工程では、電池列200の放置を開始するときの電池電圧値である放置開始電圧値を、3.4〜3.8Vの範囲内の値とする。 (もっと読む)


【課題】ジフルオロリン酸塩を含有する電解液を用いたリチウムイオン二次電池の製造方法において、第2自己放電工程における放置開始後の電池電圧上昇期間を短縮することができるリチウムイオン二次電池の製造方法を提供する。
【解決手段】組み付け工程において、下記の(1)〜(4)の少なくともいずれかの条件を満たす電池100を作製する。(1)正極活物質137は、LiXMO2 であって、1.04≦X≦1.15を満たす。(2)負極活物質127の粒子のBET比表面積が、2.8〜5.2m2/gの範囲内である。(3)負極活物質127の粒子は、黒鉛と非晶質炭素とからなり、負極活物質の粒子における非晶質炭素の割合が、2.5〜7.1wt%の範囲内である。(4)電解液160中のジフルオロリン酸塩の濃度が、0.01〜0.076mol/Lの範囲内である。 (もっと読む)


【課題】充放電レート特性の向上、導電パス改善によるサイクル向上、電解液の保液性向上、電解液浸液性の向上、低不可逆容量に対応できるような炭素材を提供する。
【解決手段】処理前の炭素材(A)と処理後の炭素材(B)との250〜2500nmのHgポロシメトリー解析による細孔分布の細孔量比ΔP比(=P(B)/P(A))が1
より大きく10以下となるように非機械的処理を行うことにより製造されることを特徴とする非水系二次電池負極用炭素材。 (もっと読む)


【課題】ジフルオロリン酸塩を含有する電解液を用いたリチウムイオン二次電池の製造方法において、第2自己放電工程における放置開始後の電池電圧上昇期間を短縮することができるリチウムイオン二次電池の製造方法を提供する。
【解決手段】下記の(1)及び(2)の少なくともいずれかの条件を満たすリチウムイオン二次電池の製造方法である。(1)第1自己放電工程(ステップS5)では、電池を放置する所定期間を1〜7日間の範囲内の期間とする。(2)第1自己放電工程における放置開始電圧値Vbから、放電量測定工程(ステップS6)における放電終止電圧値Veを差し引いた電圧差分値ΔVbeが、0.25V≦ΔVbe≦0.55Vの関係を満たす。 (もっと読む)


【課題】ジフルオロリン酸塩を含有する電解液を用いたリチウムイオン二次電池の製造方法において、第2自己放電工程における放置開始後の電池電圧上昇期間を短縮することができるリチウムイオン二次電池の製造方法を提供する。
【解決手段】下記の(1)及び(2)の少なくともいずれかの条件を満たすリチウムイオン二次電池の製造方法である。(1)放電量測定工程では、第1放電終止電圧値を2.5V以上3.55V以下の範囲内の値とする。(2)内部抵抗測定工程では、第2放電終止電圧値を1.5V以上3.55V以下の範囲内の値とする。 (もっと読む)


【課題】高容量であり、充電時におけるリチウム金属の析出を抑制することのできる非水電解質二次電池および負極活物質を提供する。
【解決手段】本発明の非水電解質二次電池は、Mn58の組成を有するマンガン酸化物を用いた負極活物質を含む負極2と、正極1と、リチウムイオン導電性を有する非水電解質15とを備える。 (もっと読む)


【課題】活物質層の細孔内部にイオン液体を十分に浸透させることができる蓄電デバイスの製造方法を提供する。
【解決手段】セパレータを介して対向する活物質層に電解液を浸透させる含浸工程を含む蓄電デバイスの製造方法であって、含浸工程が、イオン液体と、イオン液体と相溶性を有し、イオン液体より低い表面張力とイオン液体より高い蒸気圧とを有する高蒸気圧有機溶媒の混合電解液を活物質層に浸透させる混合電解液含浸工程と、浸透された混合電解液から高蒸気圧有機溶媒を一部または全部除去する除去工程と、を有する。 (もっと読む)


【課題】 高温貯蔵時におけるガス発生が抑制され、且つ、抵抗上昇が抑制された非水電解質二次電池の製造方法を提供する。
【解決手段】 正極3と、リチウムイオン吸蔵電位が0.4V(対Li/Li+)以上のリチウムチタン酸化物を含む負極4と、非水電解質と、を含む非水電解質二次電池1の製造方法を提供する。該方法は、前記正極3、負極4、及び非水電解質を外装部材8に収容し、外装部材8の開口部9を仮封止して仮封止二次電池を得ることと、前記仮封止二次電池の充電深度(SOC)を20%未満(0%を含まず)に調整することと、前記調整された仮封止二次電池を50℃以上90℃以下の雰囲気中で保持することと、前記仮封止二次電池を開封し、内部の気体を排出することと、前記外装部材8を本封止することとを含む。 (もっと読む)


【課題】 大容量のリチウム2次電池の製造に対応でき、従来の製造装置よりも生産性がアップしたリチウム2次電池の製造方法と製造装置を提供すること。
【解決手段】 電極板の仕切りに用いられる連続セパレータに、複数の正極板と負極板から構成される電極板を電極板毎に所定の間隔を保持し、前記電極板に設けられたタブが前記連続セパレータの外側になるように配置し、他方の電極板の仕切りに用いられる連続セパレータを、前記電極板が配置された連続セパレータに重ね合わせて、前記電極板の周囲の連続セパレータ同士を加熱溶融により貼り合わせて接着し、正極板と負極板が連続セパレータを介して交互に重なり合うように積層状に収納する。 (もっと読む)


【課題】積層電極体の積層方向における電解液の分布を効果的に均一化することが可能な積層式電池を提供すること。
【解決手段】複数枚の正極板1と複数枚の負極板2とがセパレータを介して交互に積層された積層電極体10を備える積層式電池において、セパレータを、積層方向に隣り合う一対ごとに、周縁部の少なくとも一部で互いに接合し接合部4を形成して袋状セパレータ3とし、積層電極体10の積層方向における中央部領域に位置する袋状セパレータ3(低閉塞率袋状セパレータ3L)の接合部4の領域の割合を、積層方向における両端部に位置する袋状セパレータ3(高閉塞率袋状セパレータ3H)の接合部4の領域の割合よりも小さくする。 (もっと読む)


【課題】 製造ラインにおける塗工・乾燥工程を経ないで,混練された塗工液から電池の性能を評価することのできる電池の評価用治具および電池の評価方法を提供すること。
【解決手段】 評価用治具100は,容器110と,蓋体120と,Oリング130と,正極集電部150と,負極集電部160とを有している。蓋体120には,逆止弁122,123が形成されている。評価用治具100の内部に,負極ペースト層NA1,セパレータS,正極ペースト層PA1を積層する。その後,評価用治具100の内部を減圧し,ペースト層PA1,NA1を乾燥させて積層電極体とする。復圧後に評価用治具100の内部に電解液を注入し,評価用治具100の内部を再び減圧する。そして,取り出した評価用治具100の内部に形成された評価用電池についてその性能を測定する。 (もっと読む)


【課題】充放電容量を向上させた全固体二次電池の製造方法を提供する。
【解決手段】硫化リチウムおよびリチウムイオン伝導性固体電解質を有する正極合材層2と、リチウムイオン伝導性固体電解質からなる固体電解質層3と、黒鉛に低結晶性炭素材料を被覆した炭素材料およびリチウムイオン伝導性固体電解質を有する負極層4とを具備する全固体二次電池の製造方法であって、上記固体電解質層3を、上記正極合材層2と負極層4の間に配置して積層部材7を成形し、この積層部材7をラミネートセルに封入し、このラミネートセルを60MPaで加圧し且つ45〜220℃の範囲で加熱した状態において、当該積層部材7に充放電を少なくとも一回行うものである。 (もっと読む)


【課題】大型電気化学セルの電解液及び充電式リチウムイオン含有電池に使用される電気化学セルの中に電解液を満たす方法を提供する。
【解決手段】少なくとも1つの陽極10、少なくとも1つの陰極20、及び前記少なくとも1つの陽極10と前記少なくとも1つの陰極20との間の少なくとも1つのセパレータ30を備え、電解液は前記少なくとも1つの陽極10と前記少なくとも1つの陰極20との間に満たすことができる電気化学セル2において、電解液は少なくとも1つのリチウムイオン含有導電性塩、少なくとも1つの溶媒及び少なくとも1つの湿潤剤からなり、湿潤剤はフッ素系界面活性剤を約5000ppm以下含む。 (もっと読む)


【課題】高率特性およびサイクル寿命特性に優れている電気化学素子用正極活物質組成物と、この組成物を含む電気化学素子用正極と、この組成物を含む正極を含む電気化学素子を提供する。
【解決手段】表面にヒドロキシル基(−OH)とエノール基(−C=C−OH)が結合され、赤外線分光スペクトルのヒドロキシル基ピーク面積とエノール基ピーク面積とのピーク面積比((−OH)/(−C=COH))が0.5〜10であり、比表面積が50m〜3000m/gであり、異種元素を15重量%未満の含量で含む、炭素系添加剤;正極活物質;導電材;およびバインダーを含む、電気化学素子用正極活物質組成物である。 (もっと読む)


【課題】粉体層を製造可能な粉体層の製造方法、集電体と粉体層との密着性を向上させることが可能な電極体の製造方法、及び、粉体層を備える固体電池の性能を向上させることが可能な固体電池の製造方法を提供する。
【解決手段】固体電解質及び活物質の少なくとも一方を含む粉体を基材の表面に配置する工程と、配置された粉体へ表面と交差する方向に振動を付与しながら粉体を押圧する工程と、を有する粉体層の製造方法、該粉体層の製造方法を用いる電極体の製造方法、並びに、該電極体の製造方法を用いる電池の製造方法とする。 (もっと読む)


【課題】電解液の注液に利用される非封止部の内側面に電解液成分の付着を抑制できる電解液注液方法および電解液注液装置を提供する。
【解決手段】外装ケースを構成しかつ外装ケース内部に連通している非封止部13を有するラミネートを備えたラミネート型電池に、非封止部13に挿入された注液ノズル110から、電解液を注液するための電解液注液装置であって、非封止部13から離れている部位を外部から挟み込み、非封止部13を外装ケース内部から隔離した状態とするための押さえ冶具132,134と、押さえ冶具に押圧力を発生させるための押圧力発生手段と、を有する。 (もっと読む)


【課題】本発明は、一段階の簡略な工程で加熱することなく結晶化ガラス状の硫化物固体電解質材料を得ることが可能な硫化物固体電解質材料の製造方法を提供することを主目的とする。
【解決手段】本発明においては、少なくとも硫黄(S)元素および第13族〜第15族の元素を含有する原料組成物を用い、室温での高エネルギーメカノケミカル処理を行う合成工程のみにより、結晶化ガラス状の硫化物固体電解質材料を得ることを特徴とする硫化物固体電解質材料の製造方法を提供することにより、上記課題を解決する。 (もっと読む)


【課題】放電容量の大きなリチウム二次電池、特に4.3V以下の電位領域における放電容量の大きなリチウム二次電池の製造方法を提供する。
【解決手段】充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下である充電方法が採用されるリチウム二次電池を製造するための製造方法であって、溶液中でCo,Ni,及びMnを含有する化合物を共沈させて前駆体を作製し、前記前駆体とリチウム化合物を混合、焼成する工程を経て、α−NaFeO型結晶構造を有し、CuKα線を用いたエックス線回折測定を行ったときに、充放電前において20〜30°付近に、Li[Li1/3Mn2/3]O型の単斜晶にみられる回折ピークが観察されるリチウム遷移金属複合酸化物の固溶体を作製する工程、前記固溶体を活物質として前記正極を作製する工程、前記正極を備えたリチウム二次電池について4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域に少なくとも至る充電を行う工程を含み、且つ、4.3V(vs.Li/Li)以下の電位領域において放電可能な電気量が177mAh/g以上となるリチウム二次電池を製造することを特徴とする。 (もっと読む)


121 - 140 / 799