説明

Fターム[5H730AS13]の内容

DC−DCコンバータ (106,849) | 用途 (11,272) | 電動機駆動用 (979)

Fターム[5H730AS13]に分類される特許

321 - 340 / 979


【課題】システム制御を行う制御部のマイクロコンピュータに対して効率良く給電を行って常時動作可能なようにする。
【解決手段】交流入力部21に入力される交流電力を直流電力に変換する第1AC−DC変換部11及び第2AC−DC変換部12と、第1AC−DC変換部11を制御する出力制御部32と、第1AC−DC変換部11の出力部と並列接続され直流出力部22に直流電力を出力する直流給電装置13と、出力制御部32及び直流給電装置13を含む自システムの動作を制御する制御部31と、起動時に第2AC−DC変換部12の出力電力を制御部31に給電し、直流給電装置13からの直流電力の出力が所定電圧以上となった場合に、直流給電装置13からDC−DC変換部14の出力電力を制御部31に給電するよう給電経路を切り替える給電経路切替部15とを備える。 (もっと読む)


【課題】スイッチのターンオフ時のテール電流に起因する電力損失を低減して、電力変換装置の電力効率を向上する。
【解決手段】メインスイッチ53のオン期間に、直流電源51からメインスイッチ53へ流れる主電流の一部を共振させた共振電流によって電荷を充電する充電回路16,21,18と、メインスイッチ53がオフされる際に、当該充電回路16,21,18に充電された電荷を前記主電流とは逆方向にメインスイッチ53へ放電する放電回路17,21,16と、を備える。 (もっと読む)


【課題】部品点数を減少し、小型化かつ低コスト化し得る昇圧装置を実現する。
【解決手段】バッテリ電源によりモータを駆動する電動機駆動回路を三相ブリッジ回路により構成し、そのハイサイド及びローサイドスイッチング素子を相補駆動し、バッテリと両スイッチング素子間との間にコンデンサを接続し、コンデンサの正極に高圧蓄電用コンデンサを接続し、コンデンサの負極に昇圧用スイッチング素子を介してバッテリと接続する。昇圧用スイッチング素子及びコンデンサの負極とハイサイド及びローサイドスイッチング素子間に向けて電流流す向きのダイオードを設け、高圧蓄電用コンデンサの正極はダイオードを介してハイサイドスイッチング素子に接続する。ハイサイドスイッチング素子及びローサイドスイッチング素子のデューティ50%の相補駆動において非駆動時に蓄電素子の充電を行うことができる。 (もっと読む)


【課題】1次側のコイルで発生した熱の放熱性を高める。
【解決手段】DC−DCコンバータ100のトランス140を構成するコイル部品10では、1次側コイル基板20に伝熱領域29が設けられ、この伝熱領域29と、放熱部材であるベースプレート102の凸部113とが熱的に接続されることによって、1次側コイル基板20の1次側コイル導体で発生した熱、具体的には、トランス140の1次側コイル導体を形成する第2コイル部214及び第3コイル部216で発生する熱をベースプレート102に対して好適に伝熱させることができる。すなわち、1次側コイル基板20側のコイルで発生した熱を2次側コイル30,40を介さずにベースプレート102に対して放熱することができるため、1次側コイル基板20の放熱効果を高めることができる。 (もっと読む)


【課題】第1のバッテリと第2のバッテリとが第1の昇降圧コンバータと第2の昇降圧コンバータとにより高電圧系に接続された電源装置において、第2の昇降圧コンバータに異常が生じているときでも、第1のバッテリと第2のバッテリとの間における大電流の授受による過電流を抑制するが生じないようにする。
【解決手段】スレーブ側昇降圧コンバータに異常が生じているときには、マスタバッテリ電圧Vbm,スレーブバッテリ電圧Vbsのうち大きい方を目標電圧VH*として設定して(S110,S120)、設定した目標電圧VH*を用いてマスタ側昇降圧コンバータとスレーブ側昇降圧コンバータとを制御する。これにより、マスタバッテリとスレーブバッテリとの間における大電流の授受による過電流を抑制することができる。 (もっと読む)


【課題】共振型コンバータのスイッチングタイミングの制御精度を向上する。
【解決手段】第1のスイッチS1に先行してオンに制御されて第1のスイッチS1の電圧を電流共振現象によって低下させる第2のスイッチS2を備えた共振型コンバータ12について、第2のスイッチS2がオンとなったタイミングを検出するタイミング検出部122aと、検出されたタイミングに基づいて第1のスイッチS1のスイッチングタイミングを制御するタイミング制御部122bとを備える。 (もっと読む)


【課題】従来よりもコストを低く抑えた電力変換装置を提供する。
【解決手段】電力変換装置30は、第1電源E1(電源)から供給される電力を変換して出力機器に出力する電力変換部31,32と、電力変換部31,32を構成する二以上のスイッチング素子Q1〜Q6を個別に駆動制御するコントローラ3B,3C(制御演算装置)を一組とし、複数組を有する。複数組の各組について、コントローラ3B,3Cの基底電位と電力変換部31,32の基底電位とが同電位になるように接続する。この構成によれば、下アーム側のスイッチング素子Q4〜Q6,Q22とコントローラ3B,3Cとの間に絶縁素子を備える必要がなく、その分だけコストを低く抑えることができる。また、コントローラ3B,3Cと電力変換部31,32との基底電位が確実に同電位になるので、これらの間の信号伝達を確実に行える。 (もっと読む)


【課題】より好適に電池の内部抵抗を算出することができる電源装置システムを提供することである。
【解決手段】モータジェネレータ60に電力を供給するための蓄電装置12の内部抵抗を蓄電装置12の両端電圧の電圧変動量と蓄電装置12を流れる電流の電流変動量とに基づいて求める電源装置システム10において、電圧変動量と電流変動量とを大きくすることで、蓄電装置12の内部抵抗を求める精度を向上させる精度向上手段を備える。 (もっと読む)


【課題】電源電圧が低下した場合において、当該電圧の低下をより確実に抑制するとともに、アシスト可能領域を好適に維持することができる電動パワーステアリング装置を提供する。
【解決手段】マイクロコンピュータは、電源電圧の値が特定の閾値以下に低下した旨判断される場合、モータに印加される電力の値を通常時よりも小さな値に制限するべく昇圧制御する。この構成によれば、モータ特性の最大値付近で操舵補助を実施していた場合であれ、バッテリの電圧が低下した旨判断されるときには、昇圧回路の昇圧制御を通じてモータ電力が通常時よりも小さな値に制限される。このため、バッテリの電圧のさらなる低下がより確実に抑制される。また、大きな電力を必要としない操舵補助領域については継続して操舵補助を実行することが可能となる。 (もっと読む)


【課題】簡易な構成で絶縁抵抗の低下を検出する。
【解決手段】交流電圧を出力する発振回路50と、抵抗素子52と第1コンデンサ54と第1バッテリ30とをこの順で直列に接続し、抵抗素子52と第1コンデンサ54との接続点に第2コンデンサ56を介して第2バッテリ40を接続する。これにより、第1システムリレー32,第2システムリレー42の一方の接続が解除されているときでもノードnの電圧を検出することにより絶縁抵抗の低下を検出することができ、第1バッテリ30,第2バッテリ40のそれぞれに同じ構成の絶縁抵抗の低下を検出するための検出回路を取り付けるものに比して、簡易な構成で絶縁抵抗の低下を検出することができる。 (もっと読む)


【課題】回路及び負荷の安定動作を実現させ得るブロック型電力モジュール及び電力変換装置を提供する。
【効果】窒化アルミ又はアルミナ等の金属セラミック基板をパワー素子用基板とすることにより、当該パワー素子用基板の板厚を厚くしても熱抵抗を抑えることができるので、本実施の形態に係るパワー素子用基板では、絶縁層とされる金属セラミック基板の板厚を適宜に厚くし、結合容量を低下させることが可能となる。即ち、かかる構成とされたパワー素子用基板では、結合容量の低下に応じて絶縁区間のインピーダンスが高くなるので、プリント配線とモータ側ブラケットとの間の絶縁が保障され、これにより、パワー素子用基板に実装された電気的素子の安定動作が実現される。 (もっと読む)


【課題】バッテリ電流(直流電源と昇圧コンバータとの間を流れる電流)の極性が切り替わる電流ゼロクロスによるシステム電圧の変動を抑制できるようにする。
【解決手段】アクセル開度と、第1及び第2の交流モータ11,12の合算電力と、バッテリ電圧VL(直流電源13の電圧)とに基づいてバッテリ電流IBを求め、そのバッテリ電流IBの挙動からバッテリ電流IBの極性が切り替わる電流ゼロクロスの発生を予測する。そして、電流ゼロクロスの発生を予測したときに、該電流ゼロクロスによるシステム電圧VHの変動を抑制するように交流モータ(第1及び第2の交流モータ11,12のうちの一方又は両方)のトルク指令値を補正することで、電流ゼロクロスによるシステム電圧VHの変動を抑制する。この場合、電流ゼロクロスを判定するためのセンサ(例えば電流センサ等)を新たに設ける必要がなく、低コスト化の要求を満たすことができる。 (もっと読む)


【課題】双方向コンバータの低コスト化を達成する。
【解決手段】双方向コンバータ44は、第1スイッチング回路50と第2スイッチング回路51との間にトランス53を有する。トランス53は、第1スイッチング回路50側の一次コイル54と、第2スイッチング回路51側の二次コイル55とを有する。二次コイル55はセンタータップ56を備え、センタータップ56と正極ライン64との間にスイッチング素子S5を備える。また、二次コイル55の両端67,69と正極ライン64との間にスイッチング素子S6を備える。素子S5を開放して素子S6を接続すると、二次コイル55の全体に通電が為される一方、素子S5を接続して素子S6を開放すると、二次コイル55の半分に通電が為される。これにより、トランス53の巻数比を切り換えることができ、昇圧回路や降圧回路を省いて双方向コンバータ44が簡単に構成される。 (もっと読む)


【課題】コンデンサ素子の過熱を防止する。
【解決手段】DC−DCコンバータ用コンデンサは、一対のバスバーB1、B2と、バスバーB1、B2間に並列に接続される複数のコンデンサ素子Ca、Cb、Cc、Cdとを含んで構成されている。一方のバスバーB1には燃料電池の陽極側と接続される入力側端子Pが設けられ、他方のバスバーB2には燃料電池の陰極側と接続される出力側端子Nが設けられている。各コンデンサ素子は、入力側端子Pから近い順に、Ca、Cb、Cc、Cdの順に配置されているとともに、出力側端子Nから近い順に、Cd、Cc、Cb、Caの順に配置されている。 (もっと読む)


【課題】迅速なモード切換処理を行うことができる上、従来よりも半導体素子の導通損を低減でき、これにより電力変換効率を向上させることができるDC−DCコンバータ回路を提供する。
【解決手段】DC−DCコンバータ回路10は、半導体スイッチS1,S2,S4〜S6と、ダイオードD3と、インダクタLとを備え、半導体スイッチS1,S2及びダイオードD3は、何れもインダクタLの一端に接続されており、半導体スイッチS4〜S6は、何れもインダクタLの他端に接続されており、半導体スイッチS1,S4のインダクタLの接続端とは反対側端に第1電圧源E1が接続され、半導体スイッチS2,S5のインダクタLの接続端とは反対側端に第2電圧源E2が接続され、ダイオードD3及び半導体スイッチS6のインダクタLの接続端とは反対側端に第1電圧源E1と第2電圧源E2との双方が接続される。 (もっと読む)


【課題】電動送風機を小型化するとともに、電動機駆動用電力変換装置をも小型化・軽量化した電気掃除機や手乾燥装置を得ること。
【解決手段】送風ファンを有し送風ファンを駆動するブラシレスモータを内蔵している電動送風機であって、ブラシレスモータ制御用の制御部と、交流電源から供給される交流電圧を整流して直流電圧に変換するコンバータ部と、直流電圧を交流電圧に変換して交流電圧をブラシレスモータに供給するインバータ部とを有する電源部と、ブラシレスモータの回転数を所定回転数以上となるようにして、送風ファンの径及びブラシレスモータの径がほぼ等しくなるよう形成するとともに、コンバータ部に昇圧回路を設け、昇圧回路にて直流電圧を昇圧するようにした。 (もっと読む)


【課題】車両に搭載されて電動アシスト過給機又は電動コンプレッサの電動機の駆動に用いられるDC−DCコンバータの、省スペース化と放熱効率の向上との両立の実現に寄与することができるヒートシンクを提供すること。
【解決手段】車載用DC−DCコンバータの一面が開放された筐体3の内部を、2つの仕切壁37,37によって、2つのリアクトル収容部33,33と1つの基板収容部35とに区画する。各リアクトル収容部33には、2つで1つのリアクトル5を構成するリアクトル本体51をそれぞれ収容する。各リアクトル本体51は、コア53及びコイル55によって構成する。基板収容部35の底面を基板固定部35aとし、パワー半導体系の実装基板7を直付けする。また、リブやスペーサ等を用いてパワー半導体系の実装基板7と平行に制御系の実装基板9を配置し、基板収容部35に固定する。 (もっと読む)


【課題】部品点数を減らしつつ、エネルギー変換効率を向上することが可能な電動機駆動装置を提供する。
【解決手段】電動機駆動装置(1、21〜23)は、交流電動機10に印加される電圧を調節することにより交流電動機10を駆動するインバータ3と、交流電動機10の複数のコイルが結線された中性点と、インバータ3の正極側母線または負極側母線との間に直流電圧を印加する直流電源2から供給され、かつインバータ3を経由する電流により充電されるコンデンサ4と、交流電動機10が指定された回転数で回転するように、インバータ3を制御する制御回路7とを有する。そして制御回路7は、交流電動機10に生じる誘起電圧と、直流電源2と、コンデンサ4の電圧との条件により弱め界磁制御と昇圧制御を使い分けてインバータ3を制御する。 (もっと読む)


【課題】絶縁トランスの1次側との間に専用の絶縁機構を設けることなく、絶縁トランスの1次側の平滑コンデンサの充電電圧に起因する電源の異常を検出すること。
【解決手段】電源異常検出部6は、制御電源部3に設けられた絶縁トランス14の2次側の端子間電圧V3を監視することで、絶縁トランス14の1次側の平滑コンデンサ12の充電電圧に起因する電源の異常を検出する。 (もっと読む)


【課題】コストダウンと高効率化を図る。
【解決手段】6個のスイッチング素子(130)を有するインバータ回路(120)を備えている。スイッチング素子(130)は、ワイドバンドギャップ半導体を用いたユニポーラ素子であるSiC-MOSFETによって構成されている。インバータ回路(120)は、SiC-MOSFET(130)の寄生ダイオード(131)が還流ダイオードとして使用される。さらに、インバータ回路(120)では、SiC-MOSFET(130)の寄生ダイオード(131)に逆方向電流が流れる所定のタイミングでSiC-MOSFET(130)がオン状態となる同期整流が行われる。 (もっと読む)


321 - 340 / 979