説明

Fターム[5H730AS13]の内容

DC−DCコンバータ (106,849) | 用途 (11,272) | 電動機駆動用 (979)

Fターム[5H730AS13]に分類される特許

261 - 280 / 979


【課題】リアクトルの異常によりインダクタンスが低下した場合も、スイッチング素子の損傷を防止するとともに支障のない範囲で駆動を継続することができるDC/DCコンバータを提供する。
【解決手段】DC/DCコンバータ14は直流電圧の昇圧及び降圧を行うための変圧部を備えている。変圧部は、オン、オフ制御されるスイッチング素子Q1,Q2と、スイッチング素子Q1,Q2のスイッチングに伴い電流が流れ、かつコアを有するリアクトル18と、リアクトル18に流れる電流を検出する電流センサ19とを備えている。また、電流センサ19の検出信号及びバッテリ12の電圧に基づいてリアクトル18に流れる電流の大きさが閾値を超えないようにスイッチング素子Q1,Q2のデューティ比を変更する制御装置20を備えている。 (もっと読む)


【課題】高容量かつ高出力で寿命の長い電源装置を提供する。
【解決手段】電源装置100において、モータジェネレータ11に電力を供給する第1の二次電池13と、第1の二次電池13と並列に接続され、モータジェネレータ11に電力を供給する第2の二次電池14と、第1の二次電池13と第2の二次電池14との間に接続され、モータジェネレータ11の要求電力に応じて第2の二次電池14からモータジェネレータ11に供給する電力を変化させる昇圧コンバータ20と、を備える。 (もっと読む)


【課題】電圧変換システムの制御において、動作条件の変動があっても安定に動作することを可能とすることである。
【解決手段】リチウムイオン電池と電圧変換器を含む電圧変換システムにおける電圧変換システム制御装置40は、入力部60と、電圧変換システムの動作条件によってゲイン−周波数特性の共振周波数が変化する電圧変換ゲイン部66と、出力部とを含むメインループ52を備え、さらに、電圧変換ゲイン部66のゲイン−周波数特性を補償するノッチフィルタ部76を含むフィードバックループ54を備える。ノッチフィルタ部76は補正部78によって、電圧変換システムの動作条件に応じて、そのゲイン−周波数特性の補正が行われる。 (もっと読む)


【課題】4つのポートを有する電力変換回路において、選択した2つのポートの間で電力変換することを可能とすることである。
【解決手段】電力変換回路システム100は、1次側変換回路20と、2次側変換回路30と、1次側変換回路20と2次側変換回路30を制御する制御回路50と、を含み、1次側変換回路20は、変圧器400の1次側コイル202と、2つのリアクトルが磁気結合する1次側磁気結合リアクトル204と、を有するブリッジ部を含む1次側フルブリッジ回路200と、1次側フルブリッジ回路200の正極母線と負極母線との間に設けられる第1入出力ポート280と、1次側フルブリッジ回路200の負極母線と変圧器の1次側コイルのセンタータップ202mとの間に設けられる第2入出力ポート290とを有し、2次側変換回路30は、1次側変換回路20と同様の構成を有する。 (もっと読む)


【課題】直流交流変換回路の昇圧チョッパ回路部において、単独の双方向昇圧チョッパ回路では電圧変換比が高く運転効率が低下し、スイッチング素子に直流回路電圧を越える高い耐圧が必要となる。昇圧制御された直流電圧源からインバータを働かせると、高速運転時には直流電圧が高いためスイッチング素子に直流回路電圧を越える高い耐圧が必要となる。高い直流電圧の下で直接的にオンオフスイッチング制御すると、スイッチング損失やスイッチングノイズが周辺機器に影響を及ぼす。
【解決手段】バッテリー電圧から、1個の昇圧用リアクトルを介し二組の昇圧チョッパ切り替え回路動作により、昇圧された二組の直流電圧出力を直列に二段に接続して中性点電圧を有する二組の高い直流電圧を得ると共に、中性点電圧を有する昇圧制御された二組の直流電圧源をNPCインバータに接続し、低速では2レベル動作、高速では3レベル動作に連続的に波形・電圧制御する。 (もっと読む)


【課題】低コストに逆流を抑制できる同期整流型DC/DCコンバータの提供。
【解決手段】同期整流型DC/DCコンバータ11は第1直流電圧源17と第2直流電圧源25との間に接続されるとともに、出力端子21における出力電圧Voを検出する電圧検出回路39と、出力電流Iを検出する電流検出回路41と、を備える。電圧検出回路39と電流検出回路41が接続される制御回路43は、出力端子21からの電力が停止している際に、出力電圧Voが基準電圧Vr以上であれば前記電力の停止状態を維持し、出力電圧Voが基準電圧Vr未満であれば前記電力の供給状態とするとともに、前記電力が供給されている際に、出力電流Iが逆流許容下限電流Ir以上であれば前記電力の供給状態を維持し、出力電流Iが逆流許容下限電流Ir未満であれば前記電力の停止状態とする。 (もっと読む)


【課題】コンバータおよびバッテリの通電量を減少させてシステム全体効率を向上可能な電動機駆動システムおよびそれを備える電動車両を提供する。
【解決手段】制御装置は、電圧VHが、電圧指令値よりも高く、かつ、予め定められた上限電圧よりも低いか否かを判定する(S40)。電圧VHが電圧指令値よりも高く、かつ、上限電圧よりも低いと判定されると(S40においてYES)、制御装置は、昇圧コンバータを介して蓄電装置へ回生される電力を制限するように昇圧コンバータを制御する(S50)。一方、電圧VHが電圧指令値以下であると判定され、または、電圧VHが上限電圧以上であると判定されると(S40においてNO)、通常の制御が実行される(S60)。 (もっと読む)


【課題】ケースの剛性を高めつつ、電子部品及びバスバーへ加わる外力を低減することができ、かつ、メンテナンス性に優れた低コストの電力変換装置を提供すること。
【解決手段】電力変換回路を構成する複数の電子部品(半導体モジュール21、コンデンサ22等)と、少なくとも一部の電子部品(半導体モジュール21)を冷却する冷却器3とを、ケース4内に収容してなる電力変換装置1。電子部品の少なくとも一部(半導体モジュール21)と冷却器3とは、これらが固定されるフレーム5と共に一体化されて一つの内部ユニット10を構成している。内部ユニット10は、ケース4に固定されると共にケース4内に密封されている。フレーム5は、バスバー70を固定するバスバー固定部58を複数個有する。 (もっと読む)


【課題】組み付けが容易で、且つ小型化が容易なスイッチング電源を提供する。
【解決手段】トランスと、前記トランスの1次側に接続すべきスイッチング回路が実装された第1モジュールと、前記トランスの2次側に接続すべき整流回路が実装された第2モジュールと、を備え、前記トランスは、同一平面上において前記第1モジュールと前記第2モジュールとの間に配置されている、という構成をスイッチング電源の構成として採用する。 (もっと読む)


【課題】ケースの剛性を高めつつ、電子部品へ加わる外力を低減することができ、かつ、端子台を取り付けやすく、メンテナンス性に優れた低コストの電力変換装置を提供すること。
【解決手段】電力変換回路を構成する複数の電子部品(半導体モジュール21、コンデンサ22等)と、少なくとも一部の電子部品(半導体モジュール21)を冷却する冷却器3とを、ケース4内に収容してなる電力変換装置1。電子部品の少なくとも一部(半導体モジュール21)と冷却器3とは、これらが固定されるフレーム5と共に一体化されて一つの内部ユニット10を構成している。内部ユニット10は、ケース4に固定されると共にケース4内に密封されている。また、内部ユニット10は、入出力端子71を載置する端子台7を備える。 (もっと読む)


【課題】小型化及び回路損失の低減を図ることの可能なトランス及びスイッチング電源を提供する。
【解決手段】対向するように組み合わされた1対のコアを備えるトランスであって、前記コアを1次コイル用、2次コイル用、共振コイル用及び平滑コイル用のコアとして共通化する、という解決手段を採用する。 (もっと読む)


【課題】ケースの剛性を高めつつ、電子部品へ加わる外力を低減することができ、かつ、水密性、メンテナンス性に優れた低コストの電力変換装置を提供すること。
【解決手段】電力変換回路を構成する複数の電子部品(半導体モジュール21、コンデンサ22等)と、少なくとも一部の電子部品(半導体モジュール21)を冷却する冷却器3とを、ケース4内に収容してなる電力変換装置1。電子部品の少なくとも一部(半導体モジュール21)と冷却器3とは、これらが固定されるフレーム5と共に一体化されて一つの内部ユニット10を構成している。内部ユニット10は、ケース4に固定されると共にケース4内に密封されている。 (もっと読む)


【課題】電源回路の構成部品に単一故障が生じた場合に、この電源回路により電源供給を受ける装置に与える影響を低減する。
【解決手段】スイッチングレギュレータからなるA相及びB相の変換回路51及び52を並列に接続し、各変換回路51、52を構成する降圧用スイッチQ12、Q22を互いに180度ずらしてPWM駆動して、内部電圧Vbatを目標電圧Vmに降圧しこれを制御演算装置21にその動作電源電圧として供給する。また、各変換回路51、52において、降圧用スイッチQ12、Q22の上流側に異常時遮断用スイッチQ11、Q21をそれぞれ介挿し、過電流或いは変換電圧Vrega、Vregb等の回路故障が生じた側の変換回路51又は52の異常時遮断用スイッチQ11又はQ21を非導通状態に切り替え、正常な変換回路のみを降圧動作させて、制御演算装置21への動作電源電圧の供給を継続する。 (もっと読む)


【課題】コンバータを有する電源システムにおいて、電圧変換動作が不要な場合の効率を改善する。
【解決手段】電源システム105は、直流電源110と、コンバータ120と、バイパス回路170と、ECU300とを備え、負荷装置130に電源電圧を供給する。コンバータ120は、スイッチング動作によって直流電源110と負荷装置130との間で電圧変換を行なう。バイパス回路170は、コンバータ120のスイッチング動作とは独立して、直流電源110から負荷装置130に対して、コンバータ120をバイパスするように構成される。ECU300は、コンバータ120を流れる電流ILおよびコンバータ120の負荷装置130側の電圧VHの少なくともいずれかが、バイパス回路170の切替えに適した条件となったときに、バイパス回路170を切替える。 (もっと読む)


【課題】リプル成分の低減及びコモンモードノイズ耐性の向上を可能とするスイッチング電源を提供する。
【解決手段】スイッチング電源に、2つの2次コイルの接続箇所をセンタータップとして使用するトランスと、前記2つの2次コイルのそれぞれと1対1で接続された平滑コイルと、前記2つの2次コイルに発生する電流が前記センタータップから出力されるように、前記平滑コイルのそれぞれと1対1で接続された整流素子とを備える、という解決手段を採用する。 (もっと読む)


【課題】ケースの剛性を高めつつ、電子部品へ加わる外力を低減することができ、かつ、メンテナンス性、搭載性に優れた低コストの電力変換装置を提供すること。
【解決手段】電力変換回路を構成する複数の電子部品(半導体モジュール21、コンデンサ22等)と、少なくとも一部の電子部品(半導体モジュール21)を冷却する冷却器3とを、ケース4内に収容してなる電力変換装置1。電子部品の少なくとも一部(半導体モジュール21)と冷却器3とは、これらが固定されるフレーム5と共に一体化されて一つの内部ユニット10を構成している。内部ユニット10はフレーム5においてケース4に固定されている。フレーム5は電子部品(半導体モジュール21)を四方から囲むように形成されている。冷却器3は、冷媒導入管と冷媒排出管とを前方壁部に支承させている。前方壁部は側方壁部よりも壁厚みが大きい。 (もっと読む)


【課題】リアクトルコアの振動を外部へ伝達することを抑制することができるリアクトル装置及び電力変換装置を提供すること。
【解決手段】リアクトル装置20は、リアクトルコイル15と、リアクトルコア201と、リアクトルコイル15とリアクトルコア201とを内部に収容するリアクトルケース202と、リアクトルケース202の固定対象であるインバータ用筐体25の設置部26と接合する脚部203から構成されている。リアクトルコア201は、脚部203とインバータ用筐体25の設置部26との接合面32に直交する方向の脚部203の厚さ分離間した位置に配置されるため、リアクトルコア201が直接インバータ用筐体25に接合された場合と比較して、リアクトルコア201からインバータ用筐体25までの距離が増加する。よって、リアクトルコア201の振動がインバータ用筐体25を通じて外部へ伝達することを抑制することができる。 (もっと読む)


【課題】ケースの剛性を高めつつ、電子部品へ加わる外力を低減することができ、かつ、メンテナンス性に優れた低コストの電力変換装置を提供すること。
【解決手段】電力変換回路を構成する複数の電子部品(半導体モジュール21、コンデンサ22等)と、少なくとも一部の電子部品(半導体モジュール21)を冷却する冷却器3とを、ケース4内に収容してなる電力変換装置1。電子部品の少なくとも一部(半導体モジュール21)と冷却器3とは、これらが固定されるフレーム5と共に一体化されて一つの内部ユニット10を構成している。内部ユニット10は、フレーム5においてケース4に固定されている。フレーム5は、内部ユニット10を構成する電子部品の少なくとも一部(半導体モジュール21)を四方から囲むように形成されている。 (もっと読む)


【課題】レイアウトの制約を受けることなく、簡易な構成でトランスと回路基板との接続を実現可能なトランス及びスイッチング電源を提供する。
【解決手段】1次側接続端子及び2次側接続端子を備えるトランスであって、前記1次側接続端子と前記2次側接続端子の少なくとも一方は、前記トランスの上方に向かって延設されており、その先端部には前記トランスの上方に配置される回路基板を貫通する貫通部が形成されている。 (もっと読む)


【課題】過熱保護を図りつつコンデンサの電荷を放電することができる電力変換装置を提供する。
【解決手段】温度センサ27は、下アーム用トランジスタ24の温度を検出する。制御回路26は下アーム用トランジスタ24を電流制限をかけながら上アーム用トランジスタ23および下アーム用トランジスタ24を同時にオンして上アーム用トランジスタ23および下アーム用トランジスタ24を通して高圧コンデンサ25の電荷を放電すると共に、温度センサ27により検出した下アーム用トランジスタ24の温度が規定値に達すると、下アーム用トランジスタ24をオフする。 (もっと読む)


261 - 280 / 979