説明

Fターム[5J055DX72]の内容

電子的スイッチ (55,123) | 出力部 (8,827) | 慣用的な複合スイッチ (1,758) | 直列 (1,001)

Fターム[5J055DX72]に分類される特許

161 - 180 / 1,001


【課題】消費電力を低減したマルチプレクサを提供する。
【解決手段】マルチプレクサ100は、複数の差動信号を受け、制御信号に応じたひとつを選択して出力ポートPoから出力する。複数の差動入力ポートPi〜Piには、複数の差動信号A〜Eそれぞれが入力される。バッファBUF〜BUFは、複数の差動入力ポートPi〜Piごとに設けられ、それぞれが、対応する差動入力ポートと接続される差動入力端子Diと、出力ポートPoと接続される差動出力端子Doを有する。バッファBUFは、差動入力端子Diに入力される差動信号に応じた差動信号を出力するイネーブル状態と、消費電流が実質的にゼロとなり、その差動出力端子がハイインピーダンスとなるディスエーブル状態と、が制御信号に応じて切りかえ可能に構成される。 (もっと読む)


【課題】消費電力を低減することができる半導体装置及びそれを用いた電子機器を提供す
ることを課題とする。
【解決手段】本発明の半導体装置は、高電位電源から第1の電位が供給され、低電位電源
から第2の電位が供給され、入力ノードに第1の信号が入力されると、出力ノードから第
2の信号を出力する。本発明の半導体装置は、第2の信号の電位差を、第1の電位と第2
の電位の電位差よりも小さくすることにより、配線の充電と放電に伴う消費電力を低減す
ることができる。 (もっと読む)


【課題】 ゲート酸化膜の信頼性を維持しながら、待機時のリーク電流を抑制でき、回路面積の増加を最小限にでき、欠陥を確実に検出することができる半導体集積回路を実現する。
【解決手段】 論理回路10と電源電圧Vddの供給端子との間にスイッチング回路20を設ける。動作時に、スイッチング回路20のトランジスタMP0のゲートに0Vの電圧を印加し、チャネル領域に電源電圧Vddと同じかまたは僅かに低いバイアス電圧VBを印加することで、トランジスタMP0のしきい値電圧を低くし、その電流駆動能力を大きくする。待機時にトランジスタMP0のゲートに電源電圧Vddと同じ電圧を印加し、ソースに電源電圧より低い電圧を印可し、チャネル領域に電源電圧Vddと同じかまたはそれより高いバルクバイアス電圧VBを印加し、トランジスタMP0のドレイン電流を最少化することにより、論理回路10の電流経路を遮断し、リーク電流の発生を抑制する。 (もっと読む)


【課題】 小型・低雑音のスイッチングレギュレータを提供する。
【解決手段】 導通、遮断の2状態が交互に切り替わる複数のトランジスタで構成されたスイッチングレギュレータの出力段と、その出力段トランジスタを各々個別に駆動するための駆動回路から構成され、当該駆動回路は、各々出力段トランジスタにおける遮断から導通状態への遷移時間が、導通から遮断状態への遷移時間に比べて長くなるように立ち上がり、立ち下がり時の駆動能力をアンバランスに設定され、各々の遷移時間は、出力信号の電位があらかじめ設定された電位に達したことを判定して変化させることを特徴とするスイッチングレギュレータとして構成される。 (もっと読む)


【課題】 回路のダイナミックレンジを圧迫しないと共に、チップサイズの増大を抑制することができるバッファリング回路及び増幅回路を提供する。
【解決手段】 入力端子及び出力端子を有するバッファリング回路でドレインが第1電圧ラインに接続され、ソースが前記出力端子に接続され、ゲートが前記入力端子に接続された第1プルアップドライバと、ソースが前記出力端子に接続され、ゲートが前記入力端子に接続された第2プルアップドライバと、前記第2プルアップドライバのドレインに定電流を供給する定電流回路と、前記出力端子と第2電圧ラインとの間に配置されたプルダウンドライバとを備え、前記プルダウンドライバは、前記定電流回路の定電流から前記第2プルアップドライバに流れる電流を減じた差電流に基づいた電流を流すように構成されている。 (もっと読む)


【課題】液晶表示パネルを駆動するソースドライバのソースアンプの振幅差偏差を向上する。
【解決手段】液晶表示パネルを駆動するソースドライバ100が、画素データDINに対応する階調電圧を出力するD/Aコンバータ23と、階調電圧に対応する駆動電圧を出力するソースアンプ25とを備えている。ソースアンプ25は、第1及び第2NMOSトランジスタMN11,MN12を含むNMOS差動対と、第1及び第2PMOSトランジスタMP11,MP12を含むPMOS差動対と、NMOS差動対とPMOS差動対に流れる電流に応じて駆動電圧を出力する出力回路部(2,3)と、第1及び第2入力レベル変換回路4、5とを備えている。第1及び第2入力レベル変換回路4、5は、ソースアンプ25に入力される階調電圧と、ソースアンプ25の入力にフィードバックされる駆動電圧とに対し、駆動電圧の極性及び/又は階調電圧に応じて入力レベル変換を行う。 (もっと読む)


【課題】ノーマリオン型のSiC−JFETとノーマリオフ型のSi−MOSFETとをカスコード接続してなるハイブリッドパワーデバイスにおいて、共振の発生を抑制しつつ、スイッチング損失を低減できるようにする。
【解決手段】ハイブリッドパワーデバイスを構成するノーマリオン型のSiC−JFET2とノーマリオフ型のSi−MOSFET4とは、各FET2、4のソース及びドレインを互いに接続することによりカスコード接続されており、SiC−JFET2のゲートとSi−MOSFET4のソースはスイッチング速度調整用の抵抗10を介して接続されている。そして、この抵抗10にコンデンサ12を並列接続することにより、ハイブリッドパワーデバイスのスイッチング期間中の前半部分ではスイッチング速度を速くしてスイッチング損失を低減し、後半部分ではスイッチング速度を遅くして発振の発生を防止する。 (もっと読む)


【課題】半導体スイッチング素子の実動作に応じて貫通電流を防止することで動作信頼性を向上する。
【解決手段】下アーム側のIGBT(BTU2)に流れる通電電流を測定するときに、トランジスタQ2がIGBT(BTU2)の通電電流を直列抵抗R1およびR2の印加電圧によってセンシングする。そしてトランジスタQ3がトランジスタQ2の出力信号をレベルシフトする。そして、トランジスタQ4がトランジスタQ3のエミッタ電圧に応じてIGBT(BTU1)を強制的にオフ制御する。 (もっと読む)


【課題】サージ破壊に対する耐性を強化する。
【解決手段】スイッチ装置(10)は、半導体基板(SUB)に形成された複数の差動スイッチ(SW1,SW2,…)を備える。差動スイッチ(SW1,SW2,…)の各々は、差動トランジスタ(T1,T2)を含む。差動スイッチ(SW1,SW2,…)は、差動トランジスタ(T1)同士が隣接し、且つ、差動トランジスタ(T2)同士が隣接するように、半導体基板(SUB)に配置されている。 (もっと読む)


【課題】アンテナスイッチの高調波歪特性を改善する。
【解決手段】アンテナスイッチのアンテナ端子2にアンテナが接続され、第1信号端子3とアンテナ端子2の間に第1転送スイッチ100が接続され、第2信号端子4とアンテナ端子2の間に第2転送スイッチ101が接続され、第1信号端子3と接地電位の間に第1シャントスイッチ102が接続され、第2信号端子4と接地電位の間に第2シャントスイッチ103が接続される。負電圧生成回路104の入力10は第1信号端子3に供給される送信信号に応答可能とされ、出力端子11に生成される負電圧に応答して第2転送スイッチ101と第1シャントスイッチ102とはオフ状態に制御される。 (もっと読む)


【課題】ゲート線駆動回路の領域を効率よく利用できると共に、ゲート線選択信号の立ち上がり速度の低下(立ち上がり遅延)を防止できる電気光学装置、並びに、それに適した単一導電型のトランジスタで構成されたシフトレジスタ回路を提供する。
【解決手段】ゲート線駆動回路30は、複数のゲート線GLの奇数行を駆動する奇数ドライバ30aと、偶数行を駆動する偶数ドライバ30bとから成る。奇数および偶数ドライバ30a,30bの単位シフトレジスタSRの各々は、2行前の選択信号Gk-2を受け、その2水平期間遅れて自己の選択信号Gkを活性化させる。偶数ドライバ30bのスタートパルスSP1は、奇数ドライバ30aのスタートパルスSP2よりも1水平期間だけ位相が遅れている。 (もっと読む)


【課題】 パワースイッチング素子直列電圧制限回路を提供する。
【解決手段】 パワースイッチング素子直列電圧制限回路は、複数のパワースイッチング素子(Q1〜Qn)などからなるパワースイッチング素子直列分岐回路を含み、当該パワースイッチング素子は制御端と、高端(SD)と低端(WD)とを含み、パワースイッチング素子は分岐回路に直列にされるが、当該複数のパワースイッチング素子(Q1〜Qn)直列方式は1つのパワースイッチング素子における高端(SD)と別の1つのパワースイッチング素子における低端(WD)とを順に従って直列する。また、複数のエネルギー一時記憶回路(K1〜Kn)を含み、各パワースイッチング素子の両端が1つのエネルギー一時記憶回路を対応並列するが、各パワースイッチング素子の開/閉が非同期短時間過電流の負荷エネルギーを記憶するためである。また、前記パワースイッチング素子直列分岐回路に電圧制限を行う集中電圧制限回路Hを含む。 (もっと読む)


【課題】増幅回路の雑音指数の劣化を抑制すること。
【解決手段】送信端子Txから入力された送信信号を前記共通端子ANTに接続する送信スイッチSW1と、前記共通端子から入力された受信信号を増幅し、受信端子Rxに出力する増幅回路90と、前記共通端子から他のスイッチを介さず入力された前記受信信号を前記増幅回路に接続する第1受信スイッチSW2と、前記共通端子と前記受信端子との間で前記第1受信スイッチとは並列に接続され、前記共通端子から入力された前記受信信号を前記増幅回路とは別の経路で前記受信端子に接続する第2受信スイッチSW3と、を具備する電子回路。 (もっと読む)


【課題】消費電力低下および速度向上が可能なレベルシフト回路を提供する。
【解決手段】レベルシフト回路2は、第1入力端子11、第2入力端子12、第1出力端子21、第2出力端子22、第1PMOSトランジスタ31、第2PMOSトランジスタ32、第1NMOSトランジスタ41、第2NMOSトランジスタ42、第1ブートストラップ回路51および第2ブートストラップ回路52を備える。第1ブートストラップ回路51は、第1充電用スイッチ511,第1転送用スイッチ512,第1容量部513および第1インバータ回路514を含む。第2ブートストラップ回路52は、第2充電用スイッチ521,第2転送用スイッチ522,第2容量部523および第2インバータ回路524を含む。 (もっと読む)


【課題】オフ歪みを低減した半導体スイッチを提供する。
【解決手段】負の第1の電位を生成する電圧生成回路と、外部から入力される端子切替信号に応じて前記第1の電位を変化させる電圧制御回路と、電源電圧または電源電圧よりも高い正の第2の電位と前記第1の電位とが供給され、前記端子切替信号を入力し前記端子切替信号に基づいて前記第1の電位及び前記第2の電位の少なくとも一方を出力する駆動回路と、SOI基板に設けられ、前記駆動回路の出力により端子間の接続を切り替えるスイッチ部と、を備えたことを特徴とする半導体スイッチが提供される。 (もっと読む)


【課題】貫通電流を防止するレベルシフト回路
【解決手段】従来のレベルシフト回路にPMOSトランジスタMP3およびMP4ならびにレベルシフト回路の出力信号をフィードバックするスイッチ制御回路を追加することで、従来回路の問題点であった貫通電流の流れる時間を減らし、消費電力を低減させ、かつ実装面積の増加を抑えながら高速動作させる。 (もっと読む)


【課題】消費電力を低減できるPLD回路、集積回路装置及び電子機器等を提供すること。
【解決手段】PLD回路は、各トランジスター列が直列接続されたプログラマブルな複数のトランジスターを有する第1〜第m(mは2以上の整数)のトランジスター列TA1〜TAmを含む。第1〜第mのトランジスター列TA1〜TAmの一端に第1の非直流電源VS1が供給される。第1〜第mのトランジスター列TA1〜TAmの各トランジスター列は、複数の入力信号XP(X1P〜XiP)、XN(X1N〜XiN)によってオン・オフされる。第1の非直流電源VS1の電圧により規定される第1のホールド期間に、第1〜第mのトランジスター列TA1〜TAmの他端のノードである第1〜第mのノードNA1〜NAmの電圧レベルを各々出力する。 (もっと読む)


【課題】出力遅延を短縮できる出力バッファ回路を提供する。
【解決手段】信号PenがLレベルからHレベルに切り替わり信号NenがHレベルからLレベルに切り替わった直後において、定電流源Is1が追従しきれずまた切り替わっていない場合には、ノードPは未だHレベルのままであるので、ノードOUTはLレベルのままである。この状態で、切り替え前にHレベルのノードNに接続されていたノードAは、切り替えによりHレベルのノードPへ接続される。これと同時に、インバータinv3の出力部がHレベルからLレベルに切り替わっているので、キャパシタC2を介して、ノードAもHレベルからLレベルに切り替えられる。このとき、ノードPの電位はノードAと等しくなるまで引き下げられ、Lレベルへ遷移する。 (もっと読む)


高電圧差動信号方式のためのドライバ回路(200)。この回路は、入力に応答して第1の出力で第1の正の遷移を生成する第1の正のドライバ(205A)を含む。この回路は更に、第1の正のドライバに結合され、電流の生成を可能にする第1の電流要素(210A)を含む。更に、この回路は、第1の電流要素(210A)に結合され、第1の電流要素に起因して、入力及び電流に応答して、第1の正の遷移の速度に類似する速度で、第2の出力で第1の負の遷移を生成する、第1の負のドライバ(215A)を含む。
(もっと読む)


【課題】フリーホイールダイオードを用いることなく、より低い電圧のアンダーシュートでも低減できる送信ドライバ回路を提供する。
【解決手段】PチャネルMOSFET22のドレインをグランドに接続して、NチャネルMOSFET21,PチャネルMOSFET22のソースをそれぞれ信号線3H,3Lに接続する。第1データ電圧設定部41は、信号出力部がハイレベル信号を出力すると、ゲート21G,22G間の電位差を(2・R1・Iref)にする電圧信号を設定し、第2データ電圧設定部42は、信号出力部がロウレベル信号を出力すると、ゲート21G,22G間の電位差をゼロにする電圧信号を設定する。これらの作用により、伝送線路3を構成する信号線3H,3L間の電圧を変化させて差動信号を伝送する。 (もっと読む)


161 - 180 / 1,001