説明

Fターム[5J055GX05]の内容

電子的スイッチ (55,123) | 回路の表現形式 (6,945) | アナログ波形図 (525)

Fターム[5J055GX05]に分類される特許

41 - 60 / 525


【課題】半導体スイッチの寄生容量の充放電時間を短縮する回路を提供する。
【解決手段】スイッチング回路10の入力端子21と出力端子22との間、入力端子21と共通端子23との間及び出力端子22と共通端子23との間の少なくとも一つに接続される容量抑制素子部50を備え、容量抑制素子部50は、容量抑制素子部が接続される半導体スイッチ素子20の端子間の寄生容量を、パルス状信号のクロック周波数のN倍(Nは1以上の整数)の周波数において、容量抑制素子部が接続されていない場合より低減する。 (もっと読む)


【課題】半導体スイッチの寄生容量の充放電時間を短縮し、オーバドライブによらず速度の向上と電力効率の向上を図り得るスイッチング回路を提供する。
【解決手段】半導体スイッチ素子20a、20dがON(OFF)のとき残りの半導体スイッチ素子がOFF(ON)となるように、各半導体スイッチ素子の入力端子にパルス状信号が印加される。スイッチング回路は、半導体スイッチ素子20bの出力端子と半導体スイッチ素子20dの入力端子の間に接続されるキャパシタンス素子60と、半導体スイッチ素子20bの入力端子と半導体スイッチ素子の出力端子20dの間に接続されるキャパシタンス素子61とを備える。キャパシタンス素子60,61は、半導体スイッチ素子20b、20dの各々の入力端子と出力端子間の寄生容量を、半導体スイッチ素子20b、20dに供給されるパルス状信号のクロック周波数のN倍の周波数において低減する容量を有する。 (もっと読む)


【課題】スイッチング素子の発熱を抑制した過電圧抑制ゲート制御を確実、容易にし、さらにスイッチング素子を複数直列接続した半導体スイッチ回路における発振防止と分担電圧のバランス制御を確実、容易にする。
【解決手段】ゲートドライブ回路2によるゲート抵抗Aを通したIGBT1の主ゲート電流とは独立して、電圧補償ゲート制御回路3〜6はIGBT1のコレクタ・エミッタ間電圧Vceがしきい値を超えたときにゲート抵抗Bを通して電圧補償ゲート電流を注入し、電圧Vceがしきい値を下回ったときに電圧補償ゲート電流の注入をオフする。
ゲート抵抗Aの抵抗値に対してゲート抵抗Bの抵抗値を小さくする。電圧補償ゲート電流を注入した後にこのゲート電流の注入量とほぼ同じ電荷量分をIGBT1からゲート電流として引き抜く。 (もっと読む)


【課題】半導体スイッチ,負荷電流,温度,主回路構成等によるサージ電圧の波形に応じて半導体スイッチの動作タイミングを調整することなく、各半導体スイッチの電圧分担を均等化させる。
【解決手段】直列接続された複数の半導体スイッチA,Bに出力されるゲート信号のタイミングを調整するゲートタイミング制御回路3において、コンパレータ4,4により、各半導体スイッチA,BのVce検出(A),(B)と、予め設定されたしきい値とを比較してVce検出における立ち上がりのタイミングを示すVce信号(A),(B)を出力する。そして、時間差制御部8において、ゲート信号に基づいて、前記各Vce信号(A),(B)の変化のタイミングが整合するように生成されたゲート出力(A),(B)をゲートドライバ2に出力する。 (もっと読む)


【課題】電源電圧が変動しても半導体デバイスのオン動作及びオフ動作を安定して駆動できる半導体デバイス駆動回路を得る。
【解決手段】ドライブ回路10は、入力回路11より得られる制御信号S11に基づき、インバータG4から電源電圧VCCにより決定される“H”(オンレベル)、あるいは接地電圧GNDにより決定される“L”(オフレベル)の出力電圧VOUT1を駆動信号として半導体デバイスQ1のゲートに出力する。基準電源部14は抵抗R1及びR2の直列接続により、電源電圧VCC,接地電圧GND間の電位差を所定の分圧比率(抵抗R1及びR2による抵抗比)で分圧して得られる電圧が基準電圧VREF1として得られる。バッファ回路8は基準電圧VREF1により決定される基準信号となる出力電圧VOUT2を半導体デバイスQ1のソースに付与する。 (もっと読む)


【課題】イネーブル等の制御信号を用いず、且つスタートアップ動作が完了した後は消費電流が極少なるスタートアップ回路を提供する。
【解決手段】2つの電流ルートの電流が0値で且つノードN11が高電位になる第1安定状態と、前記2つの電流ルートの電流が0値以外で同値になり且つノードN11が前記高電位よりも低い第1所定値になる第2安定状態をもつ対象回路のためのスタートアップ回路において、ノードN11の電位が第1所定値を超えているとき検出出力を出力するトランジスタMN21と、MN21が検出出力を出力するときバイアス電圧を生成するトランジスタMN23と、MN23でバイアス電圧が生成されるとノードN11の電位を低下させるトランジスタMN22とを備える。ノードN11の電圧が第1所定値に達すると、MN21が検出出力の出力を停止し、MN23がバイアス電圧の生成を停止し、MN22が動作を停止する。 (もっと読む)


【課題】動作モード切り換え時におけるノイズを抑制する。
【解決手段】差動入力バッファ1は、動作モードを通常状態又は省電力状態のいずれかに切り換える電源回路MN1,MN2と、ソースフォロア回路を構成する半導体素子MP1,MP3及びMP2,MP4のそれぞれの寄生容量の合計である第1の寄生容量に対応する第2の寄生容量を有する半導体素子MP7,MP8により構成されるダミー回路とを有し、動作モードの切り換え時に第1の寄生容量に起因して発生する電流の流通方向と、動作モードの切り換え時に第2の寄生容量に起因して発生する電流の流通方向とが共通の配線において相反する構成を有する。 (もっと読む)


【課題】オフ保持用スイッチング素子46をオフ状態とすべき期間において、この素子が誤ってオフ状態とされることに起因するスイッチング素子S*#の信頼性の低下を抑制することのできるスイッチング素子の駆動回路を提供する。
【解決手段】オフ保持回路48は、信号生成部26の操作信号INを入力としてゲートの充電処理の実行中であると判断された場合、オフ保持用スイッチング素子46をオフし、操作信号INを入力としてゲートの放電処理の実行中であると判断されて且つゲート電圧検出部50の出力信号GPRを入力としてゲート電圧Vgeが低いと判断された場合、オフ保持用スイッチング素子46をオンする。ここで、上記駆動回路は、ゲート電圧Vgeが閾値電圧を跨いでから出力信号GPRの論理が反転するまでの時間を、操作信号INを入力としてオフ保持回路48によって把握される充電処理指示時間の最小値以下とするように構成される。 (もっと読む)


【課題】絶縁ゲート型半導体素子を駆動する半導体集積回路内において、貫通電流の発生を抑制することが可能な技術を提供することを目的とする。
【解決手段】半導体集積回路は、制御信号Vinを遅延させて得られる遅延信号を、PMOS1及びNMOS2のゲート端子に出力する遅延回路19を備える。NMOS4が、第2出力信号の変化に応じてオンからオフに切り替えられるタイミング(t2)は、PMOS1が、遅延信号の変化に応じてオフからオンに切り替えられるタイミング(t2)よりも遅くなく、かつ、PMOS3が、第1出力信号の変化に応じてオンからオフに切り替えられるタイミング(t7)は、NMOS2が、遅延信号の変化に応じてオフからオンに切り替えられるタイミング(t7)よりも遅くない。 (もっと読む)


【課題】 高コスト化、サイズ大型化を抑制し、短絡保護回路が制限する電流値がばらついても、過電流保護回路を確実に作動させる半導体スイッチング素子駆動回路を提供する。
【解決手段】半導体スイッチング素子駆動回路は、ゲート端子への電圧の印加により第1端子および第2端子間に主電流を流す半導体スイッチング素子Q1と、主電流の大きさに比例する電流値または電圧値が閾値を超えたとき、主電流が所定時間の間、所定の電流値を超える過電流となったと判断して主電流を低下させる過電流保護回路OPと、主電流が所定時間より短時間で過電流よりさらに大きい過電流となる場合に、ゲート端子に印加するゲート電圧を過電流保護回路による主電流の低下よりも早く低下させる短絡保護回路SPと、短絡保護回路の主電流の低下作動時に閾値を小さくする閾値変更回路TCと、を有する。 (もっと読む)


【課題】ターンオン時間のばらつきが小さな半導体装置を提供する。
【解決手段】この半導体装置は、ノードN1,N2間に直列接続された高耐圧、高GmのトランジスタQ1および低耐圧、低GmのトランジスタQ2と、トランジスタQ2に並列接続された低耐圧、高GmのトランジスタQ3とを含む。トランジスタQ2をオンさせるとトランジスタQ1がオンし、さらにトランジスタQ3をオンさせるとノードN1,N2間が導通状態になる。したがって、低耐圧のトランジスタQ2をオンさせて高耐圧のトランジスタQ1をオンさせるので、ターンオン時間のばらつきが小さくなる。 (もっと読む)


【課題】スイッチポート切替時間が短く、かつ低消費電力、低面積を同時に満たす高周波スイッチモジュールを提供する。
【解決手段】デコーダ3は、前記スイッチポートを切替える制御信号CNTに応答し、スイッチ7を制御するためのスイッチ制御信号SWCNTを生成して、スイッチ切替タイミング検出器は、スイッチ制御信号SWCNTに応答し、スイッチ切替え検出信号t_swを生成し、周波数制御信号生成器は、スイッチ切替え検出信号t_swに応答し、周波数制御信号ICONT、CCONTを生成し、負電圧発生回路は、周波数制御信号ICONT、CCONTに応答し、前記負電圧発生回路内で生成したクロック信号の周波数を2つ以上のそれぞれ異なる周波数に切替つつ、負電圧出力信号NVG_OUTを生成し、スイッチ7は、スイッチ制御信号SWCNTと前記負電圧出力信号NVG_OUTに応答し、複数の高周波信号ポート間の経路を切替える。 (もっと読む)


【課題】スイッチング素子のオンオフによる誘導性負荷の電流応答性を良好なものとしながら駆動回路内の発熱をより抑制する。
【解決手段】誘導性負荷10を駆動する駆動回路20に、誘導性負荷10と並列接続され且つ互いに直列接続された第1の抵抗42および第2の抵抗44と、第2の抵抗44に並列接続されたコンデンサ46と、誘導性負荷10と並列接続されゲートが抵抗42と第2の抵抗44(コンデンサ46)との接続点に接続されドレインがグランドに接地されたNチャネル型のFET32と、FET32のソースと電源ライン24との間に介在しドレインからソースの方向を順方向とする第1のダイオード34とを設ける。 (もっと読む)


【課題】ESDパルスをもれなく検出し、かつ通常の電源投入時やスパイクノイズ印加時の誤検出を抑制する。
【解決手段】第1検出回路7はESDパルスの印加開始時から第1所定時間だけ第1検出信号を出力する。第2検出回路9は、第1検出信号を受け、かつESDパルスの印加が第2所定時間だけ持続したときに第3所定時間だけ第2検出信号を出力する。第1所定時間は電源の立ち上がり時間よりも短い。第2所定時間は第1所定時間よりも短く、かつスパイクノイズの印加時間よりも長い。第3所定時間はESDパルスの印加時間よりも長い。クランプ回路11は、第1検出信号及び第2検出信号の少なくとも一方が出力されているときはゲート端子47をGND端子3とは絶縁する。プルアップ回路13は、ゲート端子47を、第2検出信号が出力されているときは電源端子1に接続し、第2検出信号を出力されていないときは電源端子1とは絶縁する。 (もっと読む)


【課題】 スイッチング素子を誤動作させずに高速低損失動作が可能なゲート駆動回路を部品点数の少ない簡易な回路構成で実現する。
【解決手段】 トランス15の1次側をローサイドゲート駆動回路2の出力端子に接続し、トランス15の2次側をハイサイドスイッチング素子5のゲート入力側に接続する。ローサイド駆動回路2から正極性のゲート駆動電圧が出力されるとハイサイドスイッチング素子5のゲート‐ソース間には負極性の電圧が印加されてゲート電圧は閾値以下に抑えられるため、ローサイドスイッチング素子がターンオンする際にハイサイドスイッチング素子はオフ状態を維持する。 (もっと読む)


【課題】駆動回路への要求を緩和した使いやすい高速動作の窒化物半導体装置を提供する。
【解決手段】実施形態によれば、窒化物半導体を含む、nチャンネル型の第1〜第4トランジスタと、抵抗と、を備えた窒化物半導体装置が提供される。第1トランジスタは、第1ゲートと、第1ソースと、第1ドレインと、を有する。第2トランジスタは、第2ゲートと、第1ゲートと接続された第2ソースと、第2ドレインと、を有する。第3トランジスタは、第3ゲートと、第1ソースと接続された第3ソースと、第1ゲート及び第2ソースと接続された第3ドレインと、を有する。第4トランジスタは、第3ゲートと接続された第4ゲートと、第1ソース及び第3ソースと接続された第4ソースと、第2ゲートと接続された第4ドレインと、を有する。抵抗の一端は第2ドレインと接続され、他端は第2ゲート及び第4ドレインと接続される。 (もっと読む)


【課題】本発明は、パワー素子の過電流を速やかに抑制しつつ、di/dtを小さくしてパワー素子をオフすることができるゲート回路を提供することを目的とする。
【解決手段】本発明に係るゲート回路は、パワー素子の過電流発生と同時にパワー素子のゲート電圧の一部を抵抗素子に負担させる過電流抑制手段を有する。さらに、パワー素子の過電流を抑制した後は、抵抗値の高い抵抗素子を用いてパワー素子をゆっくりオフするオフ動作遅延手段を有する。 (もっと読む)


【課題】レベル変換時の信号の立ち上がりを速くすることのできるレベル変換バススイッチを提供する。
【解決手段】実施形態のレベル変換バススイッチは、低電圧レベル信号が伝送される低電圧レベル信号線と高電圧レベル信号が伝送される高電圧レベル信号線との間に、低電圧レベルの制御信号により導通が制御されるMOSトランジスタ型のスイッチ1が接続され、高電圧レベル信号線と高電圧電源線VccBとの間に、プルアップ抵抗2が接続される。このレベル変換バススイッチでは、加速回路3が、高電圧レベル信号の立ち上がりをプルアップ抵抗2による立ち上がりよりも速くし、加速期間制御回路4が、加速回路3の作動期間を制御する。 (もっと読む)


【課題】端子切替時の歪みの増加を抑制した半導体スイッチ及び無線機器を提供する。
【解決手段】実施形態によれば、電源回路と、駆動回路と、スイッチ部と、補正回路と、を備えた半導体スイッチが供給される。前記電源回路は、電源電位と異なる第1の電位を生成する。前記駆動回路は、前記第1の電位と異なる第2の電位と前記第1の電位とが供給され、端子切替信号に基づいて前記第1の電位及び前記第2の電位の少なくとも一方を出力する。前記スイッチ部は、前記駆動回路の出力に応じて共通端子と高周波端子との接続を切り替える。前記補正回路は、前記端子切替信号の変化を検出し、前記第1の電位の極性と等しい極性の電荷を前記駆動回路に供給して前記第1の電位を補正する。 (もっと読む)


【課題】 誘導性負荷を駆動する出力バッファ回路の電力損失を低減する。
【解決手段】 誘導性負荷2から出力バッファ回路100に電流が流入している場合、スルーレート制御部140は、出力バッファ回路100の出力信号VOUTの立ち上がり過程において低いスルーレートから高いスルーレートへ変化させる制御を行うとともに、出力信号VOUTの立ち下がり過程において高いスルーレートから低いスルーレートに変化させる制御を行う。また、出力バッファ回路100から誘導性負荷2に電流が流出している場合に、スルーレート制御部140は、出力信号VOUTの立ち上がり過程において高いスルーレートから低いスルーレートに変化させる制御を行うとともに、出力信号VOUTの立ち下がり過程において低いスルーレートから高いスルーレートに変化させる制御を行う。 (もっと読む)


41 - 60 / 525