説明

Fターム[5J081KK02]の内容

LC分布定数、CR発振器 (9,854) | 制御手段及び要因 (1,418) | 制御対象 (468) | 周波数 (387)

Fターム[5J081KK02]に分類される特許

121 - 140 / 387


【課題】周囲の環境温度による光ファイバの熱伸縮に対してもPLL制御を正常に行うことができる高周波発振器を得る。
【解決手段】レーザ光源が発生したレーザ光を光変調器により変調し、光ファイバを介して伝送した変調後のレーザ光を光電変換器により高周波信号に変換し、変換後の高周波信号からバンドパスフィルタにより所定の通過帯域成分を取り出し、当該所定の通過帯域成分の高周波信号の周波数を変調信号として前記光変調器に帰還すると共に発振信号として出力する高周波発振器において、高周波信号の周波数が一定になるように制御するPLL制御手段と、当該高周波発振器の発振周波数の変動をPLL制御手段の予め設定した周波数引き込み範囲内に納めるように高周波信号の位相を調整する位相調整手段を備えた。 (もっと読む)


【課題】双方の信号線路の遅延を容易に一致させることができると共に、不要信号を相殺することができる。
【解決手段】この電圧制御発振回路は、発振回路部1と、発振信号を分岐すると共に互いに位相の反転した第1及び第2の信号を別々に出力する出力分波回路2と、出力分波回路2の出力段に並列に接続され同一構成を有し、トラップ周波数が異なるトラップ回路3、4と、トラップ回路の出力を合成する出力再合成回路とを備える。発振回路部1の電圧制御信号をトラップ回路3、4のバラクタダイオード32,34に印加してトラップ回路3、4のトラップ周波数を発振周波数に連動させる。 (もっと読む)


発振回路は、第1の伝導層内でルーティングコンダクタを介して相互結合されるトランジスタを含む。発振回路はまた、第2の伝導層内に、バラクタ、コンデンサ、およびオプションコンダクタも含む。オプションコンダクタは、トランジスタのうちの1つとコンデンサまたはバラクタとの間の接続の少なくとも一部を形成する。上記発振回路は、第1の伝導層内のルーティングコンダクタを介して前記複数の第1のトランジスタのうちの1つに結合されるインダクタと、該インダクタの第1の部分を形成する、前記第2の伝導層内の第2のオプションコンダクタとをさらに備え得る。
(もっと読む)


【課題】CR発振クロックの周期調整が完了したかを判定できるCR発振クロック内蔵マイクロコンピュータの提供。
【解決手段】判定回路は、カウント数下限設定レジスタが示す値とカウント数上限設定レジスタが示す値との間に、外部発振パルスカウンタが示す値が収まっているかを判定する(S170)。収まっていると判定すると(S170でYes)、判定回路は、補正完了カウンタに格納されている値に1を足してカウントアップする(S180)。その後、出力回路が、補正完了カウンタのカウント数が補正完了カウント数設定レジスタに格納された値以上であるかを判断する(S190)。以上であると判断すると(S190でYes)、出力回路は、補正完了レジスタに「1」(周期調整が完了したことを示す情報)を入力する(S200)。そして、これらのステップを繰り返す。 (もっと読む)


【課題】最大の周波数マージンで、発生させる発振周波数をロック状態にする。
【解決手段】ループフィルタ23は、発振周波数における所定の特性に基づいて、入力される制御電圧に対応して発振周波数を発生させるVCO63であって、所定の特性が粗調整されるVCO63に、制御電圧を入力し、VCO粗調整回路135は、制御電圧が所定の設定範囲を超えた場合に、VCOによる所定の特性を、複数の特性のうちのいずれかに粗調整し、DAC133は、制御電圧が所定の設定範囲内で変化する場合に、発振周波数がロック状態とならないとき、所定の設定範囲を広げる方向に更新する。本発明は、例えばPLL回路やCDR回路に適用することができる。 (もっと読む)


【課題】周波数可変範囲を狭くすることなく大きな逓倍出力を得られるプッシュ・プッシュ発振回路を提供すること、またその上で2系統の源発振周波数信号を供給可能なプッシュ・プッシュ発振回路を提供すること、或いはそれを用いた無線通信機器を提供する。
【解決手段】差動トランジスタ対と差動トランジスタ対の間に接続されたLC共振回路10と周波数選択回路30を備えたプッシュ・プッシュ電圧制御発振回路であって、前記周波数選択回路30は伝送線路300を備え、源発振周波数に対する2倍高調波信号を前記伝送線路300のグランドライン32から出力する。2倍高調波信号を伝送線路300のグランドライン32から出力することで、伝送線路300の線路を信号が伝播するときに発生する伝播損失を低減でき、大きな出力電力が得られる。 (もっと読む)


【課題】 位相雑音特性を改善すると共に周波数可変幅を広くすることができる低雑音電圧制御発振器を提供する。
【解決手段】 振動素子とコンデンサ2がトランジスタ1のコレクタCとエミッタEとの間に直列に接続され、コレクタCとエミッタEとの間にコンデンサ3,4が直列に接続され、コンデンサ3,4の間の電位がトランジスタ1のベースBに印加され、コレクタCとコンデンサ4との間に1ポート回路6が設けられ、コンデンサ3,4に並列に補正用コンデンサ5を接続し、1ポート回路6が、容量を小さく設定できる可変キャパシタと、インダクタンスの値を大きく設定できるインダクタとを備えてインピーダンスの値を比較的大きく設定する同調回路である低雑音電圧制御発振器である。 (もっと読む)


【課題】 高周波の発振器において、プロセスバラツキにより発振周波数が仕様範囲から外れてしまう問題がある。通常はトリミング等により周波数調整を行う方法がある。しかし、高周波発振器を樹脂で封止するトリミングを行うことはできない。さらに、樹脂により寄生容量が変化してしまうため樹脂封止前後で発振周波数が変化してしまうため、別の方法による周波数調整方法が必要となる。
【解決手段】 同一基板上に発振器を複数設けて、それぞれの発振周波数が異なるようにする。また、各発振器を外部からの印加電圧によって発振/停止を制御できるようにして、複数の発振器の中から最適な発振器一台のみを発振させる。 (もっと読む)


【課題】低位相雑音の電圧制御発振器を実現する。
【解決手段】バラクタ2および制御電圧端子3を含む可変共振器を備えた電圧制御発振器であって、当該可変共振器に対して、並列に、長くとも高調波信号の波長の1/4の奇数倍に高調波信号の波長の1/16を加算した長さであり、短くとも高調波信号の波長の1/4の奇数倍に高調波信号の波長の1/16を減算した長さを有する先端開放スタブ5を接続している。この構成により、基本波周波数においては、基本波信号は先端開放スタブ5およびバラクタ2の両者へ伝播するため、高いQ値を実現でき、一方、高調波周波数において、先端開放スタブ5は短絡負荷を有し、高調波信号は全て先端開放スタブ5へと伝播するため、高調波信号による制御電圧Vtの変動が抑制される。 (もっと読む)


【課題】発振周波数の調整および制御を容易に行ない、かつ生産コストの増大を防ぐことが可能な誘電体発振器、低雑音ダウンコンバータおよびアンテナ装置を提供する。
【解決手段】誘電体発振器101は、第1のマイクロストリップライン61に接続された制御電極と、第2のマイクロストリップライン62に接続された導通電極とを有するトランジスタTRと、第1および第2のマイクロストリップライン61,62を磁気的に結合する誘電体共振器DRと、第1のマイクロストリップライン61に結合され、発振周波数を制御するための制御電圧が供給される第1の可変容量素子D1と、少なくとも第1のマイクロストリップライン61によって形成され、第1の可変容量素子D1と第1のマイクロストリップライン61との間の直流電圧の伝達を遮断する直流遮断部とを備える。 (もっと読む)


【課題】チップ占有面積が低減され、ディジタル制御発振器DCOの制御ゲインのばらつきを低減する。
【解決手段】半導体集積回路はディジタル制御発振器DCOを具備し、DCOは発振素子NM1、NM2と共振回路20を含み、共振回路20はインダクタンスL11、L12と周波数粗調整用可変容量アレーCCT11と周波数微調整用可変容量アレーCFT11と含む。粗調整用可変容量アレーCCT11は複数個の粗調整容量ユニットセルCCT<0>、<1>…を含み、微調整用可変容量アレーCFT11は複数個の微調整容量ユニットセルCFT<0>、<1>…を含む。粗調整用アレーCCT11の複数個の粗調整容量ユニットセルの容量値はバイナリウェイト2M−1に従って設定され、微調整用アレーCFT11の前記複数個の微調整容量ユニットセルの容量値もバイナリウェイト2N−1に従って設定される。 (もっと読む)


【課題】周波数の安定性およびジッタの要件を満たしつつ、CMOS技術における既存の最適化プロセスの手順に依拠した集積化の解決手法を利用した、温度に対して非依存型のLC型発振器を提供する。
【解決手段】実質的に温度に非依存のLC型発振器は、温度ヌル位相に実質的に等しい位相でタンク発振を生成するLC発振器タンク10を用いて達成される。該温度ヌル位相は、LC型発振器の出力発振の周波数の温度変化に伴う変動が最小化されるときの、LC発振器タンク10の位相である。該LC型発振器はさらに、該LC発振器タンク10に接続されて、該温度ヌル位相に実質的に等しい位相で該LC発振器タンク10を発振させる周波数安定化回路を含む。 (もっと読む)


【課題】信号に対するノイズの増加がなく安定したPLL周波数シンセサイザ回路及びその制御方法を提供する。
【解決手段】電圧制御発振器の制御電圧をモニタし、制御電圧に応じて前記電圧制御発振器の変調感度との間で安定に動作するように設定されたループフィルタを切り替えるようにした。 (もっと読む)


【課題】偶数次の高調波と基本波の電力比を大きくすることができる高周波発振源を得ることを目的とする。
【解決手段】発振周波数の基本波f0で発振動作を行う発振回路1の出力端子のインピーダンスが発振周波数の基本波f0でショートであり、出力回路2の入力端子のインピーダンスが発振周波数の基本波f0でショートであるように構成する。これにより、出力回路2から出力される2倍波2f0と基本波f0の電力比を大きくすることができる効果が得られる。 (もっと読む)


【課題】差動構成のゲートとドレインとのクロスカップリングのための配線の寄生抵抗を低減する。
【解決手段】第1のアクティブ領域から突出した第1の突出部を夫々有する複数の第1のゲートと、第1のアクティブ領域に隣接した第2のアクティブ領域から、第1の突出部の突出方向とは反対の方向に突出した第2の突出部を夫々有する複数の第2のゲートと、複数の第1のゲートの第1の突出部上及び第2のアクティブ領域の全てのドレイン上に形成されて複数の第1のゲートと第2のアクティブ領域の全てのドレインとを接続する第2の共通配線と、複数の第2のゲートの第2の突出部上及び第1のアクティブ領域の全てのドレイン上に形成されて複数の第2のゲートと第1のアクティブ領域の全てのドレインとを接続する第3の共通配線とを具備したことを特徴とする。 (もっと読む)


【課題】回路や制御を複雑にすることなく、電圧制御発振回路の発振周波数レンジを広く保持しつつ出力クロックのジッターを低減可能なPLL回路を提供すること。
【解決手段】前段のLPF3から入力される制御電圧信号VCTRLの電位に応じた周波数を有する出力クロックを、制御端子に入力される制御電圧に応じて遅延時間が変化する遅延回路のM個を環状に接続したリングオシレータを用いて発生するVCO回路4aを備えるPLL回路において、VCO回路4aは、制御電圧信号VCTRLから低周波帯域の制御電圧信号VCTRLを抽出する低域通過フィルタを備え、前記リングオシレータは、前記M個の遅延回路のうち、m個(m<M)の各遅延回路の制御端子に制御電圧信号VCTRLが入力され、(M−m)個の各遅延回路の制御端子に制御電圧信号VCTRL2が入力される。 (もっと読む)


【課題】温度信号の製造バラツキが小さく、高精度の温度信号を生成可能な電子回路を提供すること。
【解決手段】本発明は、ピンチオフ状態にせしめられる第1FET(FET1)と、第1FETのソース端子S1に接続されてなる温度信号Vtempを出力する温度信号出力端子と、を具備する電子回路である。本発明によれば、ピンチオフ状態のFETのソース端子から出力される温度信号を用いることにより。製造ばらつきの小さい温度信号を得ることができる。
である。 (もっと読む)


【課題】
簡単な回路構成で2つの周波数帯域を出力可能とし、無線装置の小型化及びコストの低減を図る。
【解決手段】
発振回路部26から発せられる基本周波数を逓倍回路部27を介して出力する様にし、該逓倍回路部に給電する電圧を2つの異なる電圧に切換え可能とし、1つの電圧では前記逓倍回路部が増幅作動する様にし、他の電圧では該逓倍回路部が逓倍作動する様構成し、2つの周波数帯を択一的に発信可能とした。
(もっと読む)


【課題】内蔵するICチップの内容を外部から設定し、書き換えることで回路定数や回路方式あるいは分周数を実装機器の仕様に合せて切り換え可能とした融通性の高い発振器を提供する。
【解決手段】内蔵するICチップ3に発振回路と共に複数の回路定数や回路方式の回路、あるいは複数の分周数の分周回路を備えると共に、該ICチップに不揮発メモリの領域、あるいは分周回路領域を設け、発振器の回路定数や回路方式を当該不揮発メモリに外部から書き込んだデータで切り換える構成とした。 (もっと読む)


【課題】VCO利得の変動を抑圧した簡易な構成のVCOの提供。
【解決手段】二つの周波数可変手段を具備することでマルチバンド動作を行なう電圧制御発振器(VCO)において、可変容量素子11iaと12ia及び11ibと12ib(i=1、2、3)をそれぞれ互いに極性が逆になる向きに並列接続可能とし、可変容量素子対を形成する。一般に、可変容量素子11iaと12ia、11ibと12ib(i=1、2、3)の容量値は異なる値に設定される。これらの可変容量素子対は、ループコントロール端子3に印加されるコントロール電圧VCNTにより制御されると同時に、帯域設定信号VSW1、VSW2、VSW3によってオンオフされるスイッチ素子であるトランジスタ101a、102a、103a、101b、102b、103bの切替により、VCO本体に電気的に分離・接続される。 (もっと読む)


121 - 140 / 387