説明

Fターム[5J081KK02]の内容

LC分布定数、CR発振器 (9,854) | 制御手段及び要因 (1,418) | 制御対象 (468) | 周波数 (387)

Fターム[5J081KK02]に分類される特許

81 - 100 / 387


【課題】十分に高い周波数帯域において、広帯域にわたって柔軟に発振周波数を調整すること。
【解決手段】信号線131は、電源から直流電圧Vdcが印加されると、電源に接続された始端を節とし、終端を腹とする4分の3波長の定在波を発生させる。ストリップ132−1〜132−nは、それぞれスイッチ133−1〜133−nを介してグランド層に接続されている。スイッチ133−1〜133−nは、切替制御部140による制御に従って、それぞれストリップ132−1〜132−nとグランド層との接続及び非接続を切り替える。スイッチ133−1〜133−nの接続及び非接続を切り替えることにより、擬似的に信号線131とグランド層の間の距離が調節され、伝送線路部130における実効誘電率が変化して、定在波の周波数を調整することができる。 (もっと読む)


【課題】半導体集積回路をパッケージに実装した後に、インダクタンスを増加および減少させる調整が可能な半導体集積回路を提供する。
【解決手段】LSIの内部回路106が形成された同一の半導体基板に磁気検出素子100が形成されており、ボンディングパッド114とLSIの内部回路106の間に接続された第1インダクタ101のインダクタンスを磁気検出素子100と磁気検出回路105の出力電圧でモニタし、第1インダクタ101の片方の端子と第2インダクタ102の一端と第3インダクタ103の一端が第1接続部107を介して接続される第1スイッチ108、第2インダクタ102の片方の端子が第2接続部109を介して接続される第2スイッチ110、および、第3インダクタ103の片方の端子が第3接続部111を介して接続される第3スイッチ112を接続または切断状態に切り替えることにより、第一のインダクタ101をトリミングする。 (もっと読む)


発振器は、共振器と、第1および第2のp型トランジスタと、第1および第2のn型トランジスタとを含む。共振器は、第1の端子と第2の端子とを持つ。第1のp型トランジスタは、第1の端子にスイッチ可能に接続されており、第2のp型トランジスタは、第2の端子にスイッチ可能に接続されている。第1のn型トランジスタの第1のドレインと第2のn型トランジスタの第2のドレインとは、それぞれ、第1の端子および第2の端子に電気的に接続される。発振器はNMOSのみモードおよびCMOSモードで作動可能である。 (もっと読む)


【課題】 電源雑音を除去し、低周波雑音の特性を良好にできる低雑音電圧制御発振回路を提供する。
【解決手段】 駆動用トランジスタQ1 のベースとGNDの間にコンデンサC11を設けることで、そのベースに入力される低周波ノイズを除去でき、駆動用トランジスタQ1 をhFEの低いトランジスタとすることで、電源から入力される低周波ノイズを除去することができ、発振用トランジスタQ2 のエミッタ側に、コイルL3 を設けることで、周波数特性を広域化して位相雑音の周波数特性を良好にでき、発振用トランジスタQ2 のエミッタ側に、コンデンサC7 とコイルL3 で構成される共振回路における共振周波数をVCOの発振周波数帯域の中心辺りに設定することで、ノイズの影響を受けにくい発振周波数にすることができる低雑音電圧制御発振回路である。 (もっと読む)


【課題】安定した動作を行うことができる半導体回路を提供することを課題とする。
【解決手段】ソースが第1の電位ノードに接続される第1のpチャネルトランジスタ(201)と、ソースが第2の電位ノードに接続される第1のnチャネルトランジスタ(202)と、ゲートが第1のnチャネルトランジスタのドレインに接続され、ドレインが第1のnチャネルトランジスタのゲートに接続される第2のpチャネルトランジスタ(203)と、ゲートが第1のpチャネルトランジスタのドレインに接続され、ドレインが第1のpチャネルトランジスタのゲートに接続される第2のnチャネルトランジスタ(204)と、第1のpチャネルトランジスタ及び第1のnチャネルトランジスタのドレイン間に接続される第1の抵抗(301,302)と、第2のpチャネルトランジスタ及び第2のnチャネルトランジスタのドレイン間に接続される第2の抵抗(303,304)とを有する。 (もっと読む)


キャパシタンススイッチング素子(200)が、トランジスタ(205、210)によって直列に接続された、第1のキャパシタ(240)と第2のキャパシタ(245)とを含む。トランジスタのゲートは、一組の抵抗器(220、230)を介して第1の信号(b0/)によってバイアスをかけられ、ソースおよびドレインは、第2の組の抵抗器(215、225、235)を介して第2の信号(b0)によってバイアスをかけられる。信号はレベルシフトされており、相補的であってよい。素子をオンにするためには、第1の信号(b0/)をVDDに設定することができ、第2の信号(b0)をゼロに設定することができる。素子をオフにするためには、第1の信号(b0/)をVDD/2の倍数に設定することができ、第2の信号(b0)をVDD/2の倍数プラス1(the multiple plus one)に設定することができる。素子が発振器同調回路で使用されるとき、トランジスタの圧力ストレスが低減され、トランジスタを薄酸化物で製作することができる。発振器は、セルラアクセス端末のトランシーバにおいて使用されてもよい。
(もっと読む)


【課題】電源電圧に重畳されたノイズにより発生する発振器の位相雑音を低減することができ、しかも簡単な回路構成で実現でき、発振器の小型化を図ることのできる電圧制御発振器を提供すること。
【解決手段】この電圧制御発振器1は、直流電源端子16にコレクタが接続された発振用トランジスタ11と、発振用トランジスタ11のエミッタ・接地間に接続された第1の抵抗21と、発振用トランジスタ11のベース・接地間に接続された共振回路27と、発振用トランジスタ11のエミッタと第1の抵抗21との接続点と直流電源端子16とを接続する結合ラインL1上に設けられた第1のキャパシタ22とを具備することを特徴とする。 (もっと読む)


【課題】変調感度が高すぎず、かつ、制御周波数範囲の広い電圧制御発振器を提供する。
【解決手段】構造、容量変化特性が異なる複数種類の可変容量素子が並列に接続され、制御電圧により、複数種類の可変容量素子の容量値を同時に制御するようにした共振部と、共振部による発振を維持するための増幅部とを備える。可変容量素子として、バラクタダイオードとMOSバラクタを用いることができる。 (もっと読む)


広帯域周波数発生器は、フリップチップパッケージ内の同一のダイに配置された異なる周波数帯域のための2つ以上の発振器を有する。2つの発振器の誘導子間の結合は、一方の誘導子がダイに配置され、他方の誘導子がパッケージに配置され、これら誘導子がハンダバンプの直径によって離されることで、減少させられる。弱結合されたこれら誘導子では、一方の発振器の帯域を増加させるために他方の発振器のLCタンク回路の操作をしたり、その逆を行ったりできる。一方の発振器の振動の好ましくないモードを防ぐことは、他方の発振器の粗同調バンクの全容量といった大容量を他方の発振器のLCタンク回路に与えることによって達成され得る。好ましくないモードを防ぐことは、他方の発振器のLCタンクのQファクタを減少させ、タンク回路内の損失を増加させることによっても達成され得る。 (もっと読む)


【課題】 発振周波数を補正するためのメモリなどが不要な温特補正機能付き発振回路およびその製造方法を実現する。
【解決手段】 温特補正機能付き発振回路10は、第1の発振回路21と、第2の発振回路22と、第1の発振回路21が発生する発振周波数を理想の発振周波数に近い発振周波数に補正するための補正回路50とを備える。補正回路50は、第1の発振回路21の発振周波数f1と、第2の発振回路22の発振周波数f2との差分(f1−f2)を検出し、その検出した差分に補正係数αを乗じ(α・(f1−f2))、その補正された差分を第1の発振回路21の発振周波数に加算し(f1+α・(f1−f2))、それを出力する動作を行う。 (もっと読む)


【課題】周波数が、中心周波数近辺の同調範囲内の周波数で制御される発振信号を形成するLC電圧制御発振器の提供。
【解決手段】位相補間電圧制御発振器は、複数のn個の位相シフトセルA及びn−1レベルの加算セルSを内含する。位相シフトセルAは、共通の入力信号を受理し、各々は、その他の位相シフトセルAとは異なる量だけ入力信号を位相シフトさせる。第1レベルの加算セルSは、少なくとも2つの位相シフトセルAの出力を受信し加算し、残りの加算セルレベルの各々は、加算セルSの先行レベルの出力を受理する。最後のレベルは、位相シフトセルAの共通の入力信号としてフィードバックされる出力信号を生成する単一の加算セルSを含む。 (もっと読む)


【解決手段】(例えばFM受信機中の)VCOは、LC共振タンクを含む。LC共振タンクは、粗同調キャパシタバンクおよび微同調キャパシタバンクを含む。粗同調キャパシタバンクは複数のデジタル制御粗同調キャパシタエレメントを含み、アクティブな際に各々は第1キャパシタンス値を供給する。微同調キャパシタバンクは複数のデジタル制御微同調キャパシタエレメントを含み、アクティブな際に各々は第2キャパシタンス値を供給する。キャパシタミスマッチの現実的な問題に対処するため、VCOチューニング範囲の全体にわたるキャパシタンスオーバーラップが、微キャパシタバンクのデジタル制御微同調キャパシタエレメントの全てがアクティブな場合に、微キャパシタバンクのキャパシタンス値が第1キャパシタンス値より大きくなるように第1及び第2キャパシタンス値を選択することによって生成される。 (もっと読む)


【課題】高周波動作において、互いに容量が異なる複数のコンデンサの組み合わせを切り替えて電圧制御発振器の発振周波数帯域を切り替える際に、全ての発振周波数帯域同士を重なり合わせることが可能なPLL回路を提供することを目的とする。
【解決手段】互いに容量が異なる複数のコンデンサ51−1〜51−nの組み合わせを切り替えることにより発振周波数帯域を切り替える電圧制御発振器2を備えるPLL回路1において、電圧制御発振器2が高周波動作しているとき、容量が比較的大きなコンデンサ52−4又はコンデンサ52−5が選択されなくなる場合、補正用のコンデンサ5−1又はコンデンサ5−2を選択して電圧制御発振器2の全体の容量を大きくする。 (もっと読む)


【課題】高価な誘電体共振器やバラクタダイオードを使用することなく、廉価に制作することができ、また回路面積が小さく小型化が可能となるようにする。
【解決手段】誘電体基板1上に形成されたマイクロストリップ線路2において、増幅素子3の入力端のゲートが入力端側線路2aに接続され、出力端のドレインが出力端側線路2bに接続され、ソースが接地電極5に接続される。そして、上記誘電体基板1の裏面の接地面7の中に、空地領域7Eを介して線状の金属パターン8を形成し、この金属パターン8をマイクロストリップ線路2の伝送線路方向に配置することで、この金属パターン8の一方端を入力端側線路2a、他方端を出力側線路2bに容量性結合する。この金属パターン8の結合は、一端のみでもよい。これによれば、増幅素子3からの出力が、容量C1、インダクタンスL、容量Cを通って入力端へ帰還し、発振が行われる。 (もっと読む)


【課題】チャージポンプを用いずに、出力周波数の精度を高くすることのできる自動調整発振器を提供する。
【解決手段】発振器10は、発振回路11、第1電圧供給回路13、第2電圧供給回路14及び調整値生成回路16を備えている。第1電圧供給回路13は、基準時間で第1電圧V1が基準電圧Vrefに到達するような時定数となる抵抗値の抵抗器R1とキャパシタン
スのキャパシタC1とを備える。第2電圧供給回路14は、発振回路11の周波数に応じたパルス信号S1,S2によってスイッチングを行なう第1及び第2スイッチング手段SW1,SW2によって第2電圧V2を上昇させる。調整値生成回路16は、第2電圧V2が第1電圧V1よりも先に基準電圧Vrefになった場合には、周波数を低くする調整値を
発振回路11に供給し、第2電圧V2が第1電圧V1よりも遅れて基準電圧Vrefになっ
た場合には、周波数を高くする調整値を発振回路11に供給する。 (もっと読む)


【課題】電圧制御発振器のための補償回路を提供する。
【解決手段】電圧制御発振器(VCO)の電圧を制御するために使用され得る回路は、第1の比較器、第2の比較器、アキュムレータ、及び出力装置を備え得る。第1の比較器は、制御電圧が高電位側しきい値電圧より高い場合に第1のパルス信号を出力する。第2の比較器は、制御電圧が低電位側しきい値電圧より低い場合に第2のパルス信号を出力する。アキュムレータは、もし第1のパルス信号が受信されるならばスイッチ制御信号の値を増加させ、もし第2のパルス信号が受信されるならばスイッチ制御信号の値を減少させる。出力装置は、スイッチ制御信号の値に応じてVCOの制御電圧を補償する補償電圧を生成する。 (もっと読む)


【課題】粗調整用と微調整用のコンデンサを切り替えて発振回路の発振周波数を調整する際に、粗調整区間に生じるサイクルスリップに起因して発振周波数可変範囲が狭くなるのを回避可能なデジタルPLL回路及び半導体集積回路を提供することである。
【解決手段】インダクタンス素子に並列接続される容量素子の数を変えて発振周波数が制御される発振回路4と、基準クロック及びその遅延クロックと発振回路出力とをデジタル位相比較し、その比較結果に基づいて容量素子の並列接続数を制御し、発振回路出力の位相を基準クロック位相に近づける制御をする位相比較部6とを具備し、容量素子は、インダクタンス素子に並列接続可能な所定容量の粗調整用コンデンサ43と、これに並列接続可能で粗調整用コンデンサの1/n容量を有し、粗調整時に所定数の微調整用コンデンサが1つの粗調整用として制御される複数の微調整用コンデンサ44を備える。 (もっと読む)


【課題】高価な誘電体共振器やバラクタダイオードを使用することなく、廉価に制作することができ、また回路面積が小さく小型化が可能となるようにする。
【解決手段】誘電体基板1上に形成されたマイクロストリップ線路2において、増幅素子3の入力端のゲートが入力端側線路2aに接続され、出力端のドレインが出力端側線路2bに接続され、ソースが接地電極5を介して基板裏面の接地面7に接続される。そして、上記増幅素子3の上面に、例えば棒状の金属体10を絶縁性接着剤9によって接着し、この金属体10をマイクロストリップ線路2の伝送線路方向に配置することで、この金属体10の一方端を入力端側線路2a、他方端を出力端側線路2bに容量性結合する。この金属体の結合は、一端のみでもよい。これによれば、増幅素子3からの出力が、容量C12、インダクタンスL、容量C11を通って入力端へ帰還し、発振が行われる。 (もっと読む)


【課題】不要輻射電磁波による基板上の回路が異常動作を防ぐために配置したシールド板を簡単に取り付け、また確実に接地することができるようにした発振器を提供する。
【解決手段】磁極5の中心軸部5bに雄ねじ部5aを形成し、磁束発生手段の下部側に基板2への不要輻射磁束を遮蔽するようにシールド板8を配置すると共に、このシールド板8を導電性があり、かつ磁気を透し難い材質で構成し、磁極5の雄ねじ部5aを利用してシールド板8をねじ連結することによって、シールド板8を磁極5へ機械的に支持すると共に、両者間を電気的に接続し、配線接続を行うことなく磁極5とシールド板8の接地作業を容易にした。 (もっと読む)


【課題】マイクロ波発振素子及びマイクロ波発振装置に関し、複雑な成膜工程や微細加工の必要がない簡単な素子構造によりマイクロ波発振を可能にする。
【解決手段】強磁性体層11とスピン軌道相互作用を有する金属層12との積層構造からなり、金属層両端の端子13、13との間に電源14から電圧を印加して、金属層12に電流を流す事で、スピンホール効果により金属層12から強磁性体層11へ純スピン流が注入され、マイクロ波発振を励起する。 (もっと読む)


81 - 100 / 387