説明

Fターム[5J500AK47]の内容

増幅器一般 (93,357) | 回路要素 (18,409) | 単一電源 (565)

Fターム[5J500AK47]に分類される特許

61 - 80 / 565


【課題】小規模、低消費電力にて信号電流を抽出する電流制御回路を実現する。
【解決手段】電流制御回路100は、電流源としてのフォトダイオードPD、準備回路102、制御回路104および除去回路106を含む。制御回路104は、準備期間において準備回路102に第1の電流を供給し、受信期間において除去回路106とフォトダイオードPDとを接続する経路に第2の電流を供給する。準備回路102は、準備期間において、電流源から供給される第1の電流に含まれる直流成分により充電される。除去回路106は、受信期間において、電流源から供給される第2の電流から直流成分を差し引くことにより、電流から交流成分(信号電流)を分離する。 (もっと読む)


【課題】大信号入力後に小信号が入力される際の自動利得制御応答時間を短縮する。
【解決手段】利得可変増幅器は、フォトダイオード(PD)から入力される電流信号INを帰還抵抗RFの値に比例する利得によって増幅すると同時に電圧信号に変換するインピーダンス変換増幅器コア回路(TIACORE)と、TIACOREの出力を入力として出力信号OUTを出力する出力バッファ(BUF)と、TIACOREの出力電圧に基づいてTIACOREの利得が所望の値になるようにフィードバック制御し、外部から与えられるリセット信号ResetをトリガとしてTIACOREの状態を初期化してTIACOREの利得が最大になるように制御する外部リセット端子付き利得制御回路(CTRL)とを有する。 (もっと読む)



【課題】略10GHz以上の準ミリ波帯、ミリ波帯以上で1つの電源を用いて安定的に動作する高周波増幅回路を提供する。
【解決手段】高周波トランジスタ101は、ゲート端子102側が入力端子105に接続され、ドレイン端子103側が出力端子106に接続されている。2つのソース端子104には、ランド107を介して抵抗111とコンデンサ112からなるセルフバイアス回路110が接続されている。抵抗111及びコンデンサ112の他端は、それぞれランド108a、108b及びスルーホール109a、109bを介して接地されている。ランド108(108a、108b)上における抵抗111及びコンデンサ112との接続点からスルーホール109(109a、109b)までの距離Dが好適に調整されている。 (もっと読む)


【課題】
高周波パワーアンプの試験工程のコストを低減する。
【解決手段】
高周波パワーアンプは,インダクタを有する入力整合回路と,前記入力整合回路を通過した入力信号を増幅する増幅トランジスタと,入力整合回路内のインダクタに第1の試験スイッチにより接続されるキャパシタと,インダクタに第2の試験スイッチを介して第1の基準電圧との間に設けられた負性抵抗用トランジスタと,第2の基準電圧とインダクタとの間に設けられた電流源トランジスタとを含む試験用回路とを有し,試験時に第1,第2の試験スイッチ及び電流源トランジスタが導通してインダクタと試験用回路とで高周波発振器が構成され,通常動作時に第1,第2の試験スイッチ及び前記電流源トランジスタが非導通になる。 (もっと読む)



【課題】電源電圧が比較的小さい場合においても、性能劣化を起こさず、かつオーバードライブリカバリ可能な差動増幅回路を得る。
【解決手段】第1の出力部であるノードN1と電源Vddとの間にPMOSトランジスタMP1及びMP3が互いに並列に介挿され、第2の出力部であるノードN2と電源Vddとの間にPMOSトランジスタMP2及びMP4が互いに並列に介挿される。レプリカ回路4及びコンパレータ5によって、入力電圧Vinと基準電圧Vrefとの入力電位差が“0”のバランス状態時の出力電圧Voutp及びVoutnは共に基準出力コモン電圧Voutcm_idealに設定される。電源電圧Vddと出力コモン電圧Voutcmとの電位差がダイオード接続されたPMOSトランジスタMP1及びMP2の閾値電圧Vthよりも低い値となるように、レプリカ回路4の基準出力コモン電圧Voutcm_idealを設定する。 (もっと読む)


【課題】入力容量および雑音を小さくした半導体集積回路装置を提供する。
【解決手段】半導体集積回路装置は、入力信号が入力される入力端子と出力信号が出力される出力端子とを有する増幅器と、バイアス電流を生成する第1のトランジスタを有し、前記バイアス電流により動作し、前記出力信号を入力してフィードバック信号を前記入力端子に供給するフィードバック回路と、を備え、前記第1のトランジスタのゲートに、前記出力信号とは逆相の信号が入力されることを特徴とする。 (もっと読む)


【課題】RFダウンコンバージョンミキサのための共通ゲート共通ソース相互コンダクタンスステージを提供する。
【解決手段】無線デバイス受信機チェーンは、共通ゲート共通ソース(CGCS)入力ステージ312を有するミキサ314を含む。チップ303外マッチングネットワーク308からの差動信号310、311は、ミキサのCGCS入力ステージに入力されることができて、ミキサは、信号をベースバンドあるいはいくつかの中間周波数にダウンコンバートする。入力ステージは、共通ゲート構成における1ペアのNMOSトランジスタと、共通ソース構成における1ペアのPMOSトランジスタと、を含む。存在するCGO相互コンダクタンス入力構成に対する、CGCS入力ステージの潜在的な利点は、PMOS差動ペアを通して、共通のソースステージを加えることによって、相互コンダクタンス利得が、高いQマッチングネットワークからデカップルされる。 (もっと読む)



【課題】高出力と専有面積の縮小とを両立させた電力増幅装置を提供する。
【解決手段】基板上に形成された電力増幅装置300であって、全体で環状の一次インダクタ1,2と、グランドパターン4〜8と、トランジスタ対(Q1p,Q1n)および(Q2p,Q2n)と、二次インダクタ3とを備える。グランドパターン4〜8は、基板に垂直な方向から見て、環状の一次インダクタ1,2の内側の領域の一部から外側の領域に及ぶように設けられ、外側の領域の複数箇所で接地される。各一次インダクタ1,2の両端には、対応のトランジスタ対を構成する第1および第2のトランジスタの第1の主電極がそれぞれ接続される。第1および第2のトランジスタの各第2の主電極は、一次インダクタの内側の領域でグランドパターンに接続されるとともに、上記の接地された複数箇所のいずれとも電気的に導通する。 (もっと読む)


ヘテロ接合バイポーラトランジスタ及びロングゲート疑似格子整合高電子移動度トランジスタを備える回路ユニット(CU)。前記ロングゲート疑似格子整合高電子移動度トランジスタのソース(S)又はドレイン(D)が、前記ヘテロ接合バイポーラトランジスタのコレクタ(C)又はエミッタ(E)に電気的に結合される。 (もっと読む)


【課題】MOS技術を使ったパワー素子を用いなくても、正確な負荷電流を供給しうる電流源を提供する。
【解決手段】電流源10が、制御端子および制御パスを有するバイポーラトランジスタ1と、バイポーラトランジスタ1の制御パス上にあって、電気負荷D1と接続される第1の端子と、抵抗器4経由で基準電源端子と接続される第2の端子と、バイポーラトランジスタ1の制御端子に接続され、この制御端子に送られる制御電流を測定する測定装置2と、バイポーラトランジスタ1の制御電流が制御パス上に位置する第1の端子において補償されるように、測定装置2およびバイポーラトランジスタ1に接続された補償電流源3とを備える。 (もっと読む)


【課題】バイアス電流の制御電圧の設定範囲を拡大させつつ、バイアス回路の構成の自由度を向上させ、簡単かつ小規模な構成で複数の通信方式への対応を実現する高周波増幅回路を提供する。
【解決手段】バイアス回路12を、入力されるベース電流に応じたバイアス電流を増幅器11に供給するトランジスタQ5と、基準電圧Vrefに応じた電流を流すトランジスタQ3と、トランジスタQ3に流れる電流に応じて、トランジスタQ5のベース電流を補正することにより、トランジスタQ5の温度特性を補償するトランジスタQ2と、トランジスタQ5のベースに接続され、制御電圧VSWの切り替えに応じてトランジスタQ5のベース電流量を切り替えるバイアス切り替え部(トランジスタQ4及び抵抗R5〜R7)とで構成する。増幅器11は、バイアス回路12から供給されるバイアス電流を用いて、入力される高周波信号を増幅する。 (もっと読む)


雑音除去を備える低雑音増幅器(LNA)を改善するための技術が説明される。LNAは、入力ステージ回路において生成された雑音を除去するために協働する第1及び第2の増幅器を含む。入力ステージ回路は、RF信号を受信し、第1のノード及び第2のノードによって特徴付けられる。第1の増幅器は、第1のノードにおける雑音電圧を、第1の増幅器の出力において第1の雑音電流に変換する。第2の増幅器は、第1の増幅器の出力に直接結合され、第2のノードにおける雑音電圧の関数として第2の増幅器によって生成された第2の雑音電流と第1の雑音電流とを加算することによって、雑音除去を提供する。提案された技術は、大きな交流結合コンデンサへのニーズを排除し、LNAによって占められるダイ・サイズを低減する。LNAの増幅ステージ間での交流結合コンデンサの排除によって、電流の再利用が可能になり、その結果電流の消費が低減される。
(もっと読む)


増幅すべき入力信号(e)を出力信号(a)に増幅するためのプッシュプル増幅器が一つの第1の及び一つの第2の増幅素子(1、1’)有する。前記2つの増幅素子(1、1’)のそれぞれが一つの電流放出電極(2、2’)、一つの集電電極(3、3’)、及び一つの電流制御電極(4、4’)を有する。前記増幅素子(1、1’)の前記電流制御電極(4、4’)に、それぞれの入力端子(6、6’)を介して、及び、それぞれの前記入力端子(6、6’)とそれぞれの前記電流制御電極(4、4’)との間に配置されたそれぞれの入力インダクタンス(5、5’)を介して、前記入力信号(e)が供給される。前記集電電極(3、3’)は、それぞれの供給インダクタンス(7、7’)を介して一つの共通の供給電圧(V+)に接続される。前記増幅素子(1、1’)の前記電流放出電極(2、2’)は、それぞれのコンデンサ(8、8’)を介してそれぞれもう一方の前記増幅素子(1’、1)の前記集電電極(3’、3)に接続される。前記電流放出電極(2、2’)は、前記出力信号(a)をピックアップ可能である出力端子(9、9’)に接続される。前記電流放出電極(2、2’)は、それぞれの出力インダクタンス(10、10’)を介して基準電位に接続されている。前記増幅素子(1、1’)の前記供給インダクタンス(7、7’)は、それぞれもう一方の前記増幅素子(1’、1)の前記入力インダクタンス(5’、5)及び前記出力インダクタンス(10’、10)に誘導結合される。
(もっと読む)


【課題】 ICチップ上のコンデンサ面積を小さくすることができる位相補償回路を提供する。
【解決手段】 エラーアンプの出力端子に容量と抵抗を直列接続し、容量に流れる電流を抵抗の両端に接続したトランスコンダクタンスアンプにより増幅してフィードバックすることにより、エラーアンプの周波数特性の主要極の周波数を低くする。 (もっと読む)


【課題】電気機器において、電源投入時に生じ得るヘッドホンからのポップ音出力を抑え、しかも、そのポップ音出力抑制に必要な電力を減らす。
【解決手段】電気機器1は、ヘッドホンプラグ2が抜き差しされるヘッドホンジャック3と、メインIC4と、ヘッドホンジャック3による音声信号出力をミュートするミュート回路7とを備える。メインIC4及びミュート回路7は電気機器1の電源が未投入であっても給電され、メインIC4は、ヘッドホンプラグ2が差し込まれているときにはミュート回路7を駆動し、ヘッドホンプラグ2が差し込まれていないときにはミュート回路7を駆動しない。ヘッドホンプラグ2差込時のミュート回路7の駆動により、電源投入時に生じ得るポップ音出力を抑えることができる。また、ミュート回路7はヘッドホンプラグ2が差し込まれていないときには駆動しないので、ポップ音出力抑制に必要とされる電力を低減することができる。 (もっと読む)


【課題】変換利得のばらつきを極めて小さく抑制された周波数変換回路を実現する。
【解決手段】入力電圧信号を電流信号に変換するGMアンプ10と、該変換して得られた電流信号をローカル信号でミキシングして周波数変換を行うスイッチング回路部(ミキサ)20と、該周波数変換によって得られた電流信号を電圧信号に変換するIV変換部(IV変換アンプ)30と、GMアンプ10へバイアス電圧を供給するバイアス回路(GM校正回路)40と、を備えGM校正回路40は、GMアンプ10に用いるトランジスタとそのサイズあたりの相互コンダクタンスを同一としたトランジスタを用いたレプリカアンプを内部に有し、該レプリカアンプに、抵抗と第1電流源からの電流との積に相当するDC電圧を入力し、該レプリカアンプからの電流出力が所定値になるように、該レプリカアンプの電圧バイアスを設定し、抵抗の分割点の電圧をGMアンプ10に供給する。 (もっと読む)


【課題】誤差増幅器における、受動素子の定数のばらつきに起因する帰還回路の定数のばらつきを抑制する。
【解決手段】誤差増幅器における帰還回路の定数が、受動素子の定数だけでなく、能動素子の利得にも依存して決定される構成にする。この誤差増幅器は、能動素子である電圧電流変換器20を含む構成である。また、第1の端子11、第2の端子13、オペアンプ16、第1の抵抗R1、第2の抵抗R2、第1乃至第5のトランジスタ、第1の電流源14および第2の電流源15を一体の集積回路とし、コンデンサC1を外付けしてもよい。 (もっと読む)


61 - 80 / 565