説明

国際特許分類[B21B37/18]の内容

国際特許分類[B21B37/18]の下位に属する分類

国際特許分類[B21B37/18]に分類される特許

11 - 20 / 111


【課題】次パスの圧下位置を求める式に含まれる学習項を効率的かつ精度良く求められるようにする。
【解決手段】当該パスのゲージメーター板厚Hgと実測板厚Hとを、所定の補正により冷間値又は熱間値に揃えた上で両者の差を求め、当該差に基づいて所定の演算式を用いて次パスの学習項を演算し、当該学習項を用いて次パスの圧下位置を求め、当該圧下位置に基づいて圧延する鋼板の圧延制御方法であって、前記所定の補正に用いられる係数が、鋼板の表面温度と板厚とから板厚温度分布、及び鋼種から変態開始温度をそれぞれ求め、板厚方向の部位毎に変態発生の可否を判断し、当該部位毎の熱膨張係数を求め、当該部位毎の熱膨張係数から板厚方向全体の熱膨張係数を求めたものである。 (もっと読む)


【課題】学習係数が制限値を超えても制限値内で学習係数を制御してモデル誤差を修正する学習係数制御装置。
【解決手段】2個以上のモデルに基づき1つの物理量を予測するプロセスモデルについて物理量の予測値と実績値との差に基づき学習演算部10で各々のモデルの学習係数を算出し、一方のモデルの予測値を変更したときに最終的に求められる物理量の予測値が変わらないように他方のモデルの予測値を変更する補正値を得るために必要な変換係数を変換係数演算部14で演算し、一方のモデルの学習係数が第1制限値を超えた場合に学習係数修正値演算部17からのモデルの学習係数の修正値と変換係数平均値演算部19からの変換係数の平均値とに基づき一方のモデルの学習係数を修正したことで発生する予測値の変化量を他方のモデルで補償するモデルの補正値をモデル補正値演算部20で演算する。 (もっと読む)


【課題】操業状態により圧延機の影響係数が大きく変化した場合でも、安定した板厚制御,張力制御を実施する。
【解決手段】影響係数の変化に応じて、板厚制御および張力制御の制御出力先を前段スタンド速度および後段スタンド圧下を切替えて、または制御出力配分を変更することで、極低速から高速部まで安定した制御を実現する。板厚制御と張力制御の制御出力先を、前段スタンド速度および後段スタンド圧下とを圧延状態に応じて切替えて使用することで板厚精度および生産効率を向上させる。 (もっと読む)


【課題】FF−AGCとBISRA−AGCを同時に併用することで、圧延材の板厚を目標値に確実に近づけることができる板厚制御方法を提供する。
【解決手段】 本発明に係る圧延機の板厚制御方法は、圧延材2を圧延する一対のワークロール6,6を備えた圧延機において、ワークロール6,6間のロールギャップ量Sを制御するものである。まず、FF−AGC制御とBISRA−AGC制御とを同時に使用することで、圧延機5のロールギャップの修正量ΔSを求める。次に、求められたロールギャップの修正量ΔSを圧延機5に適用する。 (もっと読む)


【課題】板厚変動を減速圧延せずに抑制できる冷間タンデム圧延機の板厚制御装置を提供すること。
【解決手段】スタンド間に設置された板厚制御装置で、前段スタンドの出側パスラインを保持する第一のサポートロールと、後段スタンドの入側パスラインを保持する第二のサポートロールと、パスラインを挟む反対側から第一と第二のサポートロール間に押し込まれる可動ロールと、可動ロールを圧下する圧下装置と、前段スタンド出側に設置された板厚計から得られた板厚および後段スタンドの入側と出側に設置された板速計から得られた板速に基づいて後段スタンドの出側板厚を推定する板厚推定手段と、板厚推定手段で推定された出側板厚に応じて圧下装置の圧下制御を行う圧下制御手段を備え、圧下制御手段による圧下制御によりスタンド間の圧延材の長さを調整し、これにより張力又は後段スタンド入側板速を制御して後段スタンドの出側板厚を制御する。 (もっと読む)


【課題】高精度な板厚制御を行うことができるようにする。
【解決手段】本発明は、圧延材Wの板厚を計測し、計測した板厚を基に前記圧延材Wを圧延するワークロールのロール隙間ΔSを算出し、算出したロール隙間ΔSに対応する指令信号を圧下装置に出力して圧延材Wの板厚を制御する圧延機の板厚制御方法であって、圧延材Wの板厚の偏差を周波数成分に分解し、周波数成分ごとに位相遅れを算出すると共に、算出した位相遅れに基づいて周波数毎の遅れ時間を求め、周波数毎に求めた遅れ時間を基に全体遅れ時間を算出し、算出した全体遅れ時間を基に圧下装置に出力する指令信号のタイミングを修正する。 (もっと読む)


【課題】高精度な板厚制御を行うことができるようにする。
【解決手段】本発明は、圧延材Wの板厚を計測し、計測した板厚を基に圧延材Wを圧延するワークロール5のロール隙間を算出し、算出したロール隙間ΔSに応じて圧下装置11を制御する圧延機の板厚制御方法であって、圧延材Wの板厚の偏差を周波数成分に分解し、周波数成分ごとに圧下装置11に対する制御利得値を算出し、算出した制御利得値の逆数を計測で得られたロール隙間ΔSに乗算すると共に乗算して得られた値を圧下装置11を適用するロール隙間ΔS’とし、このロール隙間ΔS’を基に板厚を制御する。 (もっと読む)


【課題】圧延材を連続圧延する状況下における先進率モデルを構築した上で、この先進率モデルを用い、冷間圧延される圧延材の板厚及び/又は張力を確実に制御する。
【解決手段】本発明に係る圧延制御方法は、圧延実施時における先進率の状況を摩擦係数μを用いて表現した先進率モデルを用い、圧延の制御を行う圧延制御方法において、先進率モデルを「摩擦係数μ=」の形に変形することで分数形式とすると共に、この分数形式で表現された先進率モデルの分母に補正関数Cを導入し、補正関数Cが導入された先進率モデルを用い、冷間圧延される圧延材の板厚及び/又は張力を制御する。 (もっと読む)


【課題】積分型最適サーボ系を用いたタンデム圧延機での板厚・張力制御において、両制御での干渉を抑えることのできる最適な重み行列Q,Rを求めて適正な制御を行うことができるようにする。
【解決手段】連続する上流側の圧延スタンド2aと下流側の圧延スタンド2bとを備えたタンデム圧延機1にて圧延材3の圧延を行うに際し、板厚を制御する板厚制御系とスタンド間張力を制御する張力制御系との制御を行うタンデム圧延機1の制御方法において、タンデム圧延機1の状態方程式を設定し、状態方程式に対する積分型最適サーボ系設計を行うために、重み行列Q、Rを有する第1評価関数を設定し、板厚制御系と張力制御系との干渉が最小となるような重み行列Q、Rを求めるための第2評価関数を設定し、第2評価関数で求められた重み行列Q、Rを用いて、板厚制御系と張力制御系との制御を行う。 (もっと読む)


【課題】圧延スタンドと板厚計との間で生じるむだ時間の影響が大である圧延機においても、板厚の制御を確実に行うことができる板厚制御技術を提供する。
【解決手段】本発明に係る板厚制御方法は、圧延スタンドで圧延される圧延材の板厚を予測し、この板厚に基づいて、圧延スタンドの圧下量を操作することで板厚を制御する方法であって、下流側に板厚計7が設けられた圧延スタンドを制御対象の圧延スタンド2とし、板厚計7で計測された出側板厚の実績値に制御対象の圧延スタンド2と板厚計7との間で生じる「むだ時間」の影響を加味すべく、出側板厚の実績値にむだ時間の間に生じる板厚の変化量を加算することで出側板厚の実績値を補正し、補正した出側板厚が目標板厚と一致するように制御対象の圧延スタンド2の圧下量を操作する。 (もっと読む)


11 - 20 / 111