説明

国際特許分類[C21C7/04]の内容

国際特許分類[C21C7/04]の下位に属する分類

国際特許分類[C21C7/04]に分類される特許

51 - 60 / 310


【課題】耐火物の溶損を抑制できると共に、スラグからの水素ピックアップを抑制でき、さらに、溶鋼2中のTiのピックアップも抑えながら所望の鋼種を確実に溶製することができるようにする。
【解決手段】転炉1若しくは電気炉にて精錬された溶鋼2に対して生石灰と合成フラックスとを投入すると共にAlにて脱酸を行うことで取鍋精錬を行うに際し、投入する前記合成フラックスの化学成分を、MgO:12〜17質量%、TiO2:0.1質量%以下(0質量%を除く)、SiO2:4質量%以下(0質量%を除く)、Al23:36〜40質量%、CaO:45〜49質量%であり、残部が不可避不純物とし、生石灰と合成フラックスとの合計投入量を1.5kg/t以上とすると共に、生石灰と合成フラックスとの投入比を質量%で4:1〜1:1との範囲とする。 (もっと読む)


【課題】含クロム溶鉄を対象とした場合の機械撹拌において、撹拌羽根と軸棒が一体となった「回転体」の寿命を顕著に向上させる操業方法を提供する。
【解決手段】精錬容器に収容された含クロム溶鉄を鉛直方向の回転軸を持つ撹拌羽根により機械撹拌する際に、精錬容器は内壁面の水平断面が鉛直方向の容器中心軸の周りに円形であるものを使用し、撹拌羽根は耐火物で被覆された軸棒と一体となって軸棒の中心軸を回転軸として回転するものを使用する精錬工程において、
撹拌羽根の回転軸を容器中心軸と一致させて撹拌を行う「中心撹拌モード」と、撹拌羽根の回転軸を容器中心軸からずらせて撹拌を行う「偏心撹拌モード」とを、撹拌チャージ毎に選択して規則的または不規則的に切り替える含クロム溶鉄の機械撹拌操業法。 (もっと読む)


無方向性電気鋼板を提供する。本発明は、重量%で、Al:1.0〜3.0%、Si:0.5〜2.5%、Mn:0.5〜2.0%、N:0.001〜0.004%、S:0.0005〜0.004%を含有し、残部がFe及びその他の不可避的不純物からなり、Al、Mn、N及びSは{[Al]+[Mn]}≦3.5、0.002≦{[N]+[S]}≦0.006、300≦{([Al]+[Mn])/([N]+[S])}≦1400の組成式を満足するように含有される、磁性に優れた無方向性電気鋼板及びその製造方法を提供する。これにより、Al、Si、Mn、N及びSの添加成分を最適化して粗大な介在物の分布密度を高めることにより結晶の成長性及び磁壁の移動性を向上させて磁性に優れたうえ、硬度が低くて客先の加工性及び生産性にも優れた最高級無方向性電気鋼板を製造することができる。
(もっと読む)


【課題】入熱量が50kJ/mm以上の大入熱溶接を行なった場合であってもHAZ靱性に優れた鋼材の製造方法を提供する。
【解決手段】C:0.02〜0.15%、Si:0.5%以下、Mn:2.5%以下、P:0.03%以下、S:0.02%以下、Al:0.05%以下、Ti:0.005〜0.10%、Zr:0.0005〜0.050%、REM:0.0003〜0.015%、Ca:0.0003〜0.010%、N:0.010%以下、O:0.0005〜0.010%を含有し、残部が鉄および不可避不純物からなる鋼材を製造する方法であって、Zr添加前の溶鋼中の溶存酸素量QOfを0.0005〜0.01質量%の範囲に調整し、その後にZrを添加するにあたり、前記溶存酸素量QOfとZr添加量QZrが下記式(1)を満足する量のZrを添加する。
logQZr+2logQOf≦−7.50 ・・・(1) (もっと読む)


【課題】大入熱溶接を行った場合であっても、HAZ靭性の平均値は勿論のこと、その最小値をも向上させることができ、また、板厚方向の強度特性の均一性に優れた厚鋼板を提供することを課題とする。
【解決手段】所定の化学成分組成を満足し、酸素を除く構成元素が、質量%で、10%<Ti、5%<Al<20%、5%<Ca<40%である酸化物を含有し、且つ、酸化物のうち、円相当径が2μm未満の酸化物が300個/mm以上、円相当径が2μm以上の酸化物が100個/mm以下、存在すると共に、t/4位置の硬度をHvq、t/2位置の硬度をHvhとしたときに、(Hvq−Hvh)/Hvqという式から求められるH値が0.07以下である。 (もっと読む)


【課題】 RH真空脱ガス装置において、アルミニウムの燃焼による溶鋼の昇熱処理を実施した後に溶鋼を脱硫処理するにあたり、従来に比べて格段に効率良く脱硫処理する。
【解決手段】 大気圧下で脱炭精錬を行う脱炭精錬炉から取鍋に溶鋼を出鋼した後、前記取鍋をRH真空脱ガス装置1に搬送し、RH真空脱ガス装置の真空槽内に吸引した溶鋼3にアルミニウムを添加し、次いで減圧下の溶鋼表面に向けて酸素ガスを供給して溶鋼中のアルミニウムを燃焼させて溶鋼を昇熱し、溶鋼昇熱のための酸素ガスの供給終了後、溶鋼中に溶解するアルミニウム濃度を0.005質量%以上確保した状態で2分間以上溶鋼を環流し、その後、真空槽内の溶鋼にスラグ固化材を投入し、次いで、上吹きランス13を介してCaO系脱硫剤を搬送用ガスとともに真空槽内の溶鋼の表面に向けて吹き付け添加して溶鋼を脱硫処理する。 (もっと読む)


【課題】ランタノイド濃度の上限規制がなく、かつノズル閉塞が発生しにくい連続鋳造用鋼およびその製造方法を提供する。
【解決手段】S:0.005質量%以下、O:0.005質量%以下、ランタノイド:0.01質量%以上0.3質量%以下、およびCa:0.0012質量%以上0.0055質量%以下を含有する連続鋳造用鋼において、鋼中の酸硫化物系非金属介在物が、ランタノイド、Ca、SおよびOを合計30mol%以上含有し、同時にP、Al、Mg、SiおよびTiのうち1種類以上を含有し、かつ前記非金属介在物中のランタノイド、CaおよびSの合計モル数に対するCaのモル数の割合が30mol%以上、Sのモル数の割合が30mol%以下であることを特徴とする連続鋳造用鋼。この連続鋳造用鋼の製造工程のうち、溶鋼にランタノイドとCaを添加する溶鋼処理工程において、Caとランタノイドを同時に添加する。 (もっと読む)


【課題】耐酸化性、耐発火性及び生産性を改善した脱硫剤及びその製造方法を提供する。
【解決手段】結晶粒界を有する多数のマグネシウム−アルミニウム合金結晶粒、及び前記マグネシウム−アルミニウム合金結晶粒の内部ではない外部として前記結晶粒界に存在する、マグネシウム及びアルミニウムのうち選択された少なくとも何れか一つとアルカリ金属及びアルカリ土類金属のうち選択された少なくとも何れか一つ間の化合物を含む脱硫剤の構造として、脱硫剤粒子を稠密に形成することでマグネシウムの酸化力を減らし、発火温度を高めて、大気中の酸素と反応せず溶銑内で硫黄と反応して、脱硫効率を高めることができる。 (もっと読む)


【課題】全酸素濃度13ppm以下の清浄鋼の溶製にあたり、真空脱ガス処理時間の延長あるいは温度低下によるトラブルなく、安定して13ppm以下の清浄鋼の製造が可能とする、清浄鋼の溶製方法を提供する。
【解決手段】スラグ精錬処理中に、溶鋼から試料を採取し、スラグ精錬処理終了前に、その試料における全酸素濃度を全酸素迅速分析方法により測定し、その測定結果を基にスラグの塩基度を調整し、真空脱ガス処理前の全酸素濃度を18ppm以下に制御する。 (もっと読む)


【課題】入熱量が50kJ/mm以上の大入熱溶接を行なった場合であってもHAZ靱性に優れた鋼材およびその製造方法を提供する。
【解決手段】C、Si、Mn、P、S、Al、Ti、REM、Ca、Zr、N、Oを含有し、残部が鉄および不可避不純物からなる鋼材であって、(a)前記鋼材は、Zr、REM、およびCaを含有する酸化物を含み、(b)前記鋼材に含まれる全酸化物の組成を測定して単独酸化物に換算したとき、ZrO2:5〜50%、REMの酸化物:5〜50%、CaO:50%以下(0%を含まない)を満足し、且つ、(c)前記鋼材に含まれる全介在物のうち、円相当直径が0.1〜2μmの介在物が観察視野面積1mm2あたり120個以上、3μm超の酸化物が観察視野面積1mm2あたり5.0個以下、5μm超の酸化物が観察視野面積1mm2あたり5.0個以下を満足する鋼材である。 (もっと読む)


51 - 60 / 310