説明

国際特許分類[F02G5/04]の内容

国際特許分類[F02G5/04]に分類される特許

21 - 30 / 573


【課題】膨張機のフリクションの増大を検出できる廃熱利用装置を提供する。
【解決手段】ランキンサイクル(31)と、膨張機(37)により回生された動力をエンジンに伝達する動力伝達機構と、を備える廃熱利用装置において、動力伝達機構は、膨張機(37)からエンジン(2)への動力の伝達を断続する断続手段(35)を備え、膨張機(37)は、膨張機(37)の回転速度を検出する回転速度検出手段(37a)を備え、断続手段(35)を切断したときに、回転速度検出手段(37a)により検出された膨張機(37)の回転速度の上昇に基づいて、膨張機(37)のフリクションの増大を検出するフリクション増大検出手段(71)を備える。 (もっと読む)


【課題】廃熱利用装置の構造を簡素化しつつ、必要に応じ、吸気系流体に対する温度効率の向上と内燃機関の出力向上とを実現可能な廃熱利用装置を提供する。
【解決手段】実施例1の廃熱利用装置は、エンジン5と、エンジン5に対して加圧空気を供給するターボチャージャ7とを有する駆動系1aと、これに用いられるランキンサイクル3aとを備えている。ランキンサイクル3aは、ポンプP1と、加圧空気ボイラ23と、膨張機25と、凝縮器27と、配管28〜32とを有している。また、ランキンサイクル3aには、バイパス路33と、流量調整弁35とが設けられている。この廃熱利用装置では、ポンプP1と膨張機25とが駆動軸37により動力伝達可能に接続されている。そして、ポンプP1は、電磁クラッチ39及びプーリ21を介してエンジン5によって駆動可能に接続されている。 (もっと読む)


【課題】エンジンの廃熱のみでエジェクタを駆動し得る廃熱回収装置を提供する。
【解決手段】エンジン(2)の排気ガスの熱を前記エンジン(2)から排出される冷却水に回収する廃熱回収器(22)を有するランキンサイクル(31)を備える廃熱回収装置において、エンジン(2)から排出される冷却水の温度に基づいて廃熱回収器(22)への冷却水の流量を制御する冷却水流量制御手段(26)と、廃熱回収器から排出される冷却水の温度に基づいて廃熱回収器(22)に流入する排気ガスの流量を制限する排気ガス流量制御手段(7)と、を備える。 (もっと読む)


【課題】電力系統の停電時において、電力の需給バランスを保ちつつ、熱用途に対して熱を供給できる熱電供給システムを提供する。
【解決手段】電力系統1及び発電装置6の少なくとも一方から供給される電力を消費して動作される熱供給関連装置7と、熱供給関連装置7の動作を制御する制御装置C3とを備え、停電時運転制御において、停電時運転制御において、制御装置C3は、熱供給関連装置7の動作を制御して、需要が発生している熱用途8のうちの何れかの熱用途8へ向けた熱の発生及び供給を一部又は全部制限することにより熱供給関連装置7が消費する合計消費電力を発電装置6の発電電力以下とする処理を行うことができ、その場合に、需要が発生している熱用途8のうちの優先順位の低い熱用途8から順に当該熱用途8へ向けた熱の発生及び供給を一部又は全部制限するように熱供給関連装置7の動作を制御する。 (もっと読む)


【課題】コジェネレーションの電流センサ取付状態判定装置において、電線に装着された電流センサの装着位置および装着向きを正確に判定する。
【解決手段】制御装置は、各電流センサが装着されている電線および各電流センサの装着向きの組み合わせに対応して関連付けられて、各スイッチを一つずつオンしたときのスイッチ毎におけるそのオンしたスイッチに対して各電流センサが同期するか否かを示す同期関係および各電流センサに係る電力符号の組み合わせを示す予め作成した対応関係を記憶し、発電装置が発電停止している状態において、各スイッチを一つずつオンしたときに各電流センサによって実際に検出された検出結果に基づいて算出された当該オンしたスイッチ毎における組み合わせを算出し(ステップ116,134)、その算出した組み合わせに相当する各電流センサが装着されている電線および各電流センサの装着向きを対応関係から判定する(ステップ136)。 (もっと読む)


【課題】高性能で搭載性に優れた廃熱利用装置を提供する。
【解決手段】実施例の廃熱利用装置は、車両に搭載されて車両の駆動系1に用いられている。この廃熱利用装置は、ランキンサイクル3を備えている。駆動系1は、エンジン5と、冷却液路7と、排気還流路9と、還流排気冷却器13と、ラジエータ15と、バイパス路17と、サーモスタット19とを有している。冷却液路7では冷却水が循環する。排気還流路9は、エンジン5で生じた排気の一部を還流排気として流通させる。排気還流路9には還流排気冷却器13が設けられている。還流排気冷却器13では、冷却水と還流排気とが熱交換を行い、還流排気が冷却される。また、ランキンサイクル3は冷却水と作動流体とで熱交換を行う冷却液ボイラ33を有している。この冷却液ボイラは、冷却液路7において、還流排気冷却器13に対し、冷却水の流通方向の上流側に配置されている。 (もっと読む)


【課題】ランキンサイクルにおけるエネルギーの回収量の向上を図りつつ、内燃機関の出力の向上を実現し、かつ耐久性が高い廃熱利用装置を提供する。
【解決手段】実施例の廃熱利用装置は、エンジン5と、エンジン5に対して加圧空気を供給するターボチャージャ7と、排気還流路としての配管15、16を有する駆動系1と、これに用いられるランキンサイクル3とを備えている。ランキンサイクル3は、第1ボイラ27と、第2ボイラ28と、第3ボイラ29とを有している。また、ランキンサイクル3には、作動流体に第2ボイラ28を迂回させるバイパス路41と、三方弁43とが設けられている。この廃熱利用装置では、第1〜3ボイラ27〜29によって作動流体を十分に加熱可能である他、バイパス路41に作動流体を流入させることにより、第3ボイラ29に流入する作動流体の温度を低下させることが可能となっている。 (もっと読む)


【課題】水を円滑に流すことのできる熱交換器を提供する。
【解決手段】触媒担体11と、触媒担体11の外周面を囲う触媒ケース12と、触媒ケース12を囲う第1筒体27と、第1筒体27を囲う第2筒体とを備える熱交換器において、第1筒体27の一端が第1底部28で塞がれ、第2筒体31の一端が、水を導入する水導入口32aを有する第2底部32で塞がれ、第1底部28に、触媒担体11に向かって膨出させた膨出部28aが形成されている。
【効果】水の流路面積を大きくすることで、水の流量を増やすことができる。水の流量が多いことで水温の急激な上昇を防ぎ、水が沸騰することを防ぐことができる。水の沸騰を防ぐことで、水を円滑に流し、効率よく熱交換を行うことができる。 (もっと読む)


【課題】高性能な廃熱利用装置を提供する。
【解決手段】実施例の廃熱利用装置は、駆動系1に用いられるランキンサイクル3とモータ33とを備えている。駆動系1は、エンジン5と、エンジン5に対して加圧空気を供給するターボチャージャ7とを有している。ランキンサイクル3は、第1ポンプP1と、第2ポンプP2と、ボイラ21と、膨張機23と、凝縮器25とを有しており、これらの間で作動流体が循環する。第1ポンプP1と第2ポンプP2とはモータ33を挟んで並列に配置されている。第1、2ポンプP1、P2とモータ33とは、それぞれ駆動軸35、37、従動軸39、41及びトルクリミッタ43、45を介して接続されている。トルクリミッタ43、45は、第1ポンプP1又は第2ポンプP2の一方とモータ33との間でトルクが閾値を超えた場合に、モータ33から第1ポンプP1又は第2ポンプP2の一方に対する動力の伝達を切断する。 (もっと読む)


【課題】熱交換器を小型化する。
【解決手段】基体13は、排気ガス導入口37に接続されると共に触媒ケース12が取付けられる第1の部材24と、この第1の部材24の下流側で第1の部材24に接合される第2の部材25とからなると共に、排気ガスの通路を兼ねる中空体である。
【効果】基体13は、第1の部材24と、この第1の部材24に接合される第2の部材25とからなり、排気ガスの通路を兼ねる中空体である。触媒担体11や筒体27,31を支持するための基体13を、排気ガスの通路としても用いる。基体13の周縁に別途排気ガスの通路を設ける必要がなくなり、熱交換器10を小型化することができる。 (もっと読む)


21 - 30 / 573