説明

国際特許分類[H01L27/10]の内容

国際特許分類[H01L27/10]の下位に属する分類

国際特許分類[H01L27/10]に分類される特許

3,721 - 3,730 / 3,785


【課題】 基板面積の増大なしにキャパシタを容量増大できるDRAM又はこれとロジック回路とを混載した半導体装置の製造方法の提供。
【解決手段】 半導体装置の製造方法は次の通りである。基板上面に第1の絶縁膜50で埋められたトレンチを形成。第1の絶縁膜の一部の上部を除去し、トレンチ内及び基板の上面上に第2の絶縁膜を形成し、その上に導体膜を形成。導体膜及び第2の絶縁膜をパターニングし、ゲート電極16a、プレート電極16b及び容量絶縁膜15を形成。ゲート電極及びプレート電極をマスクとし、イオン注入によりメモリトランジスタの低濃度ドレイン拡散層17b及びソース拡散層18を形成。ゲート電極、プレート電極の側面上に、各々第1、第2のサイドウォール25a、25bを形成。尚、プレート電極は基板の上面の一部とトレンチの露出している側面とに亘る領域上に形成され、ソース拡散層は第1、第2のサイドウォールによって覆われる。 (もっと読む)


【課題】更なる微細化を促進できる半導体装置の製造方法を提供すること。
【解決手段】 第1の半導体層1上に、第1半導体層1よりも絶縁化し難い第2半導体層3を形成する工程と、第2半導体層3の上面から第1半導体層1にかけて、第2半導体層3、及び第1半導体層1を露出させる溝7を形成する工程と、溝7から露出する第1半導体層1、及び第2半導体層3を絶縁化し、溝を、絶縁化した第1半導体層9で閉じる工程とを具備する。 (もっと読む)


【課題】半導体装置、例えばSRAMのメモリセルのα線によるソフトエラーを低減する。
【解決手段】基板1aをエッチングして第1配線溝HM1を形成し、第1配線溝HM1下の素子分離2(または素子分離溝2および絶縁層1c)をエッチングして第2配線溝HM2を形成し、第1配線溝HM1および第2配線溝HM2の内壁に沿って局所配線16a,16bを形成し、一方の局所配線16aを下部電極ELとして、その下部電極EL上に容量絶縁膜となる窒化シリコン膜17、さらに上部電極EUを形成することにより、容量CA1の面積を増加させて、メモリセルの記憶ノードに相対的に大きな静電容量を付加する。 (もっと読む)


【課題】 複数のスタックゲート型メモリセルを含むフラッシュメモリにおいて、消去前書込動作を不要とすることにより一括消去動作に要する時間を短縮し、データの書換動作に要する時間も短縮することである。
【解決手段】 消去時に、複数のメモリセルのソース1003からフローティングゲート1005に同時に電子を注入する。それにより、複数のメモリセルのしきい値電圧が上昇する。プログラム時に、選択されたメモリセルのフローティングゲート1005からドレイン1002に電子を放出する。それにより、選択されたメモリセルのしきい値電圧が下降する。 (もっと読む)


【課題】 マスクの枚数を増加することなく、かつ、汚染することなく膜厚の異なるゲート絶縁膜を備えた半導体装置の製造方法を提供する。
【解決手段】 メモリセル領域Mに複数のアシストゲート電極部21が互いに間隔を隔てて形成される。周辺回路領域Pでは平坦な半導体基板1の表面が露出する。次に、所定の条件のもとで、露出している半導体基板1の表面に酸化処理が施される。平坦な周辺回路領域Pに露出する半導体基板1の表面に供給される酸素ラジカルの量と比べると、メモリセル領域Mでは、アシストゲート電極部21によって挟まれていることで、露出している半導体基板1の表面にまで供給される酸素ラジカルの量は少なくなる。その結果、メモリセル領域Mに形成されるフローティングゲート酸化膜8aの膜厚は、周辺回路領域Pに形成されるゲート酸化膜10の膜厚よりも薄くなる。 (もっと読む)


【課題】半導体装置においての電圧源の間にディカップリングキャパシタンスを分配する装置を提供する。
【解決手段】最小化された面積を用いて、半導体メモリ装置の性能を向上さえるために、少なくとも一つの共有キャパシタを有するディカップリングキャパシタが複数の電圧源の間に分配される。このような電圧の高電圧ノードと低電圧ノードのそれぞれは、この電圧源においてのノイズを低下させるために、少なくとも二つの個別ノードを有する。本発明は、半導体装置のビット構造によって複数の共有キャパシタをデータ充電電圧源に結合する。 (もっと読む)


本発明は、回路のための不揮発性メモリ装置を制御するための装置に関するものである。この装置は、基板に結合された微小機械素子を備えている。この微小機械素子は、基板の上に配置された偏向手段に対応して、1つの安定した状態又は複数の安定した状態の間で微小機械素子の移動を制御する。さらに、本発明は、不揮発性メモリ装置を制御するための方法に関するものでもある。この方法は、1つの安定した状態又は複数の安定した状態の間で微小機械素子を移動させるための偏向手段に対して、1つ又は複数の信号を印加する過程を含んでいる。本発明の有効性を高めるために、さらに不揮発性メモリ装置で用いるための短絡回路が設けられている。
(もっと読む)


本発明は、パンチスルーダイオード(S)と直列に接続されたプログラマブル抵抗器(PR)を有する電気デバイス(図6)に関する。本発明はまた、そのような電気デバイスの製造方法に関する。前記方法は、第1の導電型とは反対の第2の導電型の半導体材料からなる第2の層と第3の層との間に配置された、第1の導電型の半導体材料からなる第1の層を含む積層体を設けるステップと、プログラマブルな抵抗率を有する材料の層であって、半導体材料の第2および第3の層のうちの1つと電気的に接触している、プログラマブルな抵抗率を有する材料の層を設けるステップとを含む。
(もっと読む)


記憶層(2)はマイクロチップ(5)の配列に向かい合って配置される。記憶層(2)は電荷を記憶するように設計され絶縁された複数の導電性ドット(3)を備える。各マイクロチップ(5)はソース(8)とドレイン(9)を接続するトランジスタ・チャネル(7)と一体になっている高誘電率素子(6)を備える。チャネル(7)は高誘電率素子(6)に向かい合って配置されたドット(3)の電荷によって発生された電界によって変更されることができるコンダクタンスを有する。本システムは、マイクロチップ(5)に対する記憶層(2)の相対変位のためのアクチュエータを備えることができる。本システムは、1つのドット(3)から他のドット(3)への電荷の変位を引き起こすことができる電極の配列を備えることができる。
(もっと読む)


【課題】
【解決手段】 メモリ(3700)が提供される。メモリは、不揮発性メモリセルアレイ(3720)を含み、各セルは、第1の書き込み電圧パルスを印加されると第1の抵抗状態から第2の抵抗状態へと切り替わるとともに第2の書き込み電圧パルスを印加されると第2の抵抗状態から第1の抵抗状態へと可逆的に切り替わる2端子メモリプラグを含む。 (もっと読む)


3,721 - 3,730 / 3,785