説明

インプリントモールドの製造方法

【課題】 生産性の高いインプリントモールドの製造方法を提供する。
【解決手段】 フォトリソグラフィを用いて凹凸構造が形成されたマスターモールドの一方の面と第1基板の一方の面の間に被転写材料を介在させて、前記マスターモールドの凹凸構造を反転させた第1反転凹凸構造を有する第1転写層を形成する第1転写層形成工程と、前記第1転写層と前記マスターモールドを離し、前記第1転写層を備えた前記第1基板を得る第1剥離工程と、を含み、前記マスターモールドの一方の面の外形で規定されるエリアSmと、前記第1基板の一方の面の外形で規定されるエリアSpを対比した場合、エリアSmがエリアSpを物理的に包含する関係にあるように構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、オリジナルとなるマスターモールドに形成された凹凸構造を少なくとも1回反転させた凹凸構造を備えるインプリントモールドの製造方法に関する。
【背景技術】
【0002】
半導体集積回路は微細化、高集積化が進み、この微細加工を実現するためのパターン形成技術として種々のフォトリソグラフィ技術の開発が検討されている。近年、種々のフォトリソグラフィ技術に替わるパターン形成技術として、インプリント方法に注目が集まっている。このインプリント方法とは、基坂の表面に微細な凹凸構造を形成した型部材(モールド)を用い、凹凸構造を被転写材料に転写することで微細構造を等倍転写するパターン形成技術である。インプリント方法は半導体素子や磁気記録媒体等の製造への応用が期待されている。
【0003】
インプリント方法では、元となるマスターのモールドを準備し、このマスターモールドを使用してマスターモールドと反転した凹凸構造を有するモールド、又はさらに反転させてマスターモールドの複製にあたる凹凸構造を有するモールドを作製することが提案されている(特許文献1)。さらに生産性を向上させるために、これらのモールドを複数のインプリント装置にセットし、使用することが期待される。一般的なインプリント装置では、矩形状の基板や、2インチ〜6インチのウエハを矩形状または円形のサセプタに取り付けられた状態で取り扱われる
【0004】
以下、本明細書ではマスターとなるモールドをマスターモールドといい、またマスターモールドを用いて製造されたモールドを総称してコピーモールドということがある。
【0005】
従来のマスターモールドの製造方法としては、例えば非特許文献1を挙げることができる。非特許文献1では、基板上に電子線感応性のレジストを塗布し、レジストに電子線を照射し、現像を行ってレジストをパターニングし、パターニングされたレジストから露出した基板をドライエッチングして凹部を形成することで、モールドを製造する。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2007−130871号公報
【非特許文献】
【0007】
【非特許文献1】谷口淳著 「はじめてのナノインプリント技術」 P180 2005年 工業調査会刊
【発明の概要】
【発明が解決しようとする課題】
【0008】
半導体素子や磁気記録媒体等の製造に用いるモールドは、パターン寸法がナノオーダーの極微細なものとなる。例えば、ビットパターンドメディアと呼ばれる磁気記録媒体においては、2Tb/inch2以上の記録密度を実現するには、1ビットに対応するパターンが20nm以下であることが要求されている。電子線リソグラフィにより、このような極微細なパターンを形成するには、極小スポットビームを走査する必要があるため、パターン潜像を作成するのに膨大な時間を要する。また、高解像度のレジストを用いると感度が著しく低くなり、やはり膨大な時間を要する。
【0009】
またインプリント方法において生産性を向上させるためには、コピーモールドは一般的なインプリント装置で取り扱えるものであることが望ましいとされている。
【0010】
以上のようにマスターモールドからコピーモールドの製造に至るまでを、高い生産性をもって実現する技術はなく、このような技術の開発が望まれている。
本発明は上記の実情のもとに創案されたものであり、生産性の高いインプリントモールドの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
このような課題を解決するために、本発明のモールドの製造方法は、フォトリソグラフィを用いて凹凸構造が形成されたマスターモールドの一方の面と第1基板の一方の面の間に被転写材料を介在させて、前記マスターモールドの凹凸構造を反転させた第1反転凹凸構造を有する第1転写層を形成する第1転写層形成工程と、前記第1転写層と前記マスターモールドを離し、前記第1転写層を備えた前記第1基板を得る第1剥離工程と、を含み、前記マスターモールドの一方の面の外形で規定されるエリアSmと、前記第1基板の一方の面の外形で規定されるエリアSpを対比した場合、エリアSmがエリアSpを物理的に包含する関係にあるように構成される。
【0012】
また、本発明のインプリントモールドの製造方法の好ましい態様として、前記マスターモールドは、200mmウエハ、またはそれよりも大きいウエハとして構成される。
【0013】
また、本発明のインプリントモールドの製造方法の好ましい態様として、前記マスターモールドは、300mmウエハとして構成される。
【0014】
また、本発明のインプリントモールドの製造方法の好ましい態様として、前記第1基板の外形は、前記マスターモールドの外形とは異なり、かつ矩形状であるように構成される。
【0015】
また、本発明のインプリントモールドの製造方法の好ましい態様として、前記第1基板は、6025基板からなるように構成される。
【0016】
また、本発明のインプリントモールドの製造方法の好ましい態様として、前記マスターモールドは、前記凹凸構造の周囲に凹凸構造ダミーパターンを有するように構成される。
【0017】
また、本発明のインプリントモールドの製造方法の好ましい態様として、前記第1基板は、前記マスターモールドに形成された凹凸構造に対向するように凸部を有するメサ構造の基板として構成され、前記第1転写層形成工程の際、凹凸構造のみに被転写材料を介してマスターモールドに接触するように構成される。
【0018】
また、本発明のインプリントモールドの製造方法の好ましい態様として、前記第1転写層をマスクとして前記第1基板をエッチングして、前記第1基板に凹凸構造の反転形状である第1反転構造を形成する反転構造形成工程をさらに含むように構成される。
【0019】
また、本発明のインプリントモールドの製造方法の好ましい態様として、前記第1基板の一方の面と、前記第1基板の一方の面に対向させた配置した第2基板との間に被転写材料を介在させた状態で被転写材料を硬化させて、第2反転凹凸構造を有する第2転写層を形成する第2転写層形成工程と、前記第2転写層から前記第1基板を離し、前記第2転写層を備えた前記第2基板を得る第2剥離工程と、をさらに含むように構成される。
【0020】
また、本発明のインプリントモールドの製造方法の好ましい態様として、前記第2転写層をマスクとして前記第2基板をエッチングして、前記第2基板に凹凸構造を複製する複製工程と、をさらに含むように構成される。
【0021】
また、本発明のインプリントモールドの製造方法の好ましい態様として、前記マスターモールド及び前記第1基板は、それぞれシリコン単結晶からなり、第1転写層形成工程では、前記マスターモールドにおける劈開が起こる結晶方向に沿った仮想線分と、前記第1基板における劈開が起こる結晶方向に沿った仮想線分とを平面視上一致しないように両者を配置するように構成される。
【0022】
また、本発明のインプリントモールドの製造方法の好ましい態様として、液浸露光技術、多重露光技術、及び極端紫外線露光技術のいずれかにより、前記ウエハに凹凸構造を形成してなるように構成される。
【発明の効果】
【0023】
本発明によれば、フォトリソグラフィを用いて凹凸構造が形成されたマスターモールドの一方の面と第1基板の一方の面の間に被転写材料を介在させて、前記マスターモールドの凹凸構造を反転させた第1反転凹凸構造を有する第1転写層を形成する第1転写層形成工程と、前記第1転写層と前記マスターモールドを離し、前記第1転写層を備えた前記第1基板を得る第1剥離工程と、を含み、前記マスターモールドの一方の面の外形で規定されるエリアSmと、前記第1基板の一方の面の外形で規定されるエリアSpを対比した場合、エリアSmがエリアSpを物理的に包含する関係にあるように構成しているので、生産性の高いインプリントモールドの製造方法を提供することができる。
【図面の簡単な説明】
【0024】
【図1】図1は、マスターモールドの一例を示す斜視図である。
【図2】図2は、図1のマスターモールドをA−A線から見た構成を示す断面図である。
【図3】図3は、マスターモールドと第1基板との関係を模式的に示す斜視図である。
【図4】図4は、マスターモールド一方の面の外形で規定されるエリアSmと、第1基板の一方の面の外形で規定されるエリアSpとの関係において、エリアSmがエリアSpを物理的に包含する関係にあることの説明をするための平面図である。
【図5】図5(A)は、マスターモールドと第1基板との関係を模式的に示す断面図であり、図5(B)は、図4相当の図面である。
【図6】図6(A)〜(C)は、それぞれ、第1モールドを製造する工程の一例を経時的に示す図である。
【図7】図7(A)〜(B)は、それぞれ、第1モールドを製造する工程の一例を経時的に示す図である。
【図8】図8は、第1転写層形成工程の一例を示す図面であって、第1基板22としてメサ構造を備える基板を用いた構成例である。
【図9】図9は、マスターモールドと第1基板との関係を模式的に示す斜視図である。
【図10】図10(A)〜(C)は、それぞれ、第2モールドを製造する工程の一例を経時的に示す図である。
【図11】図11(A)〜(B)は、それぞれ、第2モールドを製造する工程の一例を経時的に示す図である。
【図12】図12は、マスターモールドと第1基板との関係を模式的に示す斜視図である。
【図13】図13は、マスターモールドの一例を示す斜視図である。
【図14】図14は、図13のマスターモールドをB−B線から見た構成を示す断面図である。
【図15】図15(A)は、マスターモールドの斜視図であり、図15(B)は、図15(A)のマスターモールドの一方の面に形成された凹凸構造が、第1基板22の一方の面に対向するようにマスターモールドを配置した後に、図15(A)のC−C線から見た構成を示す断面図である。
【発明を実施するための形態】
【0025】
本発明を実施するための形態を説明する前に、本発明の特徴部分がより明確となるように本発明に至る経緯について、従来技術との関係を示しながら簡単に説明しておく。
【0026】
(本発明に至る経緯)
従来のインプリントモールドのマスターモールドには、6インチ四方の石英基板や、口径(直径)2インチ〜6インチの基板が用いられていた。 これは従来、極微細なパターンを有するインプリントモールドを製造するといえば、常識的に電子線描画装置が用いられたことに起因するものである。また、一般的なインプリント装置で複数のコピーモールドを使用することを想定した場合、マスターモールドは、いわゆるステップアンドリピートのようにコピーモールドとなる基板より小さいものや、いわゆる一括転写のようにコピーモールドとなる基板と同等の大きさのものを用いるのが常識とされていた。本発明者はこのような従来の常識に捉われることなく、マスターモールドの製造において電子線描画以外の最先端のフォトリソグラフィ技術である液浸露光、多重露光、極端紫外線露光等の露光方法を採用可能とする全く新規なインプリントモールドの製造方法を提案した。
【0027】
すなわち、本発明の主題は、電子線リソグラフィを用いず、最先端のフォトリソグラフィ技術に用いられる大口径ウエハでマスターモールドを作製し、このマスターモールドから外形形状及び/又はサイズを変換し、一般的なインプリント装置で取り扱い可能なインプリントモールドを作製することにある。このような経緯を考慮に入れつつ、以下に示す発明の実施形態を理解されたい。
【0028】
(発明を実施するための形態の説明)
以下、図面を参照しながら、本発明を実施するための多数の実施形態について詳細に説明する。なお、本発明は以下に説明する形態に限定されることはなく、技術思想を逸脱しない範囲において種々変形を行なって実施することが可能である。また、添付の図面においては、説明のために上下、左右の縮尺を誇張して図示することがあり、実際のものとは縮尺が異なる場合がある。
【0029】
第1の実施形態
<マスターモールドについての説明>
まず図1〜図2を参照して、マスターモールドについて説明する。図1は、マスターモールドの斜視図である。図2は、図1のマスターモールドをA−A線から見た構成を示す断面図である。
【0030】
図1〜図2に示されるように、マスターモールド10は、例えば半導体ウエハなどのウエハ12の片側である一方の面10aに、フォトリソグラフィ技術を用いて凹凸構造14が形成されている。凹凸構造14は、例えば、後述する被転写材料にその形状を転写するための構造体である。図示の例では凹凸構造14として3本の凹状ラインを備えているものが例示されているが、凹凸構造14の幅、深さ、ピッチ、数、配置する面積などに特に制限はなく、使用する場面に応じて適宜設定すればよい。
【0031】
半導体ウエハなどのウエハ12は、最先端のフォトリソグラフィ技術で常用される大口径ウエハであり、例えば、200mmウエハ、またはそれよりも大きいウエハとすることが好ましい。200mmウエハよりも大きいウエハとしては、例えば、300mmウエハを挙げることができる。300mmウエハの使用は、汎用性が高く特に適用される装置および設備が充実しているという観点から特に好ましい。本発明でいう200mmウエハとは、直径の規格値が200mmのウエハである。直径の規格値が200mmであるとは、厳密な意味での200mmでなく、200mmを中心として±1mmの範囲を許容するものである。同様に、300mmウエハとは、直径の規格値が300mmのウエハである。また、本発明でいう直径の規格値が300mmであるとは、厳密な意味での300mmでなく、300mmを中心として±1mmの範囲を許容するものである。
【0032】
ウエハ12の厚さに制限はないが、強度や取り扱い性を考慮して300μm〜1mmの範囲とするのが好ましい。ウエハ12に用いる材料は、シリコンやガリウム砒素、窒化ガリウム等の半導体、石英、これらの積層体を用いることができる。凹凸構造14をドライエッチングにより行う場合には、微細加工が容易なシリコンを用いることが好ましい。なお、ウエハ12は、半導体基板にガラス等からなる支持基板が接合されたものであってもよい。なお、ウエハとは、円盤状の板体であって、例えば、組成管理された素材で作られた円柱状のインゴットを薄くスライスすることによって得ることができる。ウエハの周縁付近の側面にはノッチが形成されていてもよい。
【0033】
このようなウエハ12をベースとして製造されるマスターモールド10は、液浸露光、多重露光、極端紫外線露光のいずれかを用いて製造されることが好ましい。なお、これらの露光技術自体は既に知られているものであり、ここではこれらの技術の説明を以下に簡潔に行うことに留めることとする。
【0034】
液浸露光とは、半導体露光装置のレンズと半導体ウエハなどのウエハとの間を、空気よりも屈折率の高い媒質で満たすことにより、液体自体をレンズのように使い、より高い精度のパターニングを行う技術である。液体の取り扱い性を考慮すると、レンズとウエハの間を水で満たして露光するのが好ましい。
【0035】
多重露光とは、所望のパターンを得るために、パターンを複数枚のフォトマスクに分割し、第1回目露光用マスク、…、第N回目露光用マスクのN枚のマスクを用い、ウエハ上で1つに合成する技術である。なお、Nは2以上の整数である。
【0036】
極端紫外線露光とは、波長100nm以下のEUV(Extreme Ultra Violet)光を使う縮小投影リソグラフィである。極端紫外線露光では、当該波長域で透明な物質が存在しないため反射光学系が用いられる。用いる波長は、所望のパターン寸法や光学系に用いる材料により適宜選択すればよいが、多層膜反射鏡として安定かつ材料の取り扱い性に優れるMo−Si多層膜を用いるには波長13nm〜14nmの範囲のEUV光を用いるのが好ましい。
【0037】
上記のいずれかの露光方法により、半導体ウエハなどのウエハの上に形成したレジストに潜像を形成し、現像を行ってレジストをパターニングし、パターニングされたレジストをマスクとして半導体ウエハを選択的にエッチングする。ウエハがシリコンである場合、フッ素系のガスを用いたドライエッチングを行うとよい。マスターモールドの製造に電子線リソグラフィを用いないため、従来に比べて製造に要する時間を短縮することができる。
レジストとしては、ネガ型、ポジ型のいずれであってよく、また、これらの化学増幅型であってもよい。
【0038】
また、マスターモールド10は、凹凸構造14の領域全体が非凹凸構造の領域に対して凸構造となっている、いわゆるメサ構造としてもよい。メサ構造の段差の数も1段に限らず、複数段としてもよい。メサ構造を有するマスターモールド10については、後に図5(A)、(B)を参照しつつ説明する。
【0039】
<インプリントモールドの製造方法>
次に図3〜図5を参照して、上記のマスターモールド10を用いたインプリントモールドの製造方法について説明する。
【0040】
本実施形態に係るインプリントモールドの製造方法の基本的概念について、図3を用いて説明する。図3は、マスターモールド10と第1基板22との関係を模式的に示す斜視図であり、図示のごとく、マスターモールド10の一方の面10aに形成された凹凸構造14が、第1基板22の一方の面22aに対向するように、マスターモールド10が配置されている。
【0041】
本発明では、マスターモールド10を用いて、マスターモールド10よりも寸法が小さい第1基板22上に凹凸構造のパターンを形成することを特徴としている。すなわち、マスターモールド10の一方の面10aの外形で規定されるエリアSmと、第1基板22の一方の面22aの外形で規定されるエリアSpを対比した場合、エリアSmがエリアSpを物理的に包含する関係にあることを特徴としている。
【0042】
「エリアSmがエリアSpを物理的に包含する関係にある」とは、図4に示されるように、マスターモールド10の一方の面10aの外形で規定されるエリアSmと第1基板22の一方の面22aの外形で規定されるエリアSpを重ね合わせると、エリアSpがエリアSmに完全に覆われる関係(包摂される関係)にあることを言う。
【0043】
なお、図5(A)、(B)に示されるごとく、マスターモールド10に形成された凹凸構造14の領域全体が凸構造13となっている、いわゆるメサ構造である場合、マスターモールド10の一方の面10aの外形で規定されるエリアSmは、メサ構造である凸構造13の外形(図示例の場合、寸法βの四角)で規定されるエリアではなく、マスターモールド10の最外部の外形(図示例の場合、寸法αの円)で規定されるエリアである。メサ構造が複数段の場合も同様に考えることができ、最外部の外形(図示例の場合、寸法αの円)で規定されるエリアである。なお、図5(A)は、マスターモールド10と第1基板22との関係を模式的に示す断面図であり、図5(B)は、図4相当の図面であり、マスターモールド10一方の面10aの外形(図示例の場合、寸法αの円)で規定されるエリアSmと、第1基板22の一方の面22aの外形(図示例の場合、寸法γの四角)で規定されるエリアSpとの関係において、エリアSmがエリアSpを物理的に包含する関係にあることを説明する平面図である。
【0044】
マスターモールド10の一方の面10aの外形と第1基板22の一方の面22aの外形とは相似形であってもよいし(例えば、○形状と○形状)、全く異なる外形であってもよい(例えば、○形状と□形状)。特に好ましくは、図示のごとく、ウエハであるマスターモールド10の一方の面10aの外形が○形状であり、第1基板22の一方の面22aの外形が□形状である。つまり、ウエハであるマスターモールド10の一方の面10aに形成された凹凸構造14が、矩形状の第1基板22の一方の面22aに転写される。好適な本実施形態では、電子線リソグラフィではないフォトリソグラフィで常用される大口径のウエハに形成した凹凸構造を、一般にインプリント装置で用いられる矩形状の基板に転写し、扱う基板の寸法および外形を変換している。
【0045】
以下、図6および図7を参照しながらウエハに形成した凹凸構造14を、インプリント装置で用いられる矩形状の基板に転写する操作を説明する。図6および図7は、それぞれ、第1モールドを製造する工程を示す図である。本実施形態における第1モールドの製造方法は、本発明のインプリントモールドの製造方法に相当する。
【0046】
(第1基板準備工程)
まず第1基板22を準備する。第1基板22は、上述したごとくマスターモールド10との関係で寸法が小さく、上記のごとくマスターモールド10の所定のエリアSmが第1基板22の所定のエリアSpを物理的に包含する関係にある。また、図示例では外形も異なる。第1基板22の外形に特に制限はないが、図示のごとく矩形状であることが最も好ましい。その理由は、使用時に第1基板22と他の基板との合せ精度確保のために、第1基板22の側壁22bを加圧して保持することができるからである。なお、矩形状とは、四辺が実質的に直線から構成された図形であり、頂点がラウンド形状になっているもの等も包含するものである。好適な外形を備える第1基板22としては、いわゆる「6025基板」を挙げることができる。「6025基板」とは、6インチ角で厚さが0.25インチの規格に沿って作製された基板である。
【0047】
第1基板22にマスターモールド10の凹凸構造14を転写してパターンを形成するに際し、光インプリント、熱インプリントのいずれかで行うことができる。光インプリントの場合、マスターモールドとして汎用の半導体ウエハを用いる場合には紫外線を透過できないので、第1基板22として、例えば、石英ガラス、珪酸系ガラス、フッ化カルシウム、フッ化マグネシウム、アクリルガラス等のガラスや、ポリカーボネート、ポリプロピレン、ポリエチレン等の樹脂等、あるいは、これらの任意の積層材からなる透明基板を用いるとよい。
【0048】
熱インプリントを行なう場合には、第1基板22は必ずしも透明基板である必要はなく、例えばニッケル、チタン、アルミニウムなどの金属、シリコンや窒化ガリウム等の半導体などを用いてもよい。
【0049】
第1基板22の一方の面22a上にハードマスクを設けておいてもよい。ハードマスクとしては、Cr,Ti,Ta,Alなどの金属材料、シリコン酸化物等を用いることができる。ハードマスクは蒸着法、スパッタ法、CVD法などを用いて形成することができる。
【0050】
また、第1基板22は、マスターモールド10に形成された凹凸構造14の領域に対向する部分のみが凸構造となっている、いわゆるメサ構造としてもよい。メサ構造の段差の数も1段に限らず、複数段としてもよい。メサ構造を有する第1基板22については、後に図8を参照しつつ説明する。
【0051】
第1基板22の厚みは特に制限はないが、基板の強度、取り扱い適性等を考慮して設定することができ、例えば、300μm〜10mm程度の範囲で適宜設定することができる。なお、以下、光インプリントによるケースについて説明するが、熱インプリントを採用してもよい。
【0052】
(被転写材料配設工程:図6(A)参照)
図6(A)に示されるように、第1基板22の一方の面22a上に被転写材料100を配設する。被転写材料100は、例えば、紫外線硬化性樹脂から構成することができる。図6(A)では、被転写材料100をインクジェット法により配設した例を示しているが、スピンコート法等の周知の塗布法により被転写材料を配設してもよい。上記の例に限らず、被転写材料は、第1基板22側ではなくマスターモールド10側に配設してもよい。
【0053】
(第1転写層形成工程:図6(B)参照)
次いで、図6(B)に示されるように、第1基板22の一方の面22a上の被転写材料100に、マスターモールド10の一方の面10aを接触させる。被転写材料100の粘度によっては毛管現象によってマスターモールド10の凹凸構造14内に充填される。また必要に応じて、マスターモールド10又は第1基板22を対向する他方の面側に押圧して、凹凸構造内への被転写材料の充填をアシストするようにしてもよい。
【0054】
マスターモールド10と第1基板22の間に被転写材料100を介在させた状態で、第1基板22側から紫外線を照射して被転写材料を硬化させ、転写された第1凹凸構造パターン19を有する第1転写層110を形成する。
【0055】
前述したように、第1基板22は、その一方の面22a上に、いわゆるメサ構造である凸構造27を備える構成としてもよい。その構成例が図8に示される。凸構造27は、マスターモールド10の凹凸構造14に対向するように形成される。それゆえ、転写操作の際、第1基板22は、転写されるべき構造である凹凸構造14のみに被転写材料100を介してマスターモールド10に接触することができる。このように第1基板22がいわゆるメサ構造である凸構造を有する場合、第1基板22の一方の面22aの外形で規定されるエリアSpは、メサ構造である凸構造の外形で規定されるエリアではなく、第1基板22の最外部の外形((図示例の場合、寸法γの四角)で規定されるエリアである。メサ構造が複数段の場合も同様である。
【0056】
(第1剥離工程:図6(C)参照)
次いで、被転写材料を硬化させた後、マスターモールド10と第1転写層110を引き離す。引き離し操作の際、マスターモールド10側および第1基板22側のいずれか一方、あるいは両方から引き離しのための力を加えてもよい。
【0057】
マスターモールド10側に引き離しの力を加える場合、第1転写層110に均一に力を加えてもよいが、より引き離しを容易にするために第1転写層110に不均一に力を加えるのが好ましい。第1転写層110に不均一に力を加えることで、剥離の開始点を作ることができ、それを起点としてスムーズな剥離が行えるからである。以下、第1転写層110に不均一に力を加える好適な方法を幾つか例示する。
【0058】
(a)引き離し力を加える力点の位置を調整する
平面視において第1転写層110の最外周からの距離が異なる位置に複数の力点を設定し、当該複数の力点に一律に引き離しのための力を加えることで、第1転写層110の最外周から最も離れた力点と第1転写層110の平面視の重心とを結ぶ線分上に引き離しの起点が発生する。この引き離しの起点から徐々に剥離が進行する。
【0059】
(b)マスターモールドと第1基板の合せ位置を調整する
図6(B)〜図6(C)ではマスターモールド10の中央部に凹凸構造14が形成され、この凹凸構造14が第1基板22の中央部に転写される配置関係を示している。これに対し、例えば、凹凸構造14をマスターモールド10の中央部から少し離れた位置に配置し、この中央部からずれた凹凸構造14が第1基板の中央部にくるように第1基板22を配置することを想定する。マスターモールド10の外周部に複数の力点を設定すると、第1転写層110の最外周から最も離れた力点と第1転写層110の平面視の重心とを結ぶ線分上に引き離しの起点が発生する。この引き離しの起点から徐々に剥離が進行する。
【0060】
(残膜除去工程:図7(A)参照)
マスターモールド10と第1転写層110を引き離した後、第1転写層110の残膜部分をエッチング除去する。これにより、図7(A)に示されるようにマスク120が第1基板22の一方の面22a上に形成される。
【0061】
(反転構造形成工程:図7(B)参照)
マスク120をエッチングマスクとして、第1基板22の一方の面22a上をエッチングする。所定のエッチングが終了した後、マスク120を除去することで、図7(B)に示されるごとく、第1基板22に反転凹凸構造24が形成された第1モールド20が作製される。
【0062】
第1モールドの反転凹凸構造24(第1反転凹凸構造24)と、マスターモールド10の凹凸構造14は、凹と凸、凸と凹がそれぞれ反転した関係にある。
【0063】
なお、用いる被転写材料によっては、上記の残膜除去工程、反転構造形成工程は、必須の工程ではない。被転写材料として主鎖がケイ素原子のみからなる高分子、溶媒、高分子と溶媒を相溶させるシリコーン化合物、高分子化合物のSi−Si結合間に効率良く酸素を挿入できる増感剤、金属などの高度調整材料を含むものを用い、第1転写層110と第1基板22を合せて第1モールドとすることも可能である。
【0064】
上述したように一連の製造工程において、マスターモールド10の製造に電子線リソグラフィを用いないため、一連の工程作業時間を大幅に減らすことができる。また、マスターモールド10を用いて製造された第1モールドは、一般的なインプリント装置で使用可能であり、インプリントの生産性の向上が期待できる。また、マスターモールド10のベースとなるウエハを切断せずに、そのまま用いるのでウエハが持つ平坦性を維持した状態で第1転写工程を行うことができ、より精度の高いパターン形成を行うことができる。
【0065】
第2の実施形態
次に図9を参照して、上記のマスターモールド10を用いた第2のインプリントモールドの製造方法について説明する。図9は、第2の実施形態におけるマスターモールド10と第1基板23との関係を模式的に示す斜視図である。
【0066】
本実施形態では、上記の第1実施例の場合と同様に、マスターモールド10を用いて、マスターモールド10よりも寸法が小さい第1基板23上に凹凸構造のパターンを形成することを特徴としている。すなわち、マスターモールド10の一方の面10aの外形で規定されるエリアSmと、第1基板23の一方の面23aの外形で規定されるエリアSpを対比した場合、エリアSmがエリアSpを物理的に包含する関係にあることを特徴としている。
【0067】
第2の実施形態が前記の第1の実施形態と異なるのは、第1基板23の形状が矩形ではなく、円盤形状である点にある。すなわち、本実施形態では、マスターモールド10を用いて、マスターモールド10の凹凸構造14を、より口径の小さい第1基板23に転写している。つまり、電子線リソグラフィではないフォトリソグラフィで常用される大口径の半導体ウエハなどのウエハに形成した凹凸構造14を、一般にインプリント装置で用いられる口径サイズの円盤状の基板に転写し、扱う基板の大きさを変換している。
【0068】
なお、本実施形態に係るインプリントモールドの製造方法は、前述した第1の実施形態に係るインプリントモールドの製造方法と略同様であるため、ここでの説明を省略する。
【0069】
第3の実施形態
次に図10〜図11を参照して、上記の第1実施形態で作製された第1モールド20を用いたインプリントモールドの製造方法について説明する。本実施形態においては、上記の第1の実施形態において第1モールド20となる第1基板に形成された反転凹凸構造をさらに反転させ(第2反転凹凸構造)、元の凹凸構造(マスターモールド10の凹凸構造)に対応するパターンを第2基板上に形成し、コピーモールドを作製している。なお、第1モールドの形成に至るまでの製造方法については、上記の第1の実施形態を参照されたい。第3の実施形態においては、前述した第1モールド20の形成に至るまでの製造方法も含まれる。
【0070】
<インプリントモールドの製造方法>
(第2基板準備工程:図10(A)参照)
まず第2基板32を準備する。第2基板32の外形は、第1モールド20のベースとなる第1基板22の外形と一致していてもよいし、異なるものであってもよい。材料、厚さなどは第1基板22とほぼ同様のものとすることができる。
【0071】
また、第2基板32の片側にハードマスクを設けておいてもよい。ハードマスクとしては、Cr,Ti,Ta,Alなどの金属材料、シリコン酸化物等を用いることができる。ハードマスクは蒸着法、スパッタ法、CVD法などを用いて形成することができる。
【0072】
また、第2基板32は、第1基板22に形成された凹凸構造の領域に対向する部分のみが凸構造となっている、いわゆるメサ構造としてもよい。メサ構造の段差の数も1段に限らず、複数段としてもよい。
【0073】
(被転写材料配設工程:図10(A)参照)
図10(A)に示されるように第2基板32の一方の面32a上に被転写材料200が配設される。被転写材料200は、例えば、紫外線硬化性樹脂から構成することができる。図10(A)では、被転写材料100をインクジェット法により配設した例を示しているが、スピンコート法等の周知の塗布法により被転写材料を配設してもよい。上記の例に限らず、被転写材料は、第2基板32側ではなく第1モールド20側に配設してもよい。
【0074】
(第2転写層形成工程:図10(B)参照)
次いで、図10(B)に示されるように、第2基板32上の被転写材料200に第1モールド20を接触させる。被転写材料200の粘度によっては毛管現象によって第1モールド20の凹凸構造内に充填される。また必要に応じて第1モールド20又は第2基板32を対向する他方の面側に押圧して、凹凸構造内への被転写材料の充填をアシストするようにしてもよい。
【0075】
第1モールド20と第2基板32の間に被転写材料200を介在させた状態で、第1モールド20側又は第2基板32側から紫外線を照射して被転写材料を硬化させて第2凹凸構造パターン29を有する第2転写層210を形成する。
【0076】
(第2剥離工程:図10(C)参照)
被転写材料を硬化させた後、図10(C)に示されるように第1モールド20と第2転写層210を引き離す。引き離し操作の際、第1モールド20側および第2基板32側のいずれか一方、あるいは両方から引き離しのための力を加えてもよい。
【0077】
第1モールド20側に引き離しの力を加える場合、第2転写層210に均一に力を加えてもよいが、より引き離しを容易にするために第2転写層210に不均一に力を加えるのが好ましい。
【0078】
(残膜除去工程:図11(A)参照)
第1モールド20と第2転写層210を引き離した後、第2転写層210の残膜部分をエッチング除去する。これにより、図11(A)に示されるようにマスク220が第2基板32上に形成される。
【0079】
(複製工程:図11(B)参照)
マスク220をエッチングマスクとして、第2基板32をエッチングする。所定のエッチングが終了した後、マスク220を除去することで、図11(B)に示されるように第2基板32に凹凸構造34が形成されてなる第2モールド30が作製される。
【0080】
第2モールドの凹凸構造34と第1モールド20の反転構造24は、凹と凸が反転した関係にある。従って、第2モールドの凹凸構造34とマスターモールド10の凹凸構造14は、凹と凹、凸と凸がそれぞれ対応した関係にある。
【0081】
なお、用いる被転写材料によっては、上記の残膜除去工程、反転構造形成工程は、必須の工程ではない。被転写材料として主鎖がケイ素原子のみからなる高分子、溶媒、高分子と溶媒を相溶させるシリコーン化合物、高分子化合物のSi−Si結合間に効率良く酸素を挿入できる増感剤、金属などの高度調整材料を含むものを用い、第2転写層210と第2基板32を合せて第2モールドとすることも可能である。
【0082】
上述したように一連の製造工程において、マスターモールド10の製造に電子線リソグラフィを用いないため、一連の工程作業時間を大幅に減らすことができる。また、製造された第1モールドは一般的なインプリント装置で使用可能であり、インプリントの生産性向上が期待できる。また、マスターモールド10となるウエハを切断せずに、そのまま用いるのでウエハが持つ平坦性を維持した状態で第1転写工程を行うことができ、より精度の高いパターン形成を行うことができる。
【0083】
第4の実施形態
次に図12を参照して、インプリントモールドの製造方法の別の実施形態について説明する。本実施形態に係るインプリントモールドの製造方法の基本的概念について、図12を用いて説明する。
【0084】
図12に示される実施形態において、マスターモールド10と第1基板25は、ともにシリコン単結晶基板から構成されている。そして、マスターモールド10の一方の面10aに形成された凹凸構造14が、第1基板25の一方の面25aに対向するように、マスターモールド10が配置される。なお、図に示される実線矢印は劈開が起こる結晶方向を示している。
【0085】
また、第1基板25の上に描かれた図の点線Lは、マスターモールド10の基板の劈開が起こる結晶方向に沿った仮想線分を、第1基板25に投影して示したものである。なお、劈開が起こる結晶方向に沿った仮想線分とは、基板の主面と劈開面が交わって形成される線分のことをいう。
【0086】
本実施形態では、マスターモールド10と第1基板25が互いに口径が異なる半導体ウエハであり、第1基板25は、上述したごとくマスターモールド10との関係で寸法が小さく、上記のごとくマスターモールド10の所定のエリアSmが第1基板25の所定のエリアSpを物理的に包含する関係にある。さらに、本実施形態では、互いに口径が異なる半導体ウエハの各主面の結晶面方位に対する劈開が起こる結晶方向に沿った仮想線分を平面視上互いに異ならせた状態とすることが特徴である。劈開が起こる結晶方向に沿った仮想線分を平面視上互いに異ならせることで、第1転写層形成工程における押付けや、第1剥離工程における引き離し力を加えた場合に、マスターモールド10及び/又は第1基板25が破損することを防ぐことができる。
【0087】
例えば、各主面が結晶面方位{100}のシリコン単結晶である場合には、結晶方向<110>に沿った仮想線分を互いに異ならせて対向させるとよい。結晶面方位は{100}のように表し、これは(100)に代表され、結晶構造の対称性により(100)と等価となる面方位を表す。結晶方向は<100>の様に表し、これは[100]に代表され、結晶構造の対称性により[100]と等価となる方向を示すものとする。
【0088】
第5の実施形態
次に図13〜図15を参照して、第5の実施形態に係るインプリントモールドの製造方法について説明する。
【0089】
本実施形態に係るインプリントモールドの製造方法では、上述してきたエリアSmがエリアSpを物理的に包含する関係にある特徴に加えて、マスターモールド10の凹凸構造14の周囲に、被転写材料がマスターモールド10の表面に沿って展開しやすい領域が設定されているという特徴が付加されている。この付加された特徴をメインに以下説明する。
【0090】
<マスターモールド>
まず図13〜図15を参照して、マスターモールドについて説明する。図13はマスターモールドの斜視図である。図14は、図13のマスターモールドをB−B線から見た構成を示す断面図である。マスターモールド10は、ウエハ12の片側一方の面10aに、フォトリソグラフィ技術を用いて凹凸構造14が形成されている。
【0091】
凹凸構造14は、被転写材料にその形状を転写するための構造である。ウエハ12には、凹凸構造14を内側に含むような第1領域16と、第1領域16の周囲に存在する第2領域18が設定されている。第2領域18は、第1領域16に比べて被転写材料がマスターモールド10の表面に沿って展開しやすい領域である。
【0092】
図14に示されるように、第1領域16と第2領域18は互いに離隔して配置されてもよい。また、第1領域16と第2領域18が隣接していてもよい。このような双方の配置は、マスターモールド10に対向させる第1基板22の外形や口径に応じて適宜設定すればよい。
【0093】
第2領域18は、表面の濡れ性が第1領域16よりも良好であるものとするとよい。第2領域18の表面が親水化処理されているものとしてもよい。また、ウエハ12の表面のうち少なくとも第2領域18に光触媒層を備え、光触媒層に光照射を行って水接触角を低下させておいてもよい。また、ウエハ12の表面に表面親水化処理などを施してもよい。
【0094】
また、第1領域16の表面が選択的に疎水化処理されているものとしてもよい。例えば、第1領域16の表面に選択的に離型剤を形成しておくことを挙げることができる。
【0095】
また、第2領域18は、流路を備えるものとしてもよい。流路による毛管現象を利用して、被転写材料がマスターモールド10の表面に沿って展開しやすいものとすることができる。例えば、ダミーパターンのように被転写材料を内部に取り込むことができる構造も、本発明にいう流路に含むものとする。このようなダミーパターンについて図15(A)、(B)を参照しつつ説明を加える。図15(A)は、マスターモールド10の斜視図であり、図15(B)は、図15(A)のマスターモールドの一方の面10aに形成された凹凸構造14が、第1基板22の一方の面22aに対向するようにマスターモールド10を配置した後に、図15(A)のC−C線から見た構成を示す断面図である。
【0096】
図15(A),および(B)に示されるように、マスターモールド10の一方の面10aに形成された転写されるべき構造である凹凸構造14の周囲に、凹凸構造14と同様なパターンからなる凹凸構造ダミーパターン14´を複数形成しておくことにより、エッチング精度を向上させることができるとともに、被転写材料を内部に取り込む流路としても活用することが可能となる。図示例では凹凸構造14の周囲に、凹凸構造ダミーパターン14´を4個略均等に配置した構造が示されているが、凹凸構造ダミーパターン14´の個数や配置形態については図面に記載されたものに限定されるものではなく、種々の個数の選択や、種々の配置形態を採択することができる。凹凸構造14と凹凸構造ダミーパターン14´とのパターン形状は同一であってもよいし、異なっていてもよい。
【0097】
なお、図15(B)に示される第1基板22は、好ましい態様として、マスターモールド10に形成された凹凸構造14に対向するように凸部を有するメサ構造の基板として構成されている。そのため、転写操作の際、第1基板22は、転写されるべき構造である凹凸構造14のみに被転写材料100を介してマスターモールド10に接触することができる。
【0098】
以上、説明してきたように、本発明のインプリントモールドの製造方法は、フォトリソグラフィを用いてウエハの一方の面に凹凸構造が形成されたマスターモールドと、該凹凸構造が形成されたマスターモールドの一方の面と第1基板の一方の面を対向させつつ対向面の間に被転写材料を介在させた状態で、被転写材料を硬化させて、前記マスターモールドの凹凸構造を反転させた第1反転凹凸構造を有する第1転写層を形成する第1転写層形成工程と、前記第1転写層から前記マスターモールドを引き離し、前記第1転写層を備えた前記第1基板を得る第1剥離工程と、を含み、前記マスターモールドの一方の面の外形で規定されるエリアSmと、前記第1基板の一方の面の外形で規定されるエリアSpを対比した場合、エリアSmがエリアSpを物理的に包含する関係にあるように構成されているので、生産性の高いインプリントモールドの製造方法を提供できる。すなわち、一連のインプリントモールドの製造工程において、マスターモールドの製造に電子線リソグラフィを用いないため、一連の工程作業時間を大幅に減らすことができる。また、製造されたインプリントモールドは一般的なインプリント装置で使用可能であり、インプリントの生産性向上が期待できる。また、マスターモールドとなるウエハを切断せずに、そのまま用いるのでウエハが持つ平坦性を維持した状態で第1転写工程を行うことができ、より精度の高いパターン形成を行うことができる。
【産業上の利用可能性】
【0099】
本発明は、種々の微細加工を要する技術分野に利用可能である。
【符号の説明】
【0100】
10…マスターモールド
12…ウエハ
14…凹凸構造
16…第1領域
18…第2領域
19…第1凹凸構造パターン
20…第1モールド
22,25,26,27…第1基板
24…反転凹凸構造
29…第2凹凸構造パターン
30…第2モールド
32…第2基板
34…凹凸構造
100,200…被転写材料
110…第1転写層
210…第2転写層

【特許請求の範囲】
【請求項1】
フォトリソグラフィを用いて凹凸構造が形成されたマスターモールドの一方の面と第1基板の一方の面の間に被転写材料を介在させて、前記マスターモールドの凹凸構造を反転させた第1反転凹凸構造を有する第1転写層を形成する第1転写層形成工程と、
前記第1転写層と前記マスターモールドを離し、前記第1転写層を備えた前記第1基板を得る第1剥離工程と、を含み、
前記マスターモールドの一方の面の外形で規定されるエリアSmと、前記第1基板の一方の面の外形で規定されるエリアSpを対比した場合、エリアSmがエリアSpを物理的に包含する関係にあることを特徴とするインプリントモールドの製造方法。
【請求項2】
前記マスターモールドは、200mmウエハ、またはそれよりも大きいウエハである請求項1に記載のインプリントモールドの製造方法。
【請求項3】
前記マスターモールドは、300mmウエハである請求項1または請求項2に記載のインプリントモールドの製造方法。
【請求項4】
前記第1基板の外形は、前記マスターモールドの外形とは異なり、かつ矩形状である請求項1ないし請求項3のいずれかに記載のインプリントモールドの製造方法。
【請求項5】
前記第1基板は、6025基板である、請求項1ないし請求項4のいずれかに記載のインプリントモールドの製造方法。
【請求項6】
前記マスターモールドは、前記凹凸構造の周囲に凹凸構造ダミーパターンを有する請求項1ないし請求項5のいずれかに記載のインプリントモールドの製造方法。
【請求項7】
前記第1基板は、前記マスターモールドに形成された凹凸構造に対向するように凸部を有するメサ構造の基板として構成され、前記第1転写層形成工程の際、凹凸構造のみに被転写材料を介してマスターモールドに接触するように構成される請求項6に記載のインプリントモールドの製造方法。
【請求項8】
前記第1転写層をマスクとして前記第1基板をエッチングして、前記第1基板に凹凸構造の反転形状である第1反転構造を形成する反転構造形成工程をさらに含む請求項1ないし請求項7のいずれかに記載のインプリントモールドの製造方法。
【請求項9】
前記第1基板の一方の面と、前記第1基板の一方の面に対向させた配置した第2基板との間に被転写材料を介在させた状態で被転写材料を硬化させて、第2反転凹凸構造を有する第2転写層を形成する第2転写層形成工程と、
前記第2転写層から前記第1基板を離し、前記第2転写層を備えた前記第2基板を得る第2剥離工程と、をさらに含む請求項1ないし請求項7のいずれかに記載のインプリントモールドの製造方法。
【請求項10】
前記第2転写層をマスクとして前記第2基板をエッチングして、前記第2基板に凹凸構造を複製する複製工程と、をさらに含むことを請求項9に記載のインプリントモールドの製造方法。
【請求項11】
前記マスターモールド及び前記第1基板は、それぞれシリコン単結晶からなり、
第1転写層形成工程では、前記マスターモールドにおける劈開が起こる結晶方向に沿った仮想線分と、前記第1基板における劈開が起こる結晶方向に沿った仮想線分とを平面視上一致しないように両者を配置する請求項1ないし請求項10のいずれかに記載のインプリントモールドの製造方法。
【請求項12】
液浸露光技術、多重露光技術、及び極端紫外線露光技術のいずれかにより、前記ウエハに凹凸構造を形成してなる請求項1ないし請求項11のいずれかに記載のインプリントモールドの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2013−21153(P2013−21153A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2011−153708(P2011−153708)
【出願日】平成23年7月12日(2011.7.12)
【出願人】(000002897)大日本印刷株式会社 (14,506)
【Fターム(参考)】