説明

セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板、液晶表示装置及び光学補償フィルム

【課題】高い延伸倍率を要さず、また、セルロースアシレートの結晶化を促進させることを要さずに、レターデーションが調整されたセルロースアシレートフィルムの新規な製造方法の提供。
【解決手段】セルロースアシレート、芳香族基含有オリゴマー及び溶媒を含有する液を支持体上に流延してウェブを形成する流延工程と、残留溶媒量C1が20〜300質量%のウェブを延伸して、少なくとも芳香族基含有オリゴマーの分子を延伸方向に配向させる延伸工程と、残留溶媒量C2(但し、C2≦C1)が10〜120質量%の延伸後のウェブを、膜面温度40〜200℃で熱処理して、少なくとも芳香族含有オリゴマーの分子の配向度を上昇させる熱処理工程と、を少なくとも含むことを特徴とするセルロースアシレートフィルムの製造方法である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、セルロースアシレートフィルムの製造方法、及び当該方法により製造されるセルロースアシレートフィルムに関する。本発明の方法により製造されるセルロースアシレートフィルムは、低延伸倍率で高Re高Rthを示し、種々のモードの液晶表示装置の光学部材として有用である。
【背景技術】
【0002】
従来、セルロースアシレートフィルムは、液晶表示装置の光学部材、例えば、光学補償フィルムの支持体、偏光板の保護フィルム等として、種々のモードの液晶表示装置に利用されている。そのような光学用途に使用する場合、その光学異方性の制御は重要である。一方で、セルロースアシレート単独では、実現可能な光学特性に限界があり、高Reもしくは高Rthを実現するために、レターデーション発現剤を添加し、延伸することで所望の光学特性を実現しているのが実情である。しかし、これらの方法では、高Reもしくは高Rthを実現するためには、高い延伸倍率で延伸処理する必要があり、フィルムの面状や軸が悪化する等の現象が生じることがあった。さらに、オフラインの延伸機が必要となり、多額の設備投資が必要となることがあった。また、これらの添加剤の多くは、低分子化合物であり、延伸倍率を上げるために、延伸温度を高温にすると、製造工程中にフィルムから揮発する又は泣き出す等の現象が生じることがあった。
【0003】
光学用途のフィルムには、光学特性以外にも、表面ムラがなく、面状が良好であることが要求される。セルロースアシレートフィルムの面状の改善を目的として、従来、トリフェニルホスフェート等のリン系可塑剤がしばしば用いられていた。しかし、リン系可塑剤についても、上記の通り、製造工程中の泣き出し等の現象が生じる場合があった。特許文献1には、数平均分子量が500〜1000である所定の可塑剤を添加した、レターデーションの発現性を調整できる透明ポリマーフィルムの製造方法が開示されている。この方法は、熱処理前のポリマーの結晶化温度以上の温度で熱処理する工程を含む。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−107960号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記特許文献1の[0174]等に記載の通り、上記特許文献1の方法では、温度Tc(結晶化温度)以上でポリマーフィルムを熱処理することで、セルロースアシレートの結晶化を促進し、レターデーションを調整している。しかし、セルロースアシレートの結晶化によるレターデーションの調整には、結晶化温度以上の高温で熱処理する必要があり、インラインでの作製には限界があり、高Reで且つ高Rthのフィルムの作製が困難な場合がある。
本発明は、高い延伸倍率を要さず、また、セルロースアシレートの結晶化の促進を要さずに、レターデーションが調整されたセルロースアシレートフィルムの新規な製造方法を提供すること、前記方法により製造されたセルロースアシレートフィルム、並びにそれを有する偏光板、液晶表示装置及び光学補償フィルムを提供することを課題とする。
【課題を解決するための手段】
【0006】
上記課題を解決するため、本発明者が鋭意検討した結果、芳香族含有オリゴマーを可塑剤として用い、当該オリゴマーの分子配向を積極的に利用することで、従前では達成が困難であった光学特性を示すセルロースアシレートフィルムを安定的に製造できるとの知見を得、本発明を完成するに至った。
即ち、前記課題を解決するための手段は、以下の通りである。
[1] セルロースアシレート、芳香族基含有オリゴマー及び溶媒を含有する液を支持体上に流延してウェブを形成する流延工程と、
ウェブを延伸して、少なくとも芳香族基含有オリゴマーの分子を延伸方向に配向させる延伸工程と、
延伸後のウェブを熱処理して、少なくとも芳香族含有オリゴマーの分子の配向度を上昇させる熱処理工程と、
を少なくとも含むことを特徴とするセルロースアシレートフィルムの製造方法。
[2] 前記芳香族基含有オリゴマーが、少なくとも1種の芳香族ジカルボン酸の残基、及び少なくとも1種の脂肪族ジオールの残基を含む重縮合エステルのオリゴマーであることを特徴とする[1]の方法。
[3] 前記芳香族基含有オリゴマーの数平均分子量が、500〜2000であることを特徴とする[1]又は[2]の方法。
[4] 前記液が、前記セルロースアシレート100質量部に対して、前記芳香族含有オリゴマーを3〜20質量部含有することを特徴とする[1]〜[3]のいずれかの方法。
[5] 前記延伸工程において、残留溶媒量20〜300質量%のウェブを膜面温度−30〜80℃で延伸することを特徴とする[1]〜[4]のいずれかの方法。
[6] 前記熱処理工程において、残留溶媒量が10〜120質量%のウェブを、膜面温度40〜200℃で加熱処理することを特徴とする[1]〜[5]のいずれかの方法。
[7] 前記延伸工程において、ウェブを1〜50%の延伸倍率で延伸することを特徴とする[1]〜[6]のいずれかの方法。
[8] 前記液を、ドラム表面に流延することを特徴とする[1]〜[7]のいずれかの方法。
[9] 前記延伸工程において、ウェブを流延方向と直交する方向に延伸することを特徴とする[1]〜[8]のいずれかの方法。
[10] 前記延伸工程の後、ウェブの延伸処理を行わないことを特徴とする[1]〜[9]のいずれかの方法。
[11] 前記液が、250〜400nmに吸収極大を持つ波長分散調整剤を0.2〜20質量%含有することを特徴とする[1]〜[10]のいずれかの方法。
[12] 前記波長分散調整剤が下記一般式(IX)で表されるメロシアニン系化合物であることを特徴とする[11]の方法;
【化1】

一般式(IX)中、Nは、窒素原子を表し、R1〜R7は、それぞれ水素原子又は置換基を表す。
[13] 下記一般式(IXa−a)、(IXa−b)、(IXa−c)、および(IXa−d)で表されるいずれかの化合物と、前記一般式(IX)で表されるメロシアニン系化合物とを混合して使用することを特徴とする[12]の方法;
【化2】

一般式(IXa−a)中、R6a及びR7aは、それぞれ水素原子又は置換基を表し;一般式(IXa−b)中、R6b及びR7bは、それぞれ水素原子又は置換基を表し;一般式(IXa−c)中、R6C及びR7Cは、それぞれ水素原子又は置換基を表し;一般式(IXa−d)中、R11及びR12は、それぞれ、アルキル基、アリール基、シアノ基、又は−COOR13を表すか、互いに結合して窒素原子を含む環を表し;R13は、アルキル基、アリール基、又はヘテロ環基を表す。
[14] さらに、下記一般式(II)で表されるトリアジン系化合物を含有することを特徴とする[1]〜[13]のいずれかの方法;
【化3】

一般式(II)中、X1は、−NR4−、−O−又は−S−を表し;X2は、−NR5−、−O−又は−S−を表し;X3は、−NR6−、−O−又は−S−を表し;R1、R2及びR3は、それぞれ、アルキル基、アルケニル基、アリール基又は複素環基を表し;R4、R5及びR6は、それぞれ、水素原子、アルキル基、アルケニル基、アリール基又は複素環基を表す。
[15] [1]〜[14]のいずれかの方法によって製造されるセルロースアシレートフィルムであって、波長550nmにおける面内レターデーションRe(550)が5〜50nmであり、及び波長550nmにおける厚み方向レターデーションRth(550)が90〜150nmであることを特徴とするセルロースアシレートフィルム。
[16] [1]〜[14]のいずれかの方法によって製造されるセルロースアシレートフィルムであって、波長550nmにおける面内レターデーションRe(550)が5〜20nmであり、及び波長550nmにおける厚み方向レターデーションRth(550)が90〜150nmであることを特徴とするセルロースアシレートフィルム。
[17] 長尺状であって、長手方向に対して直交する方向にセルロースアシレートの分子が配向していることを特徴とする[15]又は[16]のセルロースアシレートフィルム。
[18] [1]〜[14]のいずれかの方法によって製造されるセルロースアシレートフィルムであって、波長550nmにおける厚み方向レターデーションRth(550)と波長450nmにおける厚み方向レターデーションRth(450)が下記式(1)を満たすことを特徴とする[15]〜[17]のいずれかのセルロースアシレートフィルム。
0.90 < Rth(450) / Rth(550) ≦ 1.5 (1)
[19] 偏光子と、[15]〜[18]のいずれかのセルロースアシレートフィルムとを少なくとも有することを特徴とする偏光板。
[20] 前記偏光子の吸収軸と、前記セルロースアシレートフィルムの遅相軸とが直交していることを特徴とする[19]の偏光板。
[21] [15]〜[18]のいずれかのセルロースアシレートフィルム、及び/又は[19]又は[20]に記載の偏光板を少なくとも有することを特徴とする液晶表示装置。
[22] 捩れ配向モード又は垂直配向モードであることを特徴とする[21]に記載の液晶表示装置。
[23] [15]〜[18]のいずれかのセルロースアシレートフィルムと重合性液晶化合物を含有する組成物とからなる光学異方性層を有することを特徴とする光学補償フィルム。
【発明の効果】
【0007】
本発明によれば、高い延伸倍率を要さず、また、セルロースアシレートの結晶化の促進を要さずに、レターデーションが調整されたセルロースアシレートフィルムの新規な製造方法を提供すること、並びに前記方法により製造されたセルロースアシレートフィルム、それを有する偏光板、液晶表示装置及び光学補償フィルムを提供することができる。
【図面の簡単な説明】
【0008】
【図1】本発明のセルロースアシレートフィルムを有する捩れ配向モード液晶表示装置の一例の断面模式図である。
【図2】本発明のセルロースアシレートフィルムを有する垂直配向モード液晶表示装置の一例の断面模式図である。
【発明を実施するための形態】
【0009】
以下において、本発明のセルロースアシレートフィルムの製造方法および該方法により製造されるセルロースアシレートフィルムについて詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、本明細書中において、Re(λ)およびRth(λ)は、それぞれ波長λnmにおけるReおよびRthの値を表す。なお、特に限定することなくReおよびRthと言う場合、それぞれRe(550)およびRth(550)を表す。
【0010】
1.セルロースアシレートフィルムの製造方法
本発明は、セルロースアシレート、芳香族基含有オリゴマー及び溶媒を含有する液を支持体上に流延してウェブを形成する流延工程と、残留溶媒量C1が20〜300質量%のウェブを延伸して、少なくとも芳香族基含有オリゴマーの分子を延伸方向に配向させる延伸工程と、残留溶媒量C2(但しC1<C2)が10〜120質量%の延伸後のウェブを、膜面温度40〜200℃で熱処理して、少なくとも芳香族含有オリゴマーの分子の配向度を上昇させるとともに、セルロースアシレートの分子を延伸方向に配向させる熱処理工程と、を少なくとも含むことを特徴とするセルロースアシレートフィルムの製造方法に関する。
本発明の製造方法では、前記延伸工程で、少なくとも芳香族基含有オリゴマーの分子を延伸方向に配向させ、熱処理工程では、セルロースアシレートの結晶化を抑制しつつ、少なくとも芳香族含有オリゴマーの分子の配向度を上昇させるとともに、セルロースアシレートの分子を延伸方向に配向させる。その結果、従来の、セルロースアシレートの結晶化を促進させることによるレターデーションの調整、又は、インラインの延伸倍率でレターデーション発現剤の配向を促進させることによるレターデーションの調整では困難であった、高Re且つ高Rthのフィルムを安定性に製造することができる。
【0011】
また、セルロースアシレートの結晶化を促進する方法では、結晶化にはある程度の高温で長時間加熱することが必要であるため、エネルギー的に非効率であり、添加剤が揮散するといった問題がある。本発明の方法では、セルロースアシレートの結晶化を促進することは要せず、熱処理は、むしろセルロースアシレートの結晶化を抑制しつつ、延伸工程で配向した所定のオリゴマー分子の配向度を高めるために行われるので、結晶化を促進する方法と比べて熱処理温度は低温でよい。従って、エネルギー効率がよく、添加剤の揮散も抑制することができる。
【0012】
以下、本発明の方法の各工程について説明する。
流延工程:
本発明では、セルロースアシレート、芳香族基含有オリゴマー及び溶媒を含有する液(以下、「ドープ」という場合もある)を準備し、該液を、支持体上に流延してウェブを形成する。本発明の方法では、セルロースアシレートを主成分として含み、且つ芳香族基含有オリゴマーを添加剤として含むセルロースアシレートフィルムを製造する。本発明の方法に利用可能なセルロースアシレート及び芳香族含有オリゴマーについては、後述する。また、ここで、「ウェブ」とは、流延後、完全に乾燥される前の、溶媒をある程度含むセルロースアシレートフィルムを意味する。
【0013】
流延工程では、例えば、前記ドープを、流延ダイのスリットから、支持体上に流延する。支持体は、例えば、ベルト又はドラム等の形態であり、流延方向に走行した状態の支持体表面に、ドープが流延される。流延時には、流延方向に力が作用するので、ドープ中のセルロースアシレート及び芳香族含有オリゴマーの分子は、流延方向にある程度配向する傾向がある。流延時に分子に作用する力の程度は、ベルト又はドラムの回転速度(支持体速度)とウェブの搬送速度(製膜速度)とから、以下の式で算出される値(以下「PITドロー」と略記する、単位は%)を指標として理解することができる。
PITドロー=製膜速度/支持体速度
【0014】
本発明の方法では、後述する延伸工程で前記所定のオリゴマーを、延伸方向に配向させるので、流延方向(本明細書では、「搬送方向」及び「MD方向」ともいい、いずれも同一方向を意味する)と、後述する延伸工程における延伸方向が一致しない態様、例えば、流延方向と直交する方向に延伸する態様では、流延時に材料に作用する力が低い条件で、流延を実施するのが好ましく、具体的には、PITドローは、101〜110%程度であるのが好ましく、101〜105%であるのがより好ましい。一方で、流延方向と、後述する延伸工程における延伸方向とが一致する態様では、PITドローについては特に制限はない。
【0015】
前記ドープを流延する支持体は、金属支持体であるのが好ましく、例えば、金属バンド又は金属ドラムを使用することができる。本発明の方法によれば、支持体としてドラムを用い、高い生産性で、所望の光学特性のフィルムを製造することができる。
【0016】
前記流延工程では、前記ドープを、支持体上に、単層状に流延してもよいし、前記ドープ、及び所望により他の1種以上のドープを、2層以上の積層状に流延してもよい。後者の形態では、支持体の進行方向に間隔を置いて設けた複数の流延口から、前記ドープ、及び他の1種以上のドープをそれぞれ流延させて積層させながらフィルムを作製してもよく、例えば特開昭61−158414号、特開平1−122419号、および特開平11−198285号の各公報などに記載の方法が適応できる。また、2つの流延口から前記ドープ、及び所望により他の1種以上のドープを流延することによってもフィルム化することでもよく、例えば特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、および特開平6−134933号の各公報に記載の方法で実施できる。また、特開昭56−162617号公報に記載の高粘度ドープの流れを低粘度ドープで包み込み、その高、低粘度のドープを同時に押出す流延方法を実施してもよい。さらにまた、特開昭61−94724号および特開昭61−94725号の各公報に記載の外側のドープが、内側のドープよりも貧溶媒であるアルコール成分を多く含有させることも好ましい態様である。或いは又2個の流延口を用いて、第一の流延口により支持体に成型したフィルムを剥離し、支持体面に接していた側に第二の流延を行なうことにより、フィルムを作製することでもよく、例えば特公昭44−20235号公報に記載されている方法である。
【0017】
複数のドープを積層状に流延する態様では、各層に機能を持たせるために、その機能に応じたドープを用いることができる。例えば、接着層、染料層、帯電防止層、アンチハレーション層、UV吸収層、偏光層などを形成するための材料を含むドープを同時に流延することもできる。
【0018】
複数のドープを流延口から流延する共流延の態様では、高粘度のドープを同時に支持体上に流延することができ、平面性も良化し優れた面状のフィルムが製造できる。濃厚なドープを用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードをより高めることができた。
共流延の態様では、内側層と外側層の厚さについては、特に限定されないが、好ましくは外側層が全膜厚の1〜50%であることが好ましく、より好ましくは2〜30%の厚さである。ここで、3層以上の共流延の場合は支持体に接した層と空気側に接した層のトータル膜厚を外側の厚さと定義する。共流延の態様では、前述の可塑剤、紫外線吸収剤、マット剤等の添加物濃度が異なるドープを共流延して、積層構造のセルロースアシレートフィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成のセルロースアシレートフィルムを作ることができる。例えば、マット剤は、スキン層に多く、又はスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多くいれることができ、コア層のみにいれてもよい。また、コア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えばスキン層に低揮発性の可塑剤および/又は紫外線吸収剤を含ませ、コア層に可塑性に優れた可塑剤、或いは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。また、剥離促進剤を金属支持体側のスキン層のみ含有させることも好ましい態様である。また、冷却ドラム法で金属支持体を冷却して溶液をゲル化させるために、スキン層に貧溶媒であるアルコールをコア層より多く添加することも好ましい。スキン層とコア層のTgが異なっていてもよく、スキン層のTgよりコア層のTgが低いことが好ましい。また、流延時のドープ粘度もスキン層とコア層で異なっていてもよく、スキン層のドープ粘度がコア層のドープ粘度よりも小さいことが好ましいが、コア層のドープ粘度がスキン層のドープ粘度より小さくてもよい。
【0019】
延伸工程:
次に、ウェブを延伸して、少なくとも芳香族基含有オリゴマーの分子を延伸方向に配向させる。ウェブの残留溶媒量C1は、20〜300質量%であるのが好ましい。ここで、ウェブの「残留溶媒量」は、下記式に基づいて算出することができる。また、後述する熱処理工程における残留溶媒量についても同様に算出することができる。
残留溶媒量(質量%)={(M−N)/N}×100
[式中、Mは、延伸ゾーンに挿入される直前のウェブの質量、Nは、延伸ゾーンに挿入される直前のウェブを120℃で2時間乾燥させたときの質量を表す。]
【0020】
残留溶媒量C1が前記範囲であり、溶媒を多く含むウェブを延伸することで、添加剤としてウェブ中に存在する所定のオリゴマーを、その分子長軸を延伸方向に一致させて、ある程度配向させることができる。残存溶媒量C1が300質量%を超えると、分子が配向し難くなる傾向があり、また20質量%未満であると、ウェブが硬く延伸し難い場合がある。残存溶媒量C1は、20〜250質量%であるのがより好ましく、20〜150質量%であるのがさらに好ましい。
【0021】
後述の熱処理工程で、前記所定のオリゴマー分子の配向度を高めるため、本工程における延伸倍率は、前記所定のオリゴマーの分子が配向する程度であればよい。例えば、流延方向に対して直交方向に延伸する態様では、延伸倍率は1〜50%であるのが好ましく、1〜20%であるのがより好ましい。また、流延方向と同一の方向に延伸する態様では、延伸倍率は、1〜300%であるのが好ましく、1〜200%であるのがより好ましい。
なお、本明細書で「延伸倍率(%)」とは、以下の式により求められるものを意味するが、直接長さを測定する方法に制限されるものではなく、下記式で求められる延伸倍率と同等の結果が得られるその他の方法を採用することもできる。
延伸倍率(%)=100×{(延伸後の長さ)−(延伸前の長さ)}/延伸前の長さ
【0022】
延伸時の温度についても、特に制限はない。前記所定のオリゴマー分子の延伸方向への配向を促進する温度で行うのが好ましい。一般的には、ウェブの膜面温度が−30〜80℃で行うのが好ましく、25〜80℃で行うのがより好ましい。
【0023】
本発明の方法では、前記延伸工程における延伸方向によって、最終的に製造されるフィルム中のセルロースアシレートの配向方向とオリゴマー分子の配向方向、即ち、フィルムの面内遅相軸方向が決定される。例えば、本発明の方法により、連続的に長尺状のセルロースアシレートを製造する場合は、流延方向が長手方向になる。延伸を流延方向に対して直交方向(以下、「TD方向」という場合もある)に沿って行えば、長手方向に対して直交する方向にセルロースアシレートとオリゴマーの分子が配向し、その結果、長手方向に対して直交する方向に沿って面内遅相軸を有するフィルムを製造でき、延伸を流延方向に行えば、長手方向に対してセルロースアシレートとオリゴマーの分子が配向し、その結果、長手方向に沿って面内遅相軸を有するフィルムを製造できる。
【0024】
TD方向の延伸は、ウェブの両端をピン状テンターで把持し、TD方向に広げることにより実施することができる。MD方向の延伸は、PITドローにより実施することができる。延伸処理は、一段で行っても、二以上の多段で行ってもよい。
【0025】
長尺状のフィルムを、長尺状の偏光膜(一般的には、長手方向に透過軸を有する)と貼合して、偏光板を作製する場合には、長手方向に対して直交する方向に面内遅相軸を有するフィルムを用いるのが好ましい。よって、ロール・ツー・ロールで偏光膜と貼合する長尺状のセルロースアシレートフィルムを製造する態様では、前記延伸工程において、流延方向に対して、直交する方向に延伸処理を施すのが好ましい。但し、ロール・ツー・ロールではなく、バッチ貼合法などにより偏光膜に貼合する態様では、いずれの方向に延伸しても、貼合の際の軸合わせにより、好ましい関係で貼合することができる。
【0026】
熱処理工程:
次に、延伸工程の後、ウェブを所定の条件で熱処理する。この熱処理により、前記延伸工程で配向した所定のオリゴマーの配向度を上昇させる。所定のオリゴマーの配向度を上昇できれば、熱処理条件については特に制限はない。熱処理時のオリゴマーの配向に影響するファクターとしては、主に、熱処理時のウェブの膜面温度、及び熱処理時のウェブの残留溶媒量である。安定的に所定のオリゴマーの配向度を上昇させる熱処理条件の一例は、残留溶媒量C2が10〜120質量%の延伸後のウェブを、膜面温度40〜200℃で行う熱処理である。熱処理する際のウェブの残存溶媒量C2は、前記延伸工程のウェブの残存溶媒量C1よりも少なく、即ち、C2≦C1の関係が成立することを前提に、10〜120質量%であるのが好ましい。残存溶媒量C2が120質量%を超える、また10質量%未満であると、オリゴマーの配向度が上昇し難くなる傾向があり、目的のレターデーションを得ることができない場合がある。残存溶媒量C2は、20〜80質量%であるのが好ましく、20〜60質量%であるのがより好ましい。
【0027】
前記熱処理工程は、セルロースアシレートが結晶化するのを抑制しつつ進行させるのが好ましい。よって、セルロースアシレートの結晶化を促進する熱処理する温度よりも低い温度で熱処理するのが好ましく、具体的には、ウェブの膜面温度が、40〜100℃で熱処理するのが好ましく、60〜100℃で熱処理するのがより好ましい。
なお、セルロースアシレートの結晶化を抑制するためには、熱処理時の膜面温度は、熱処理前のウェブの結晶化温度未満であるのが好ましい。
【0028】
熱処理は、例えば、ウェブを搬送しながら、所定の温度に設定されたゾーンを通過させる方法、所定の温度の熱風をあてる方法、熱線を照射する方法、所定の温度に設定されたロールに接触させる方法等により、実施することができる。
【0029】
本発明では、熱処理後の延伸工程を要せずに、上記光学特性のセルロースアシレートフィルムを製造できるので、流延支持体として、ドラムを用い、少ない工程数で、しかも短時間で連続的に長尺のフィルム形態に製造できる。インラインで製造することも可能であり、生産性を格段に改善することができる。
例えば、前記所定のオリゴマー以外には、光学特性に影響を与える添加剤を添加することなく、PITドローを101〜200%に設定し、支持体速度を50〜200m/分として、高Re且つ高Rthのセルロースアシレートフィルムをインラインで製造することも可能である。
【0030】
本発明の効果を損なわない範囲で、上記熱処理工程の後、所望により、得られたセルロースアシレートフィルムに、延伸、熱処理、表面処理等から選ばれる1以上の工程を実施してもよい。
【0031】
次に、本発明の方法の前記流延工程に用いられるドープの調製について説明する。
前記流延工程に用いるドープは、セルロースアシレート、芳香族基含有オリゴマー、及び溶媒を含有する。前記セルロースアシレート及び前記オリゴマーは、溶媒に溶解しているのが好ましい。また、前記ドープ中、セルロースアシレート濃度は、5〜40質量%が好ましく、10〜30質量%がさらに好ましく、15〜30質量%が特に好ましい。前記セルロースアシレート濃度は、セルロースアシレートを溶媒に溶解する段階で所定の濃度になるように調整することができる。また、予め低濃度(例えば4〜14質量%)の溶液を調製した後に、溶媒を蒸発させる等によって濃縮してもよい。さらに、予め高濃度の溶液を調製後に、希釈してもよい。また、上記所定のオリゴマーの濃度は、0.5〜4質量%が好ましく、1〜3質量%がさらに好ましい。
以下、各成分について説明する。
【0032】
溶媒:
前記流延工程に用いるドープの調製に用いる溶媒は、1種でも2種以上であってもよい。主溶媒としては、セルロースアシレートの良溶媒である有機溶媒を好ましく用いることができる。このような有機溶媒としては、沸点が80℃以下の有機溶媒が乾燥負荷低減の観点からより好ましい。前記有機溶媒の沸点は、10〜80℃であることがさらに好ましく、20〜60℃であることが特に好ましい。また、場合により沸点が30〜45℃である有機溶媒も前記主溶媒として好適に用いることができる。ハロゲン化炭化水素とともに揮発する割合が小さく、次第に濃縮される沸点が95℃以上の溶媒を全溶媒に対し1〜15質量%含有する溶媒を用いることができ、1〜10質量%含有する溶媒を用いることが好ましく、1.5〜8質量%含有する溶媒を用いることがより好ましい。そして、沸点が95℃以上の溶媒は、セルロースアシレートの貧溶媒であることが好ましい。沸点が95℃以上の溶媒の具体例としては、後述する「主溶媒と併用される有機溶媒」の具体例のうち沸点が95℃以上の溶媒を挙げることができるが、中でもブタノール、ペンタノール、1,4−ジオキサンを用いることが好ましい。さらに、本発明に用いられるポリマー溶液の溶媒はアルコールを含有することがさらに好ましい。なお、前記の「沸点が95℃以上の溶媒」がブタノールなどのアルコールである場合は、その含有量もここでいうアルコール含有量にカウントする。
【0033】
このような主溶媒としては、ハロゲン化炭化水素、エステル、ケトン、エーテル、アルコールおよび炭化水素などが挙げることができ、これらは分岐構造若しくは環状構造を有していてもよい。また、前記主溶媒は、エステル、ケトン、エーテルおよびアルコールの官能基(即ち、−O−、−CO−、−COO−、−OH)のいずれかを二つ以上有していてもよい。さらに、前記エステル、ケトン、エーテルおよびアルコールの炭化水素部分における水素原子は、ハロゲン原子(特に、フッ素原子)で置換されていてもよい。なお、本発明の製造方法に用いるセルロースアシレートフィルムの作製に用いられる本発明におけるポリマー溶液の主溶媒とは、単一の溶媒からなる場合には、その溶媒のことを示し、複数の溶媒からなる場合には、構成する溶媒のうち、最も質量分率の高い溶媒のことを示す。主溶媒としては、ハロゲン化炭化水素を好適に挙げることができる。
【0034】
前記ハロゲン化炭化水素としては、塩素化炭化水素がより好ましく、例えば、ジクロロメタンおよびクロロホルムなどが挙げられ、ジクロロメタンがさらに好ましい。
前記エステルとしては、例えば、メチルホルメート、エチルホルメート、メチルアセテート、エチルアセテートなどが挙げられる。
前記ケトンとしては、例えば、アセトン、メチルエチルケトンなどが挙げられる。
前記エーテルとしては、例えば、ジエチルエーテル、メチル−tert−ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、1,3−ジオキソラン、4−メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、1,4−ジオキサンなどが挙げられる。
前記アルコールとしては、例えば、メタノール、エタノール、2−プロパノールなどが挙げられる。
前記炭化水素としては、例えば、n−ペンタン、シクロヘキサン、n−ヘキサン、ベンゼン、トルエンなどが挙げられる。
【0035】
これら主溶媒と併用される有機溶媒としては、ハロゲン化炭化水素、エステル、ケトン、エーテル、アルコールおよび炭化水素などが挙げられ、これらは分岐構造若しくは環状構造を有していてもよい。また、前記有機溶媒としては、エステル、ケトン、エーテルおよびアルコールの官能基(即ち、−O−、−CO−、−COO−、−OH)のいずれか二つ以上を有していてもよい。さらに、前記エステル、ケトン、エーテルおよびアルコールの炭化水素部分における水素原子は、ハロゲン原子(特に、フッ素原子)で置換されていてもよい。
【0036】
前記主溶媒と併用される有機溶媒の好ましい例は、前記主溶媒で用いられる有機溶媒として挙げた例に加え、さらに以下の例を挙げられる。
前記エステルとしては、プロピルホルメート、ペンチルホルメート、ペンチルアセテートなどが挙げられる。
前記ケトンとしては、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノンなどが挙げられる。
前記エーテルとしては、ジメトキシエタン、アニソール、フェネトールなどが挙げられる。
前記アルコールとしては、1−プロパノール、1−ブタノール、2−ブタノール、tert−ブタノール、1−ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなどが挙げられる。好ましくは炭素数1〜4のアルコールであり、より好ましくはメタノール、エタノール又はブタノールであり、最も好ましくはメタノール、ブタノールである。
前記炭化水素としては、キシレンなどが挙げられる。
前記2種類以上の官能基を有する有機溶媒としては、例えば、2−エトキシエチルアセテート、2−メトキシエタノール、2−ブトキシエタノール、メチルアセトアセテートなどが挙げられる。
【0037】
前記ドープ中に含まれるセルロースアシレートは、水酸基やエステル、ケトン等の水素結合性の官能基を含むため、全溶媒中に5〜30質量%、より好ましくは7〜25質量%、さらに好ましくは10〜20質量%のアルコールを含有することが流延支持体からの剥離荷重低減の観点から好ましい。
アルコール含有量を調整することによって、本発明の製造方法により製造されるセルロースアシレートフィルムのReやRthの発現性を調整しやすくすることができる。
また、本発明においては、水を少量含有させることも溶液粘度や乾燥時のウェットフィルム状態の膜強度を高めたり、ドラム法流延時のドープ強度を高めたりするのに有効であり、例えば溶液全体に対して0.1〜5質量%含有させてもよく、より好ましくは0.1〜3質量%含有させてもよく、特には0.2〜2質量%含有させてもよい。
【0038】
前記ドープの溶媒として好ましく用いられる有機溶媒の組み合せの例は、特開2009−262551号公報の(1)〜(31)と同様であるが、本発明はこれらに限定されるものではない。なお、比率の数値は、質量部を意味する。
【0039】
また、必要に応じて、非ハロゲン系有機溶媒を主溶媒とすることもでき、詳細な記載は発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)に記載がある。
【0040】
セルロースアシレート:
本発明では、セルロースアシレートをフィルムの主成分として用いる。ここで本明細書では、「主成分」とは、原料となる成分が1種である態様ではその成分を、2種以上である態様では、最も質量分率の高い成分をいうものとする。セルロースアシレートの1種を用いてもよいし、2種以上を用いてもよい、セルロースアシレートのアシル置換基は、例えばアセチル基単独からなるセルロースアシレートであっても、複数のアシル置換基を有するセルロースアシレートを含む組成物を用いてもよい。
【0041】
セルロースエステルは、セルロースと酸とのエステルである。前記エステルを構成する酸としては、有機酸が好ましく、カルボン酸がより好ましく、炭素原子数が2〜22の脂肪酸がさらに好ましく、炭素原子数が2〜4の低級脂肪酸が最も好ましい。
前記セルロースアシレートは、セルロースとカルボン酸とのエステルである。前記セルロースアシレートは、セルロースを構成するグルコース単位の2位、3位および6位に存在するヒドロキシル基の水素原子の全部又は一部が、アシル基で置換されている。前記アシル基の例としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基が挙げられる。前記アシル基としては、アセチル基、プロピオニル基、ブチリル基、ドデカノイル基、オクタデカノイル基、ピバロイル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基が好ましく、アセチル基、プロピオニル基、ブチリル基が最も好ましい。
セルロースエステルは、セルロースと複数の酸とのエステルであってもよい。また、セルロースアシレートは、複数のアシル基で置換されていてもよい。
【0042】
セルロースアシレートのセルロースの水酸基に置換されているアセチル基(炭素数2)の置換度をSAとし、セルロースの水酸基に置換されている炭素数3以上のアシル基の置換度をSBとしたとき、SAおよびSBを調整することにより、本発明の製造方法により製造されるセルロースアシレートフィルムのReの発現性、レターデーションの湿度依存性の調整を行うことができる。なお、レターデーションの湿度依存性とは、湿度による可逆的なレターデーションの変化である。
セルロースアシレートフィルムに求める光学特性により、適宜、SA+SBを調整することとなるが、好ましくは2.70≦SA+SB≦3.00、より好ましくは2.80≦SA+SB≦2.97であり、さらに好ましくは2.83≦SA+SB≦2.89である。
また、SBを調整することにより、本発明の製造方法により製造されるセルロースアシレートフィルムのレターデーションの湿度依存性を調整することができる。SBを大きくすることにより、レターデーションの湿度依存性を低減させることができ、融点が下がる。レターデーションの湿度依存性および融点の低下のバランスを考慮すると、SBの範囲は、好ましくは0<SB≦3.0、より好ましくは0<SB≦1.0であり、特に好ましくは、SB=0である。なお、セルロースの水酸基がすべて置換されているとき、上記の置換度は3となる。
【0043】
セルロースアシレートは公知の方法により合成することができる。
例えば、セルロースアシレートの合成方法について、基本的な原理は、右田伸彦他、木材化学180〜190頁(共立出版、1968年)に記載されている。セルロースアシレートの代表的な合成方法としては、カルボン酸無水物−カルボン酸−硫酸触媒による液相アシル化法が挙げられる。具体的には、まず、綿花リンタや木材パルプ等のセルロース原料を適当量の酢酸などのカルボン酸で前処理した後、予め冷却したアシル化混液に投入してエステル化し、完全セルロースアシレート(2位、3位および6位のアシル置換度の合計が、ほぼ3.00)を合成する。前記アシル化混液は、一般に溶媒としてのカルボン酸、エステル化剤としてのカルボン酸無水物および触媒としての硫酸を含む。また、前記カルボン酸無水物は、これと反応するセルロースおよび系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。
【0044】
次いで、アシル化反応終了後に、系内に残存している過剰カルボン酸無水物の加水分解を行うために、水又は含水酢酸を添加する。さらに、エステル化触媒を一部中和するために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウム又は亜鉛の炭酸塩、酢酸塩、水酸化物又は酸化物)を含む水溶液を添加してもよい。さらに、得られた完全セルロースアシレートを少量のアシル化反応触媒(一般には、残存する硫酸)の存在下で、20〜90℃に保つことにより鹸化熟成し、所望のアシル置換度および重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を、前記中和剤などを用いて完全に中和するか、或いは、前記触媒を中和することなく水若しくは希酢酸中にポリマー溶液を投入(或いは、ポリマー溶液中に、水又は希酢酸を投入)してセルロースアシレートを分離し、洗浄および安定化処理により目的物であるセルロースアシレートを得ることができる。
【0045】
前記セルロースアシレートの重合度は、粘度平均重合度で150〜500が好ましく、200〜400がより好ましく、220〜350がさらに好ましい。前記粘度平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)の記載に従って測定することができる。前記粘度平均重合度の測定方法については、特開平9−95538号公報にも記載がある。
【0046】
また、低分子成分が少ないセルロースアシレートは、平均分子量(重合度)が高いが、粘度は通常のセルロースアシレートよりも低い値になる。このような低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより行うことができる。また、低分子成分の少ないセルロースアシレートを合成により得ることもできる。低分子成分の少ないセルロースアシレートを合成する場合、アシル化反応における硫酸触媒量を、セルロース100質量に対して0.5〜25質量部に調整することが好ましい。前記硫酸触媒の量を前記範囲にすると、分子量分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。セルロースアシレートの重合度や分子量分布は、ゲル浸透クロマトグラフィー(GPC)等により測定することができる。
セルロースエステルの原料綿や合成方法については、発明協会公開技報(公技番号2001−1745号、2001年3月15日発行、発明協会)7〜12頁にも記載がある。
【0047】
セルロースアシレートフィルムを製造する際に原料として用いるセルロースアシレートとしては、粉末や粒子状のものを使用することができ、また、ペレット化したものも用いることができる。原料として用いる際のセルロースアシレートの含水率は、1.0質量%以下であることが好ましく、0.7質量%以下であることがさらに好ましく、0.5質量%以下であることが最も好ましい。また、前記含水率は場合により0.2質量%以下であることが好ましい。セルロースアシレートの含水率が好ましい範囲内にない場合には、セルロースアシレートを乾燥風や加熱などにより乾燥してから使用することが好ましい。
【0048】
芳香族基含有オリゴマー:
本発明では、芳香族基含有オリゴマーを可塑剤として用いる。可塑剤は溶媒の揮発速度を速めかつ残留溶媒量を低減するために必須な素材である。可塑剤として作用するためには、前記オリゴマーの数平均分子量は、500〜2000であるのが好ましく、500〜1500であるのがより好ましい。また、オリゴマーの泣き出しやウェブのハンドリング等の観点では、前記オリゴマーは、前記セルロースアシレート100質量部に対して、20質量部以下であるのが好ましく、15質量部以下であるのがより好ましい。一方、ウェブの乾燥速度等の観点では、前記オリゴマーは、前記セルロースアシレート100質量部に対して、3質量部以上であるのが好ましく、5質量部以上であるのがより好ましい。
なお、芳香族基含有オリゴマーは1種のみであっても、2種以上を使用してもよい。
【0049】
また、前記芳香族基含有オリゴマーは、使用する環境温度あるいは湿度下で(一般には室温状況、所謂25℃、相対湿度60%)、液体であっても固体であってもよい。また、その色味は少ないほど良好であり特に無色であることが好ましい。熱的にはより高温において安定であることが好ましく、分解開始温度が150℃以上、さらに200℃以上が好ましく、より好ましくは250℃以上である。
【0050】
本発明に使用可能な芳香族基含有オリゴマーは、芳香族基を含有することが一つの特徴である。芳香族基をオリゴマー中の繰り返し単位の一部に規則的に含むことにより、熱処理後のオリゴマーの分子の配向度を効果的に上昇させることができる。前記芳香族基含有オリゴマーは、少なくとも1種のジカルボン酸残基、及び少なくとも1種のジオール残基を含む重縮合エステルであるのが好ましい。芳香族基は、ジカルボン酸残基に含まれていても、ジオール残基に含まれていてもよいが、中でも、芳香族基を、ジカルボン酸残基中に含む重縮合エステルが好ましい。より具体的には、前記芳香族基含有オリゴマーは、少なくとも1種の芳香族ジカルボン酸残基と、少なくとも1種の脂肪族ジオール残基を含む重縮合エステルから選択するのが好ましい。
以下、本発明において、芳香族基含有オリゴマーとして利用可能な重縮合エステル系可塑剤について、詳細に説明する。
【0051】
重縮合エステル:
本発明では、芳香族基含有オリゴマーとして、芳香族ジカルボン酸と脂肪族グリコールとの反応によって得られる重縮合エステルを用いるのが好ましい。反応物の両末端は反応物のままでもよいが、さらにモノカルボン酸やモノアルコールを反応させて、所謂末端の封止を実施してもよい。この末端封止は、特にフリーなカルボン酸を含有させないために実施されることが、保存性などの点で有効である。前記重縮合エステルに使用されるジカルボン酸は、芳香族ジカルボン酸であるのが好ましく、炭素数8〜12の芳香族ジカルボン酸であることがより好ましい。前記重縮合エステルに使用されるグリコールは、脂肪族グリコールであるのが好ましく、炭素数が2〜12の脂肪族グリコールが好ましい。なお、脂肪族グリコールには、脂環式グリコールも含まれる。
【0052】
前記炭素数8〜12の芳香族ジカルボン酸の例には、フタル酸、テレフタル酸、1,5−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸等がある。この中でもテレフタル酸がフィルムのRe発現性が高く好ましい。これらは、それぞれ1種又は2種以上の混合物として使用される。
前記重縮合エステルは、脂肪族ジカルボン酸残基を含んでいてもよい。脂肪族ジカルボン酸残基の例には、炭素数4〜12の脂肪族ジカルボン酸残基が含まれる。炭素数4〜12のアルキレンジカルボン酸としては、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、1,4−シクロヘキサンジカルボン酸等が挙げられる。
【0053】
炭素原子2〜12の脂肪族グリコールの例には、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、2−メチル−1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、2,2−ジメチル−1,3−プロパンジオール(ネオペンチルグリコール)、2,2−ジエチル−1,3−プロパンジオール(3,3−ジメチロ−ルペンタン)、2−n−ブチル−2−エチル−1,3プロパンジオール(3,3−ジメチロールヘプタン)、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,12−オクタデカンジオール等があり、これらのグリコールは、1種又は2種以上の混合物として使用される。
【0054】
また、前記重縮合エステルの両末端がカルボン酸とならないように、モノアルコール残基やモノカルボン酸残基で保護することが好ましい。その場合、モノアルコール残基として好ましい態様としては、例えば特開2009−262551号公報に記載の態様を挙げることができる。
【0055】
また、封止に利用可能なモノカルボン酸の例には、炭素数1〜30の置換もしくは無置換のモノカルボン酸が含まれる。これらは、脂肪族モノカルボン酸でも芳香族カルボン酸でもよい。まず好ましい脂肪族モノカルボン酸について記述すると、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸が挙げられ、芳香族モノカルボン酸としては、好ましい態様としては、例えば特開2009−262551号公報に記載の態様を挙げることができ、これらはそれぞれ1種又は2種以上の混合物として使用することができる。
【0056】
以上、具体的な好ましい前記重縮合エステルの合成方法や商品としては、例えば特開2009−262551号公報に記載の態様を挙げることができる。
【0057】
以下に、本発明に利用可能な前記重縮合エステルの具体例を記すが、以下の具体例に限定されるものではない。
PP−1: エタンジオール/テレフタル酸(1/1モル比)との縮合物(数平均分子量1000)
PP−2: 1,2プロパンジオール/テレフタル酸(1/1モル比)との縮合物(数平均分子量1000)
PP−3: エタンジオール/1,2プロパンジオール/テレフタル酸(0.5/0.5/1モル比)との縮合物(数平均分子量1000)
PP−4: エタンジオール/1,2プロパンジオール/テレフタル酸/コハク酸(0.5/0.5/0.7/0.3モル比)との縮合物(数平均分子量1000)
PP−5: エタンジオール/1,2プロパンジオール/テレフタル酸/コハク酸(0.5/0.5/0.55/0.45モル比)との縮合物(数平均分子量1000)
PP−6: エタンジオール/1,2プロパンジオール/テレフタル酸/コハク酸(0.5/0.5/0.7/0.3モル比)との縮合物末端のオクチルエステル化体(数平均分子量1000)
PP−7: 1,3−プロパンジオール/1,5−ナフタレンジカルボン酸(1/1モル比)との縮合物(数平均分子量1500)
PP−8: 2−メチル−1,3−プロパンジオール/イソフタル酸(1/1モル比)との縮合物(数平均分子量1200)
PP−9: 1,3−プロパンジオール/テレフタル酸(1/1モル比)との縮合物両末端のベンジルエステル化体(数平均分子量1500)
PP−10: 1,3−プロパンジオール/1,5−ナフタレンジカルボン酸両末端のプロピルエステル化体(1/1モル比)との縮合物(数平均分子量1500)
PP−11: 2−メチル−1,3−プロパンジオール/イソフタル酸(1/1モル比)との縮合物両末端のブチルエステル化体(数平均分子量1200)
【0058】
波長分散調整剤:
本発明の方法に用いるドープ中には、波長分散を調整する目的で波長分散調整剤を添加してもよい。
【0059】
前記波長分散調整剤は、250〜400nmの波長域に吸収極大を持つ化合物であり、好ましくは300〜400nmであり、より好ましくは360〜400nmである。このような波長分散調整剤を添加することにより、本発明の波長分散の条件を満たすフィルムを容易に製造することができる。なお、前記波長分散調整剤は、250〜400nmの波長域に吸収極大を持つ化合物であればよく、250〜400nm以外の波長域の光を吸収する化合物であってもよい。
【0060】
本発明で用いる波長分散調整剤は、光学補償フィルムや液晶表示装置を製造するための全プロセスにおいて揮散が実質的に無い化合物であることが好ましい。前記波長分散調整剤は、1種のみを単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。前記波長分散調整剤の合計添加量は、フィルムに持たせる光学的性質等によって異なるが、好ましくは0.2〜20質量%であり、より好ましくは0.2〜10質量%であり、さらに好ましくは0.5〜5質量%である。前記波長分散調整剤は、フィルムの製膜前に予め製膜用メルトや溶液に添加・混合しておくことが好ましい。
【0061】
本発明で用いる波長分散調整剤は、下記一般式(I)〜(VIII)のいずれかで表される化合物であることが好ましい。下記一般式(I)〜(VIII)の中では、一般式(I)で表される化合物がより好ましい。
【0062】
【化4】

【0063】
【化5】

【化6】

【化7】

【0064】
上記一般式(I)におけるR11、R12、R13、R14、R15、R16、およびR17;上記一般式(II)におけるR21、R22、R23、R24、R25、R26、R27、R28、およびR29;上記一般式(III)におけるR41、R42、R43、R44、R45、R46、およびR47;上記一般式(IV)におけるR51、R52、R53、R54、R55、R56、およびR57;上記一般式(V)におけるR61、R62、R63、R64、R65、R66、R67、およびR68;上記一般式(VI)におけるR71、R72、R73、R74、R75およびR76;上記一般式(VII)におけるR81、R82、R83、R84およびR85;上記一般式(VIII)におけるR86、R87およびR88はそれぞれ独立に水素原子又は置換基を表す。
上記一般式(I)〜(VIII)において、紙面の水平方向(左右方向)が分子長軸方向となるように置換基を組み合わせることが好ましい。
【0065】
前記置換基としては、好ましくは、
ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素原子数1〜30、より好ましくは炭素原子数1〜10のアルキル基、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、2−エチルヘキシル基)、シクロアルキル基(好ましくは炭素原子数3〜30、より好ましくは炭素原子数3〜10の置換又は無置換のシクロアルキル基、例えば、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基)、ビシクロアルキル基(好ましくは炭素原子数5〜30、より好ましくは炭素原子数5〜10の置換又は無置換のビシクロアルキル基、つまり、好ましくは炭素原子数5〜30、より好ましくは炭素原子数5〜10のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1.2.2]ヘプタン−2−イル、ビシクロ[2.2.2]オクタン−3−イル)、アルケニル基(好ましくは炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換のアルケニル基、例えば、ビニル基、アリル基)、シクロアルケニル基(好ましくは炭素原子数3〜30、より好ましくは炭素原子数3〜10の置換又は無置換のシクロアルケニル基、つまり、好ましくは炭素原子数3〜30、より好ましくは炭素原子数3〜10のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2−シクロペンテン−1−イル、2−シクロヘキセン−1−イル)、ビシクロアルケニル基(置換又は無置換のビシクロアルケニル基、好ましくは炭素原子数5〜30、より好ましくは炭素原子数5〜10の置換又は無置換のビシクロアルケニル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビシクロ[2.2.1]ヘプト−2−エン−1−イル、ビシクロ[2.2.2]オクト−2−エン−4−イル)、アルキニル基(好ましくは炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換のアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(好ましくは炭素原子数6〜30、より好ましくは炭素原子数6〜10の置換又は無置換のアリール基、例えばフェニル基、p−トリル基、ナフチル基)、ヘテロ環基(好ましくは5又は6員の置換又は無置換の、芳香族又は非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基であり、より好ましくは炭素原子数3〜30、より好ましくは炭素原子数3〜10の5又は6員の芳香族のヘテロ環基である。例えば、2−フリル基、2−チエニル基、2−ピリミジニル基、2−ベンゾチアゾリル基)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(好ましくは炭素原子数1〜30、より好ましくは炭素原子数1〜10の置換又は無置換のアルコキシ基、例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基、n−オクチルオキシ基、2−メトキシエトキシ基)、アリールオキシ基(好ましくは炭素原子数6〜30、より好ましくは炭素原子数6〜10の置換又は無置換のアリールオキシ基、例えば、フェノキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基)、シリルオキシ基(好ましくは炭素原子数3〜20、より好ましくは炭素原子数3〜10のシリルオキシ基、例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基)、ヘテロ環オキシ基(好ましくは炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換のヘテロ環オキシ基、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基)、アシルオキシ基(好ましくはホルミルオキシ基、炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換のアルキルカルボニルオキシ基、炭素原子数6〜30、より好ましくは炭素原子数6〜10の置換又は無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基)、カルバモイルオキシ基(好ましくは炭素原子数1〜30、より好ましくは炭素原子数1〜10の置換又は無置換のカルバモイルオキシ基、例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基)、アルコキシカルボニルオキシ基(好ましくは炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基)、アリールオキシカルボニルオキシ基(好ましくは、炭素原子数7〜30、より好ましくは炭素原子数7〜10の置換又は無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基)、アミノ基(好ましくは、アミノ基、炭素原子数1〜30、より好ましくは炭素原子数1〜10の置換又は無置換のアルキルアミノ基、炭素原子数6〜30、より好ましくは炭素原子数6〜10の置換又は無置換のアニリノ基、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N−メチル−アニリノ基、ジフェニルアミノ基)、アシルアミノ基(好ましくは、ホルミルアミノ基、炭素原子数1〜30、より好ましくは炭素原子数1〜10の置換又は無置換のアルキルカルボニルアミノ基、炭素原子数6〜30、より好ましくは炭素原子数6〜10の置換又は無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基)、アミノカルボニルアミノ基(好ましくは、炭素原子数1〜30、より好ましくは炭素原子数1〜10の置換又は無置換のアミノカルボニルアミノ基、例えば、カルバモイルアミノ基、N,N−ジメチルアミノカルボニルアミノ基、N,N−ジエチルアミノカルボニルアミノ基、モルホリノカルボニルアミノ基)、アルコキシカルボニルアミノ基(好ましくは炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチルーメトキシカルボニルアミノ基)、アリールオキシカルボニルアミノ基(好ましくは、炭素原子数7〜30、より好ましくは炭素原子数7〜10の置換又は無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ基、p−クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基)、スルファモイルアミノ基(好ましくは、炭素原子数0〜30、より好ましくは炭素原子数0〜10の置換又は無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基)、アルキルおよびアリールスルホニルアミノ基(好ましくは炭素原子数1〜30、より好ましくは炭素原子数1〜10の置換又は無置換のアルキルスルホニルアミノ、炭素原子数6〜30、より好ましくは炭素原子数6〜10の置換又は無置換のアリールスルホニルアミノ基、例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5−トリクロロフェニルスルホニルアミノ基、p−メチルフェニルスルホニルアミノ基)、
【0066】
メルカプト基、アルキルチオ基(好ましくは、炭素原子数1〜30、より好ましくは炭素原子数1〜10の置換又は無置換のアルキルチオ基、例えばメチルチオ基、エチルチオ基、n−ヘキサデシルチオ基)、アリールチオ基(好ましくは炭素原子数6〜30、より好ましくは炭素原子数6〜10の置換又は無置換のアリールチオ基、例えば、フェニルチオ基、p−クロロフェニルチオ基、m−メトキシフェニルチオ基)、ヘテロ環チオ基(好ましくは炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換のヘテロ環チオ基、例えば、2−ベンゾチアゾリルチオ基、1−フェニルテトラゾール−5−イルチオ基)、スルファモイル基(好ましくは炭素原子数0〜30、より好ましくは炭素原子数0〜10の置換又は無置換のスルファモイル基、例えば、N−エチルスルファモイル基、N−(3−ドデシルオキシプロピル)スルファモイル基、N,N−ジメチルスルファモイル基、N−アセチルスルファモイル基、N−ベンゾイルスルファモイル基、N−(N'フェニルカルバモイル)スルファモイル基)、スルホ基、アルキルおよびアリールスルフィニル基(好ましくは、炭素原子数1〜30、より好ましくは炭素原子数1〜10の置換又は無置換のアルキルスルフィニル基、6〜30、より好ましくは炭素原子数6〜10、より好ましくは炭素原子数6〜10の置換又は無置換のアリールスルフィニル基、例えば、メチルスルフィニル基、エチルスルフィニル基、フェニルスルフィニル基、p−メチルフェニルスルフィニル基)、アルキルおよびアリールスルホニル基(好ましくは、炭素原子数1〜30、より好ましくは炭素原子数1〜10の置換又は無置換のアルキルスルホニル基、炭素原子数6〜30、より好ましくは炭素原子数6〜10の置換又は無置換のアリールスルホニル基、例えば、メチルスルホニル基、エチルスルホニル基、フェニルスルホニル基、p−メチルフェニルスルホニル基)、アシル基(好ましくはホルミル基、炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換のアルキルカルボニル基、炭素原子数7〜30、より好ましくは炭素原子数7〜10の置換又は無置換のアリールカルボニル基、例えば、アセチル基、ピバロイルベンゾイル基)、アリールオキシカルボニル基(好ましくは、炭素原子数7〜30、より好ましくは炭素原子数7〜10の置換又は無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル基、o−クロロフェノキシカルボニル基、m−ニトロフェノキシカルボニル基、p−tert−ブチルフェノキシカルボニル基)、アルコキシカルボニル基(好ましくは、炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換アルコキシカルボニル基、例えば、メトキシカルボニル基、エトキシカルボニル基、tert−ブトキシカルボニル基、n−オクタデシルオキシカルボニル基)、カルバモイル基(好ましくは、炭素原子数1〜30、より好ましくは炭素原子数1〜10の置換又は無置換のカルバモイル基、例えば、カルバモイル基、N−メチルカルバモイル基、N,N−ジメチルカルバモイル基、N,N−ジ−n−オクチルカルバモイル基、N−(メチルスルホニル)カルバモイル基)、アリールおよびヘテロ環アゾ基(好ましくは炭素原子数6〜30、より好ましくは炭素原子数6〜10の置換又は無置換のアリールアゾ基、炭素原子数3〜30、より好ましくは炭素原子数3〜10の置換又は無置換のヘテロ環アゾ基、例えば、フェニルアゾ基、p−クロロフェニルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基)、イミド基(好ましくは、N−スクシンイミド基、N−フタルイミド基)、ホスフィノ基(好ましくは炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換のホスフィノ基、例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基)、ホスフィニル基(好ましくは炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換のホスフィニル基、例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基)、ホスフィニルオキシ基(好ましくは、炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基)、ホスフィニルアミノ基(好ましくは、炭素原子数2〜30、より好ましくは炭素原子数2〜10の置換又は無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基)、シリル基(好ましくは、炭素原子数3〜30、より好ましくは炭素原子数3〜10の置換又は無置換のシリル基、例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、フェニルジメチルシリル基)を表わす。
【0067】
上記の置換基の中で、水素原子を有するものは、これを取り去りさらに上記の基で置換されていてもよい。そのような官能基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。その例としては、メチルスルホニルアミノカルボニル基、p−メチルフェニルスルホニルアミノカルボニル基、アセチルアミノスルホニル基、ベンゾイルアミノスルホニル基が挙げられる。
【0068】
上記の置換基の中でより好ましいものは、ハロゲン原子、アルキル基、アリール基、アルコキシ基、シアノ基、ヒドロキシル基、カルボキシル基、アリールスルホニル基であり、さらに好ましいものは、アルキル基、アルコキシ基、ヒドロキシル基、カルボキシル基、フェニルスルホニル基である。
また、1分子の中に置換基が二つ以上ある場合は、それらの置換基は同じであっても異なっていてもよい。また、可能な場合には互いに連結して環(一般式中に記載されている環との縮合環を含む)を形成してもよい。
【0069】
本発明で用いる波長分散調整剤の分子量は、好ましくは100〜5000であり、より好ましくは150〜3000であり、さらに好ましくは200〜2000である。
【0070】
(メロシアニン系化合物)
本発明で用いる波長分散調整剤としては、例えば、下記一般式(IX)で表されるメロシアニン系化合物が含まれる。該メロシアニン系化合物の中でも、λmaxが、370nm≦λmax≦400nmを満足する化合物を用いるのが好ましい。
【0071】
【化8】

【0072】
上記一般式(IX)中、Nは窒素原子を表し;R1〜R7はそれぞれ水素原子又は置換基を表す。一般式(IX)において、紙面の水平方向(左右方向)が分子長軸方向となるように置換基を組み合わせることが好ましい。
【0073】
1〜R7でそれぞれ表される置換基の例としては、前記一般式(I)中のR11等が表す置換基の例と同様である。
【0074】
前記一般式(IX)中、R1及びR2はそれぞれ、置換もしくは無置換のアルキル基を表わし、R1とR2とは互いに結合して窒素原子を含む環を形成してもよく;R6及びR7はそれぞれ、ハメットの置換基定数σp値が0.2以上の置換基を表わすか、あるいはR6とR7とは互いに結合して環状の活性メチレン化合物構造を形成していてもよく;R3、R4及びR5はそれぞれ水素原子を表わすのが好ましい。
【0075】
1およびR2がそれぞれ表すアルキル基としては、炭素数1〜20(好ましくは炭素数1〜10、より好ましくは炭素数1〜5)のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基などが挙げられる。該アルキル基は、直鎖状であっても分岐鎖状であってもよい。アルキル基上の任意の位置に置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、アリール基(例えばフェニル、ナフチル)、シアノ基、カルボキシル基、アルコキシカルボニル基(例えばメトキシカルボニル)、アリールオキシカルボニル基(例えばフェノキシカルボニル)、置換又は無置換のカルバモイル基(例えばカルバモイル、N−フェニルカルバモイル、N,N−ジメチルカルバモイル)、アルキルカルボニル基(例えばアセチル)、アリールカルボニル基(例えばベンゾイル)、ニトロ基、置換又は無置換のアミノ基(例えばアミノ、ジメチルアミノ、アニリノ)、アシルアミノ基(例えばアセトアミド、エトキシカルボニルアミノ)、スルホンアミド基(例えばメタンスルホンアミド)、イミド基(例えばスクシンイミド、フタルイミド)、イミノ基(例えばベンジリデンアミノ)、ヒドロキシ基、アルコキシ基(例えばメトキシ)、アリールオキシ基(例えばフェノキシ)、アシルオキシ基(例えばアセトキシ)、アルキルスルホニルオキシ基(例えばメタンスルホニルオキシ)、アリールスルホニルオキシ基(例えばベンゼンスルホニルオキシ)、スルホ基、置換又は無置換のスルファモイル基(例えばスルファモイル、N−フェニルスルファモイル)、アルキルチオ基(例えばメチルチオ)、アリールチオ基(例えばフェニルチオ)、アルキルスルホニル基(例えばメタンスルホニル)、アリールスルホニル基(例えばベンゼンスルホニル)、ヘテロ環基(例えばピリジル、モルホリノ)などを挙げることができる。また、置換基は更に置換されていてもよく、置換基が複数ある場合は、同じでも異なってもよい。また、置換基同士で結合して環を形成してもよい。
【0076】
1とR2とは互いに結合して窒素原子を含む環を形成してもよい。該環は、飽和環であるのが好ましく、飽和6員環であるのが好ましく、ピペリジン環であるのがさらに好ましい。
【0077】
1およびR2は、無置換アルキル基、又はシアノ基、アルコキシカルボニル基、もしくはフェニル基で置換されたアルキル基であるか、あるいは互いに結合して、ピペリジン環を形成しているのが好ましい。
【0078】
6及びR7はそれぞれ、ハメットの置換基定数σp値が0.2以上の置換基を表わし、R6とR7とは互いに結合して環を形成してもよい。ハメットの置換基定数σ値について説明する。ハメット則は、ベンゼン誘導体の反応又は平衡に及ぼす置換基の影響を定量的に論ずるために1935年L.P.Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則に求められた置換基定数にはσp値とσm値があり、これらの値は多くの一般的な成書に見出すことができる。例えば、J.A.Dean編、「Lange’s Handbook of Chemistry」第12版,1979年(Mc Graw−Hill)や「化学の領域」増刊,122号,96〜103頁,1979年(南光堂)、Chem.Rev.,1991年,91巻,165〜195ページなどに詳しい。本発明におけるハメットの置換基定数σp値が0.2以上の置換基とは電子求引性基であることを示している。σp値として好ましくは0.25以上であり、より好ましくは0.3以上であり、特に好ましくは0.35以上である。
【0079】
6及びR7の例としては、シアノ基(0.66)、カルボキシル基(−COOH:0.45)、アルコキシカルボニル基(−COOMe:0.45)、アリールオキシカルボニル基(−COOPh:0.44)、カルバモイル基(−CONH2:0.36)、アルキルカルボニル基(−COMe:0.50)、アリールカルボニル基(−COPh:0.43)、アルキルスルホニル基(−SO2Me:0.72)、又はアリールスルホニル基(−SO2Ph:0.68)などが挙げられる。本明細書において、Meはメチル基を、Phはフェニル基を表わす。なお、括弧内の値は代表的な置換基のσp値をChem.Rev.,1991年,91巻,165〜195ページから抜粋したものである。
【0080】
6とR7とは互いに結合してR6とR7とは互いに結合して環状の活性メチレン化合物構造を形成していてもよい。なお、「活性メチレン化合物」とは、2個の電子求引基にはさまれたメチレン基(−CH2−)を持つ一連の化合物群を意味する。R6及びR7が結合している炭素原子が、活性メチレンであるのが好ましい。
【0081】
前記メロシアニン系化合物の中でも、下記一般式(IXa)で表されるメロシアニン系化合物が好ましい。
【0082】
【化9】

【0083】
上記一般式(IXa)中、R11及びR12はそれぞれ、アルキル基、アリール基、シアノ基、又は−COOR13を表すか、互いに結合して窒素原子を含む環を形成し;R6及びR7はそれぞれ、−シアノ基、−COOR14、又は−SO215を表すか、互いに結合して、下記の環状の活性メチレン構造(IXa−1)〜(IXa−6)のいずれかを形成し;R13、R14及びR15はそれぞれ、アルキル基、アリール基、又はヘテロ環基を表す。
【0084】
【化10】

【0085】
活性メチレン構造(IXa−1)〜(IXa−6)中、「**」は、一般式(IXa)との結合位置は示し;Ra及びRbはそれぞれ、水素原子、又はC1〜C20(好ましくはC1〜C20、より好ましくはC1〜C5)アルキル基を表し;Xは酸素原子又は硫黄原子を表す。
【0086】
11及びR12がそれぞれ表す、アルキル基は、無置換であっても置換基を有していてもよい。置換基の例は、R1及びR2がそれぞれ表す置換基の例と同様である。アルキル基は炭素原子数1〜20であるのが好ましく、1〜15であるのが好ましく、1〜6であるのがより好ましい。
11及びR12がそれぞれ表す、アリール基は、無置換であっても置換基を有していてもよい。置換基の例は、R1及びR2がそれぞれ表す置換基の例と同様である。アリール基はフェニル基であるのが好ましく、無置換のフェニル基であるのがより好ましい。
11及びR12がそれぞれ表す−COOR13は、R13がアルキル基であるのが好ましく、無置換のアルキル基であるのがより好ましい。アルキル基は炭素原子数1〜20であるのが好ましく、1〜15であるのがより好ましく、1〜6であるのがより好ましい。
11及びR12が互いに結合して形成する環は、飽和環であるのが好ましく、6員の飽和環であるのがより好ましく、ピペリジン環であるのがさらに好ましい。
【0087】
11及びR12は、双方がシアノ基又は無置換フェニル基であるか、互いに結合してピペリジン環を形成しているのが好ましく、双方がシアノ基又は無置換フェニル基であるのがより好ましい。
【0088】
6及びR7がそれぞれ表す−COOR14は、R14がアルキル基であるのが好ましく、無置換のアルキル基であるのがより好ましい。アルキル基は炭素原子数1〜20であるのが好ましく、5〜15であるのがより好ましい。
6及びR7がそれぞれ表す−SO215は、R15がアリール基であるのが好ましく、フェニル基であるのがより好ましい。
【0089】
6及びR7が互いに結合して、環状の活性メチレン構造を形成する例では、活性メチレン構造(IXa−1)又は活性メチレン構造(IXa−4)を形成するのが好ましく、活性メチレン構造(IXa−1)を形成するのがより好ましい。
6及びR7は少なくとも一方がシアノ基を表すか、互いに結合して、前記環状の活性メチレン構造(IXa−1)〜(IXa−6)のいずれかを形成するのがより好ましく;少なくとも一方がシアノ基を表すか、互いに結合して、前記環状の活性メチレン構造(IXa−1)及び(IXa−4)のいずれかを形成するのがさらに好ましく;いずれもシアノ基を表すか、互いに結合して、前記環状の活性メチレン構造(IXa−1)及び(IXa−4)のいずれかを形成するのがよりさらに好ましい。
【0090】
前記一般式(IX)で表されるメロシアニン系化合物の好ましい例には、下記一般式(IXa−a)、(IXa−b)、(IXa−c)、および(IXa−d)で表される化合物が含まれる。特に、下記一般式(IXa−a)、(IXa−b)、および(IXa−d)で表される化合物が好ましい。
【0091】
【化11】

【0092】
上記一般式(IXa−a)中、R6a及びR7aは、一般式(IXa)中のR6及びR7とそれぞれ同義であり、好ましい範囲も同様である。中でも、前記環状の活性メチレン構造(IXa−1)〜(IXa−6)のいずれかを形成する化合物が、着色の抑制のみならず、耐光性の観点でも好ましい。
上記一般式(IXa−b)中、R6b及びR7bは、一般式(IXa)中のR6及びR7とそれぞれ同義であり、好ましい範囲も同様である。中でも、いずれもシアノ基を表すか、前記環状の活性メチレン構造(IXa−1)〜(IXa−6)(より好ましくは活性メチレン構造(IXa−1)又は(IXa−4)、さらに好ましくは活性メチレン構造(IXa−1))のいずれかを形成する化合物が、着色の抑制のみならず、耐光性の観点でも好ましい。特に、いずれもシアノ基である化合物が好ましい。
上記一般式(IXa−c)中、R6C及びR7Cは、一般式(IXa)中のR6及びR7とそれぞれ同義であり、好ましい範囲も同様である。中でも、一方が、シアノ基で、他方が−COOR14(R14の定義及び好ましい範囲については上記と同様である)を表すか、前記環状の活性メチレン構造(IXa−1)〜(IXa−6)のいずれかを形成する化合物が、好ましい。
上記一般式(IXa−d)中、R11及びR12は、一般式(IXa)とそれぞれ同義であり、好ましい範囲も同様である。
【0093】
一般式(IXa−a)、(IXa−b)、(IXa−c)、および(IXa−d)で表される化合物は、一般式(IX)で表されるメロシアニン系化合物の耐光性を向上させる作用があり、一般式(IXa−a)、(IXa−b)、(IXa−c)、(IXa−d)で表されるいずれかの化合物と、一般式(IX)で表されるメロシアニン系化合物又は一般式(IXa)で表されるメロシアニン系化合物とを混合して使用することで耐光性が向上し好ましい。一般式(IX)で表されるメロシアニン系化合物と一般式(IXa−a)、(IXa−b)、(IXa−c)、および(IXa−d)との混合比率は、10〜90:90:10が好ましく、30〜70:70〜30がより好ましく、40〜60:60〜40が最も好ましい。
【0094】
本発明における波長分散調整剤の添加量はセルロースアシレートに対して、1.0〜20質量%が好ましく、1.0〜10質量%がより好ましく、1.5〜8.0質量%がさらに好ましく、2.0〜6.0質量%が最も好ましい。
【0095】
以下に一般式(IXa−a)、(IXa−b)、(IXa−c)、および(IXa−d)で表される化合物の好ましい例を示すが、本発明はこれらの具体例に限定されるものではない。
【0096】
【化12】

【0097】
本発明の方法に用いるドープ中には、更に一般式(II)で表されるトリアジン系化合物を含有させることが好ましい。
【0098】
【化13】

一般式(II)中、X1は、−NR4−、−O−又は−S−を表し;X2は、−NR5−、−O−又は−S−を表し;X3は、−NR6−、−O−又は−S−を表し;R1、R2及びR3は、それぞれ、アルキル基、アルケニル基、アリール基又は複素環基を表し;R4、R5及びR6は、それぞれ、水素原子、アルキル基、アルケニル基、アリール基又は複素環基を表す。
【0099】
一般式(II)において、R1、R2、及びR3は、それぞれ独立に、アルキル基、アルケニル基、芳香族環基又は複素環基を表すが、芳香族環又は複素環がより好ましい。R1、R2、及びR3がそれぞれ表す芳香族環は、フェニル又はナフチルであることが好ましく、フェニルであることが特に好ましい。
【0100】
1、R2、及びR3は芳香族環又は複素環に置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシル基、シアノ基、ニトロ基、カルボキシル基、アルキル基、アルケニル基、アリール基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アルキル置換スルファモイル基、アルケニル置換スルファモイル基、アリール置換スルファモイル基、スルオンアミド基、カルバモイル基、アルキル置換カルバモイル基、アルケニル置換カルバモイル基、アリール置換カルバモイル基、アミド基、アルキルチオ基、アルケニルチオ基、アリールチオ基及びアシル基が挙げられる。
【0101】
1、R2、及びR3が複素環基を表す場合、複素環は芳香族性を有することが好ましい。芳香族性を有する複素環とは、一般に不飽和複素環であり、好ましくは最多の二重結合を有する複素環である。複素環は5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがさらに好ましく、6員環であることが最も好ましい。複素環のヘテロ原子は、窒素原子、硫黄原子又は酸素原子であることが好ましく、窒素原子であることが特に好ましい。芳香族性を有する複素環としては、ピリジン環(複素環基としては、2−ピリジル又は4−ピリジル)が特に好ましい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記に挙げた置換基の例と同様である。これらの置換基は、上記置換基でさらに置換されていてもよい。
【0102】
4、R5及びR6がそれぞれ表すアルキル基は、環状アルキル基であっても鎖状アルキル基であってもよいが、鎖状アルキル基が好ましく、分岐を有する鎖状アルキル基よりも、直鎖状アルキル基がより好ましい。アルキル基の炭素原子数は、1〜30であることが好ましく、1〜20であることがより好ましく、1〜10であることがさらに好ましく、1〜8がさらに好ましく、1〜6であることが最も好ましい。アルキル基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、アルコキシ基(例えばメトキシ、エトキシ)及びアシルオキシ基(例、アクリロイルオキシ、メタクリロイルオキシ)が含まれる。
【0103】
4、R5及びR6がそれぞれ表すアルケニル基は、環状アルケニル基であっても鎖状アルケニル基であってもよいが、鎖状アルケニル基が好ましく、分岐を有する鎖状アルケニル基よりも、直鎖状アルケニル基がより好ましい。アルケニル基の炭素原子数は、2〜30であることが好ましく、2〜20であることがより好ましく、2〜10であることがさらに好ましく、2〜8であることがさらに好ましく、2〜6であることが最も好ましい。アルケニル基は置換基を有していてもよい。置換基の例には、前述のアルキル基の置換基と同様の置換基を挙げることができる。
【0104】
4、R5及びR6がそれぞれ表す芳香族環基(アリール基)及び複素環基は、R1、R2及びR3がそれぞれ表す芳香族環及び複素環と同様であり、好ましい範囲も同様である。芳香族環基及び複素環基はさらに置換基を有していてもよく、置換基の例には、R1、R2及びR3の芳香族環及び複素環の置換基と同様の置換基を挙げることができる。
【0105】
以下に本発明の一般式(II)で表されるトリアジン系化合物の好ましい例を示すが、本発明はこれらの具体例に限定されるものではない。
【0106】
【化14】

【0107】
【化15】

【0108】
【化16】

【0109】
【化17】

【0110】
【化18】

【0111】
【化19】

【0112】
【化20】

【0113】
【化21】

【0114】
【化22】

【0115】
【化23】

【0116】
【化24】

【0117】
【化25】

【0118】
【化26】

【0119】
本発明における波長分散調整剤及びトリアジン系化合物の添加は予めセルロースアシレートの混合溶液を調製するときに添加してもよいが、ポリマー溶液(ドープ液)を予め調製し、流延までのいずれかの時点で添加されてもよい。後者の場合、ポリマーを溶剤に溶解させたドープ液と、波長分散調整剤と少量のセルロースアシレートとを溶解させた溶液をインライン添加、混合を行うためには、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器 Hi-Mixer)等のインラインミキサー等が好ましく用いられる。後添加する波長分散調整剤には、同時にマット剤を混合してもよいし、そのレターデーション制御剤、可塑剤(例えば、トリフェニルフォスフェート、ビフェニルフォスフェート等)、劣化防止剤、剥離促進剤等の添加物を混合してもよい。インラインミキサーを用いる場合、高圧下で濃縮溶解することが好ましく、加圧容器の種類は特に問うところではなく、所定の圧力に耐えることができ、加圧下で加熱、撹拌ができればよい。加圧容器はその他圧力計、温度計などの計器類を適宜配設する。加圧は、窒素ガスなどの不活性気体を圧入する方法や、加熱による溶剤の蒸気圧の上昇によって行ってもよい。加熱は、外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。溶剤を添加しての加熱温度は、使用溶剤の沸点以上で、かつ該溶剤が沸騰しない範囲の温度が好ましく、例えば30〜150℃の範囲に設定するのが好適である。また、圧力は、設定温度で溶剤が沸騰しないように調整される。溶解後は冷却しながら容器から取り出すか、又は容器からポンプ等で抜き出して熱交換器などで冷却し、これを製膜に供する。このときの冷却温度は常温まで冷却してもよいが、沸点より5〜10℃低い温度まで冷却し、その温度のままキャスティングを行うほうがドープ粘度を低減できるためより好ましい。
【0120】
また、本発明における波長分散調整剤及び一般式(II)で表されるトリアジン系化合物は、単独あるいは2種類以上混合して用いることができる。
本発明における波長分散調整剤の添加量はセルロースアシレートに対して、1.0〜20質量%が好ましく、1.0〜10質量%がより好ましく、1.5〜8.0質量%がさらに好ましく、2.0〜6.0質量%が最も好ましい。
また、本発明のポリマーフィルムにおける一般式(II)で表されるトリアジン系化合物は、波長分散調整剤に対して、10質量%(0.1倍)以上1000質量%(10倍)以下含有することが好ましく、20質量%(0.2倍)以上750質量%(7.5倍)以下がさらに好ましい。
本発明における波長分散調整剤及び一般式(II)で表されるトリアジン系化合物の添加方法は、アルコールやメチレンクロライド、ジオキソランの有機溶媒に波長分散調整剤及び一般式(II)で表されるトリアジン系化合物を溶解してから、セルロースアシレート溶液(ドープ)に添加してもよいし、または直接ドープ組成中に添加してもよい。
【0121】
一般式(II)で表されるトリアジン系化合物は、一般式(IX)で表されるメロシアニン系化合物の分解を抑制し、耐光性を向上させる作用があることから、一般式(II)で表されるトリアジン系化合物と、一般式(IX)で表されるメロシアニン系化合物とを混合して使用することが好ましい。
【0122】
安定剤:
本発明の方法に用いるドープ中には、ポリマー自体の分解・変性を抑制する目的で安定剤を添加してもよい。
前記安定剤は、製膜時等にポリマーが着色したり、熱劣化するのを低減させるために添加するものであり、ポリマー自体の分解・変性を抑制する化合物であり、酸化防止剤、ラジカル禁止剤、過酸化物分解剤、金属不活性化剤、酸捕獲剤、光安定剤から選ばれるものをいう。本発明では、いかなる安定剤を用いてもよいが、安定剤の中でも、酸化防止剤、ラジカル禁止剤を用いることが好ましく、酸化防止剤を用いることがより好ましい。添加量は、効果の発現の観点から波長分散調整剤と同等の添加量であることが好ましく、少なくとも1種のポリマーに対して0.2〜20質量%であることが好ましい。
【0123】
前記酸化防止剤としては、亜リン酸骨格を有するリン酸系の化合物、チオエーテル構造を有する硫黄系の化合物、ペンタエリスリトール骨格構造を有するリン酸エステル系の化合物、またはラクトン構造を有するラクトン系の化合物が好ましく、ラジカル禁止剤としては、水酸基で置換された芳香環を有するフェノール系の化合物、置換または無置換のアミノ基を有するアミン系の化合物が好ましく、過酸化物分解剤としては、フェノール系の化合物、アミン系の化合物が好ましく、金属不活性化剤としては、アミド結合を有するアミド系の化合物が好ましく、酸捕獲剤としては、エポキシ基を有するエポキシ系の化合物が好ましく、光安定剤としては、アミン系の化合物が好ましい。
これらの安定剤は1種類のみを用いてもよく、2種類以上混合してもよく、また、同一分子内に2種類以上の機能を備えた化合物であってもよい。
【0124】
前記安定剤は、高温で揮発性が十分に低いことが好ましく、分子量500以上の安定剤を少なくとも一種含むことが好ましい。さらに、分子量は500〜4000が好ましく、より好ましくは530〜3500であり、特に好ましくは550〜3000である。分子量が500以上であれば熱揮散性をより低く抑えやすく、また分子量が4000以下であれば、特に、セルロースアシレートとの相溶性がより良好になる。
【0125】
前記安定剤としては、市販の安定剤を用いることもでき、例えばサイクリックネオペンタンテトライルビス(2,6−ジ−t−ブチル−4−メチルフェニル)ホスファイト((株)ADEKA製「アデカスタブPEP−36」)などのペンタエリスリトール骨格構造を有するリン酸エステル系酸化防止剤を用いることが好ましい。
【0126】
他の添加剤:
本発明の方法に用いるドープ中には、主成分となるセルロースアシレート、及び前記所定の芳香族基含有オリゴマーとともに、1種以上の添加剤を、本発明の効果を損なわない範囲で添加してもよい。該添加剤の例には、レターデーション調整剤(セルロースアシレートの質量に対する添加量の好ましい範囲は0.01〜10質量%、以下、カッコ内の数値範囲は同義である)、紫外線吸収剤(0.001〜20質量%)、平均粒子サイズが5〜3000nmである微粒子粉体(0.001〜1質量%)、フッ素系界面活性剤(0.001〜1質量%)、剥離剤(0.0001〜1質量%)、劣化防止剤(0.0001〜1質量%)、及び赤外線吸収剤(0.001〜1質量%)が含まれる。
但し、本発明の製造方法により製造されるセルロースアシレートフィルムは、芳香族基含有オリゴマー以外の添加剤を含まない、又は芳香族基含有オリゴマー以外の添加剤を含むが、該添加剤は、フィルムの面内レターデーション及び/又は厚み方向レターデーションに実質的に影響を与えない添加剤しか含有していない態様であっても、高Re且つ高Rthを達成可能である点が一つの特徴である。
【0127】
次に、本発明の方法によって製造されるセルロースアシレートフィルムについて、その性質及びその用途について説明する。
2.セルロースアシレートフィルムの性質
(光学特性)
上記した通り、本発明の方法によれば、高Re且つ高Rthを示すセルロースアシレートフィルムを製造することができる。
具体的には、Reが5〜20nm、且つRthが90〜150nmのセルロースアシレートフィルムを製造できる。当該フィルムは、液晶表示装置の光学部材として有用であり、特に、TNモード等の捩れ配向モードの光学補償用部材として有用である。
また、Reが5〜50nm、且つRthが90〜150nmのセルロースアシレートフィルムを製造できる。当該フィルムは、液晶表示装置の光学部材として有用であり、特に、VAモードの垂直配向モードの光学補償用部材として有用である。
【0128】
本発明の方法によって製造されるセルロースアシレートフィルムは、捩れ配向モード液晶表示装置を横方向から観察したときの中間調表示における黄色味の観点から好ましくは、
0.9 < Rth(450) / Rth(550) ≦ 1.5 式(1)
より好ましくは、
1.0 < Rth(450) / Rth(550) < 1.5 式(1’)
さらに好ましくは、
1.1 < Rth(450) / Rth(550) < 1.5 式(1’’)
を満たす。
ここで、Rth(550)は波長550nmにおける厚み方向レターデーションを表し、Rth(450)は波長450nmにおける厚み方向レターデーションを表す。
【0129】
なお、本明細書において、Re、Rth(単位;nm)は次の方法に従って求めたものである。まず、フィルムを25℃、相対湿度60%にて24時間調湿後、プリズムカップラー(MODEL2010 Prism Coupler:Metricon製)を用い、25℃、相対湿度60%において、532nmの固体レーザーを用いて下記式(2)で表される平均屈折率(n)を求める。
【0130】
式(2): n=(nTE×2+nTM)/3
[式中、nTEはフィルム平面方向の偏光で測定した屈折率であり、nTMはフィルム面法線方向の偏光で測定した屈折率である。]
【0131】
本明細書において、Re(λnm)、Rth(λnm)は各々、波長λ(単位;nm)における面内レターデーションおよび厚さ方向のレターデーションを表す。Re(λnm)はKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
測定されるフィルムが一軸または二軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λnm)は算出される。
Rth(λnm)は前記Re(λnm)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率および入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
前記において、λに関する記載が特になく、Re、Rthとのみ記載されている場合は、波長590nmの光を用いて測定した値のことを表す。また、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRが算出する。
なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率および入力された膜厚値を基に、以下の式(3)および式(4)よりRthを算出することもできる。
【0132】
【数1】

[式中、Re(θ)は法線方向から角度θ傾斜した方向におけるレタ−デーション値を表す。また、nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnxおよびnyに直交する厚み方向の屈折率を表し、dはフィルムの膜厚を表す。]
【0133】
式(4): Rth=((nx+ny)/2−nz)×d
【0134】
測定されるフィルムが一軸や二軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λnm)は算出される。
Rth(λnm)は前記Re(λnm)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率および入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。これら平均屈折率と膜厚を入力することで、KOBRA 21ADHまたはWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx−nz)/(nx−ny)がさらに算出される。
【0135】
(遅相軸)
本発明の製造方法では、前記熱処理工程前に実施される延伸工程における延伸方向によって、製造されるセルロースアシレートの面内遅相軸の方向が決定される。セルロースアシレートフィルムは、製造時の長手方向(搬送方向)とフィルムの面内遅相軸とのなす角度が直交することが、偏光板加工の観点から好ましい。フィルムの長手方向と遅相軸とのなす角度は0±10°もしくは90±10°であることが好ましく、0±5°もしくは90±5°であることがより好ましく、0±3°もしくは90±3°であることがさらに好ましく、場合により、0±1°もしくは90±1°であることが好ましく、90±1°であることが最も好ましい。
【0136】
(膜厚)
前記セルロースアシレートフィルムの膜厚は20μm〜180μmが好ましく、30μm〜160μmがより好ましく、40μm〜120μmがさらに好ましい。膜厚が20μm以上であれば偏光板等に加工する際のハンドリング性や偏光板のカール抑制の点で好ましい。また、前記セルロースアシレートフィルムの膜厚むらは、搬送方向および幅方向のいずれも0〜2%であることが好ましく、0〜1.5%がさらに好ましく、0〜1%であることが特に好ましい。
【0137】
(透湿度)
前記セルロースアシレートフィルムの透湿度は、80μm換算で100g/(m2・day)以上であることが好ましい。前記80μm換算の透湿度を100g/(m2・day)以上としたフィルムを使用することで、偏光膜と直接貼合しやすくなる。前記80μm換算の透湿度としては、100〜1500g/(m2・day)がより好ましく、200〜1000g/(m2・day)がより好ましく、300〜800g/(m2・day)がさらに好ましい。
また、前記セルロースアシレートフィルムを偏光膜と液晶セルとの間に配置されない外側の保護フィルムとして用いる場合、前記セルロースアシレートフィルムの透湿度は、80μm換算で500g/(m2・day)未満であることが好ましく、100〜450g/(m2・day)がより好ましく、100〜400g/(m2・day)がさらに好ましく、150〜300g/(m2・day)がよりさらに好ましい。このようにすることで、湿度もしくは湿熱に対する偏光板の耐久性が向上し、信頼性の高い液晶表示装置を提供することができる。
【0138】
(ΔHc)
前記セルロースアシレートフィルムは、結晶化熱ΔHcが1.0〜4.0J/gであることが好ましく、2.0〜3.0J/gであることがより好ましい。この範囲にすることにより、Reの発現性の拡大が可能となる。
【0139】
(着色)
前記セルロースアシレートフィルムは、着色が少なく、無色透明性に優れることが好ましい。具体的には、400nmにおける吸収が0.2以下であることが好ましく、0.1以下がさらに好ましい。
【0140】
3.セルロースアシレートフィルムの用途
本発明の製造方法により製造されるセルロースアシレートフィルムは、種々の用途に用いることができる。特に、液晶表示装置の光学部材として有用であり、例えば、光学補償フィルムもしくはその一部として、又は偏光板の保護フィルムとして、利用することができる。以下、各モードの液晶表示装置に有用なセルロースアシレートフィルムの態様について、それぞれ説明するが、以下の態様に限定されるものではない。
【0141】
捩れ配向モード液晶表示装置用セルロースアシレートフィルム:
本発明の製造方法によって製造されるセルロースアシレートフィルムは、光学補償フィルムもしくはその一部として、又は偏光板の保護フィルム(液晶セル側に配置される内側保護フィルムであるのが好ましい)として、TNモード等の捩れ配向モード液晶表示装置に用いることができる。捩れ配向モード液晶表示装置に用いられるセルロースアシレートフィルムは、Reが5〜20nm、且つRthが90〜150nmであるのが好ましい。
【0142】
捩れ配向モード液晶表示装置に用いられるセルロースアシレートフィルムの一例では、支持体と、その上に液晶組成物からなる光学異方性層とを有する光学補償フィルムの支持体として、前記セルロースアシレートフィルムを用いる。前記セルロースアシレートフィルムは適宜後述する表面処理等を行ってから支持体として用いてもよい。
【0143】
前記液晶組成物より成る光学異方性層の形成に用いる液晶組成物は、ネマチック相およびスメクチック相を形成し得る液晶組成物であるのが好ましい。液晶化合物は、一般的に、その分子の形状に基づいて、棒状および円盤状液晶化合物に分類されるが、本発明ではいずれの形状の液晶化合物を用いてもよい。
前記液晶組成物より成る光学異方性層の厚さについては特に制限されないが、0.1〜10μmであるのが好ましく、0.5〜5μmであるのがより好ましい。
【0144】
(液晶組成物より成る光学異方性層に用いられる材料)
(1)円盤状液晶化合物(ディスコティック液晶性化合物)
ディスコティック液晶性化合物には、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physics lett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルが含まれる。
【0145】
前記ディスコティック液晶性化合物には、分子中心の母核に対して、直鎖のアルキル基、アルコキシ基、又は置換ベンゾイルオキシ基が母核の側鎖として放射線状に置換した構造の、液晶性を示す化合物も含まれる。分子又は分子の集合体が、回転対称性を有し、一定の配向を付与できる化合物であることが好ましい。
ディスコティック液晶性化合物から光学異方性層を形成した場合、最終的に光学異方性層に含まれる化合物は、もはや液晶性を示す必要はない。
ディスコティック液晶性化合物の好ましい例は、特開平8−50206号公報、特開2006−76992号公報明細書中の段落番号[0052]、特開2007−2220号公報明細書中の段落番号[0040]〜[0063]に記載されている。また、ディスコティック液晶性化合物の重合については、特開平8−27284号公報に記載がある。例えば、下記一般式(DI)で表されるディスコティック液晶性化合物が高い複屈折性を示すので特に好ましい。
【0146】
【化27】

【0147】
一般式(DI)中、Y1、Y2及びY3は、それぞれ独立に置換されていてもよいメチン
又は窒素原子を表す。
【0148】
1、Y2およびY3がメチンの場合、メチンの水素原子は置換基で置き換わってもよい
。メチンが有していてもよい置換基としては、アルキル基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、ハロゲン原子およびシアノ基を好ましい例として挙げることができる。これらの置換基の中では、アルキル基、アルコキシ基、アルコキシカルボニル基、アシルオキシ基、ハロゲン原子およびシアノ基がさらに好ましく、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数2〜12アルコキシカルボニル基、炭素数2〜12アシルオキシ基、ハロゲン原子およびシアノ基がより好ましい。
1、Y2およびY3は、化合物の合成の容易さおよびコストの点において、いずれもメチンであることがより好ましく、メチンは無置換であることがさらに好ましい。
【0149】
1、L2及びL3は、それぞれ独立に単結合又は二価の連結基を表す。
1、L2およびL3が二価の連結基の場合、それぞれ独立に、−O−,−S−、−C(
=O)−、−NR7−、−CH=CH−、−C≡C−、二価の環状基およびこれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。上記R7は炭素原子数1〜7のアルキル基又は水素原子であり、炭素原子数1〜4のアルキル基又は水素原子であることが好ましく、メチル基、エチル基又は水素原子であることがさらに好ましく、水素原子であることが最も好ましい。
【0150】
1、L2およびL3における二価の環状基とは、少なくとも1種類の環状構造を有する二価の連結基(以下、環状基と呼ぶことがある)である。環状基は5員環、6員環、又は7員環であることが好ましく、5員環又は6員環であることがさらに好ましく、6員環であることが最も好ましい。環状基に含まれる環は、縮合環であってもよい。ただし、縮合環よりも単環であることがより好ましい。また、環状基に含まれる環は、芳香族環、脂肪族環、および複素環のいずれでもよい。芳香族環としては、ベンゼン環およびナフタレン環が好ましい例として挙げられる。脂肪族環としては、シクロヘキサン環が好ましい例として挙げられる。複素環としては、ピリジン環およびピリミジン環が好ましい例として挙げられる。環状基は、芳香族環および複素環がより好ましい。なお、本発明における2価の環状基は、環状構造のみ(但し、置換基を含む)からなる2価の連結基であることがより好ましい(以下、同じ)。
【0151】
1、L2およびL3で表される二価の環状基のうち、ベンゼン環を有する環状基としては、1,4−フェニレン基が好ましい。ナフタレン環を有する環状基としては、ナフタレン−1,5−ジイル基およびナフタレン−2,6−ジイル基が好ましい。シクロヘキサン環を有する環状基としては1,4−シクロへキシレン基であることが好ましい。ピリジン環を有する環状基としてはピリジン−2,5−ジイル基が好ましい。ピリミジン環を有する環状基としては、ピリミジン−2,5−ジイル基が好ましい。
【0152】
1、L2およびL3で表される二価の環状基は、置換基を有していてもよい。置換基としては、ハロゲン原子(好ましくは、フッ素原子、塩素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数が2〜16アルキニル基、炭素原子数1〜16のハロゲン置換アルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル基で置換されたカルバモイル基および炭素原子数2〜16のアシルアミノ基が含まれる。
【0153】
1、L2およびL3としては、単結合、*−O−CO−、*−CO−O−、*−CH=CH−、*−C≡C−、*−二価の環状基−、*−O−CO−二価の環状基−、*−CO−O−二価の環状基−、*−CH=CH−二価の環状基−、*−C≡C−二価の環状基−、*−二価の環状基−O−CO−、*−二価の環状基−CO−O−、*−二価の環状基−CH=CH−および*−二価の環状基−C≡C−が好ましい。特に、単結合、*−CH=CH−、*−C≡C−、*−CH=CH−二価の環状基−および*−C≡C−二価の環状基−が好ましく、単結合が最も好ましい。ここで、*は一般式(DI)中のY11、Y12およびY13を含む6員環側に結合する位置を表す。
【0154】
一般式(DI)中、H1、H2及びH3は、それぞれ独立に一般式(I−A)又は(I−B)の基を表す。
【0155】
【化28】

【0156】
一般式(I−A)中、YA1及びYA2は、それぞれ独立にメチン又は窒素原子を表し;XAは、酸素原子、硫黄原子、メチレン又はイミノを表し;
*は上記一般式(DI)におけるL1〜L3側と結合する位置を表し;
**は上記一般式(DI)におけるR1〜R3側と結合する位置を表す。
【0157】
【化29】

【0158】
一般式(I−B)中、YB1及びYB2は、それぞれ独立にメチン又は窒素原子を表し;XBは、酸素原子、硫黄原子、メチレン又はイミノを表し;
*は上記一般式(DI)におけるL1〜L3側と結合する位置を表し;
**は上記一般式(DI)におけるR1〜R3側と結合する位置を表す。
【0159】
一般式(DI)中、R1、R2及びR3は、それぞれ独立に下記一般式(I−R)を表す。
【0160】
一般式(I−R)
*−(−L101−Q2n1−L102−L103−Q1
一般式(I−R)中、*は、一般式(DI)におけるH1〜H3側と結合する位置を表す。
101は単結合又は二価の連結基を表す。L21が二価の連結基の場合、−O−、−S−、−C(=O)−、−NR7−、−CH=CH−および−C≡C−ならびにこれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。上記R7は炭素原子数1〜7のアルキル基又は水素原子であり、炭素原子数1〜4のアルキル基又は水素原子であることが好ましく、メチル基、エチル基又は水素原子であることがさらに好ましく、水素原子であることが最も好ましい。
【0161】
101は単結合、***−O−CO−、***−CO−O−、***−CH=CH−および***−C≡C−(ここで、***は一般式(I−R)中の*側を表す)のいずれかが好ましく、単結合がより好ましい。
【0162】
2は少なくとも1種類の環状構造を有する二価の基(環状基)を表す。このような環状基としては、5員環、6員環、又は7員環を有する環状基が好ましく、5員環又は6員環を有する環状基がより好ましく、6員環を有する環状基がさらに好ましい。上記環状基に含まれる環状構造は、縮合環であってもよい。ただし、縮合環よりも単環であることがより好ましい。また、環状基に含まれる環は、芳香族環、脂肪族環、および複素環のいずれでもよい。芳香族環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環が好ましい例として挙げられる。脂肪族環としては、シクロヘキサン環が好ましい例として挙げられる。複素環としては、ピリジン環およびピリミジン環が好ましい例として挙げられる。
【0163】
上記Q2のうち、ベンゼン環を有する環状基としては、1,4−フェニレン基が好ましい。ナフタレン環を有する環状基としては、ナフタレン−1,4−ジイル基、ナフタレン−1,5−ジイル基、ナフタレン−1,6−ジイル基、ナフタレン−2,5−ジイル基、ナフタレン−2,6−ジイルナフタレン−2,7−ジイル基が好ましい。シクロヘキサン環を有する環状基としては1,4−シクロへキシレン基であることが好ましい。ピリジン環を有する環状基としてはピリジン−2,5−ジイル基が好ましい。ピリミジン環を有する環状基としては、ピリミジン−2,5−ジイル基が好ましい。これらの中でも、特に、1,4−フェニレン基、ナフタレン−2,6−ジイル基および1,4−シクロへキシレン基が好ましい。
【0164】
2は、置換基を有していてもよい。置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲンで置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル置換カルバモイル基および炭素原子数2〜16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1〜3のアルキル基、トリフルオロメチル基がさらに好ましい。
【0165】
n1は、0〜4の整数を表す。n1としては、1〜3の整数が好ましく、1もしくは2がさらに好ましい。
【0166】
102は、**−O−、**−O−CO−、**−CO−O−、**−O−CO−O−、**−S−、**−NH−、**−SO2−、**−CH2−、**−CH=CH−又は**−C≡C−を表し、**はQ2側と結合する位置を表す。
102は、好ましくは、**−O−、**−O−CO−、**−CO−O−、**−O−CO−O−、**−CH2−、**−CH=CH−、**−C≡C−であり、より好ましくは、**−O−、**−O−CO−、**−O−CO−O−、**−CH2−である。L102が水素原子を含む基であるときは、該水素原子は置換基で置換されていてもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキルで置換されたカルバモイル基および炭素原子数2〜6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、炭素原子数1〜6のアルキル基がより好ましい。
【0167】
103は、−O−、−S−、−C(=O)−、−SO2−、−NH−、−CH2−、−CH=CH−および−C≡C−ならびにこれらの組み合わせからなる群より選ばれる二価の連結基を表す。ここで、−NH−、−CH2−、−CH=CH−の水素原子は、置換基で置換されていてもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキルで置換されたカルバモイル基および炭素原子数2〜6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、炭素原子数1〜6のアルキル基がより好ましい。これらの置換基に置換されることにより、本発明の液晶性化合物から液晶性組成物を調製する際に、使用する溶媒に対する溶解性を向上させることができる。
【0168】
103は、−O−、−C(=O)−、−CH2−、−CH=CH−および−C≡C−ならびにこれらの組み合わせからなる群より選ばれることが好ましい。L103は、炭素原子を1〜20個含有することが好ましく、炭素原子を2〜14個を含有することがより好ましい。さらに、L103は、−CH2−を1〜16個含有することが好ましく、−CH2−を2〜12個含有することがさらに好ましい。
【0169】
1は重合性基又は水素原子を表す。本発明の液晶性化合物を光学補償フィルムに使用する際、位相差の大きさが熱により変化しないものが好ましいので光学フィルム等に用いる場合には、Q1は重合性基であることが好ましい。重合反応は、付加重合(開環重合を含む)又は縮合重合であることが好ましい。すなわち、重合性基は、付加重合反応又は縮合重合反応が可能な官能基であることが好ましい。以下に重合性基の例を示す。
【0170】
【化30】

【0171】
さらに、重合性基は付加重合反応が可能な官能基であることが特に好ましい。そのような重合性基としては、重合性エチレン性不飽和基又は開環重合性基が好ましい。
【0172】
重合性エチレン性不飽和基の例としては、下記の式(M−1)〜(M−6)が挙げられる。
【0173】
【化31】

【0174】
式(M−3)、(M−4)中、Rは水素原子又はアルキル基を表し、水素原子又はメチル基が好ましい。
上記式(M−1)〜(M−6)の中、(M−1)又は(M−2)が好ましく、(M−1)がより好ましい。
【0175】
開環重合性基は、環状エーテル基が好ましく、エポキシ基又はオキセタニル基がより好ましい。
【0176】
前記一般式(DI)の化合物の中でも、下記一般式(DI’)で表される化合物がより好ましい。
【0177】
【化32】

【0178】
一般式(DI’)中、Y11、Y12およびY13は、それぞれ独立にメチン又は窒素原子を表し、メチンが好ましく、メチンは無置換であるのが好ましい。
【0179】
11、R12およびR13は、それぞれ独立に下記一般式(I’−A)、下記一般式(I’−B)又は下記一般式(I’−C)を表す。固有複屈折の波長分散性を小さくしようとする場合、一般式(I’−A)又は一般式(I’−C)が好ましく、一般式(I’−A)がより好ましい。R11、R12およびR13は、同一R11=R12=R13であることが好ましい。
【0180】
【化33】

【0181】
一般式(I’−A)中、A11、A12、A13、A14、A15およびA16は、それぞれ独立にメチン又は窒素原子を表す。
11およびA12は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。
13、A14、A15およびA16は、それらのうち、少なくとも3つがメチンであることが好ましく、すべてメチンであることがより好ましい。さらに、メチンは無置換であることが好ましい。
11、A12、A13、A14、A15又はA16がメチンの場合の置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲンで置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル置換カルバモイル基および炭素原子数2〜16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1〜3のアルキル基、トリフルオロメチル基がさらに好ましい。
1は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
【0182】
【化34】

【0183】
一般式(I’−B)中、A21、A22、A23、A24、A25およびA26は、それぞれ独立にメチン又は窒素原子を表す。
21およびA22は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。
23、A24、A25およびA26は、それらのうち、少なくとも3つがメチンであることが好ましく、すべてメチンであることがより好ましい。
21、A22、A23、A24、A25又はA26がメチンの場合の置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲンで置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル置換カルバモイル基および炭素原子数2〜16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1〜3のアルキル基、トリフルオロメチル基がさらに好ましい。
2は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
【0184】
【化35】

【0185】
一般式(I’−C)中、A31、A32、A33、A34、A35およびA36は、それぞれ独立にメチン又は窒素原子を表す。
31およびA32は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。
33、A34、A35およびA36は、少なくとも3つがメチンであることが好ましく、すべてメチンであることがより好ましい。
31、A32、A33、A34、A35又はA36がメチンの場合、メチンは置換基を有していてもよい。置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲンで置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル置換カルバモイル基および炭素原子数2〜16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1〜3のアルキル基、トリフルオロメチル基がさらに好ましい。X3は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
【0186】
一般式(I’−A)中のL11、一般式(I’−B)中のL21、一般式(I’−C)中のL31はそれぞれ独立して、−O−、−C(=O)−、−O−CO−、−CO−O−、−O−CO−O−、−S−、−NH−、−SO2−、−CH2−、−CH=CH−又は−C≡C−を表す。好ましくは、−O−、−C(=O)−、−O−CO−、−CO−O−、−O−CO−O−、−CH2−、−CH=CH−、−C≡C−であり、より好ましくは、−O−、−O−CO−、−CO−O−、−O−CO−O−、−C≡C−である。特に、小さい固有複屈折の波長分散性が期待できる、一般式(I’−A)中のL11は、−O−、−CO−O−、−C≡C−が特に好ましく、この中でも−CO−O−が、より高温でディスコティックネマチック相を発現できるため、好ましい。上述の基が水素原子を含む基であるときは、該水素原子は置換基で置き換わってもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキルで置換されたカルバモイル基および炭素原子数2〜6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、炭素原子数1〜6のアルキル基がより好ましい。
【0187】
一般式(I’−A)中のL12、一般式(I’−B)中のL22、一般式(I’−C)中のL32はそれぞれ独立して、−O−、−S−、−C(=O)−、−SO2−、−NH−、−CH2−、−CH=CH−および−C≡C−ならびにこれらの組み合わせからなる群より選ばれる二価の連結基を表す。ここで、−NH−、−CH2−、−CH=CH−の水素原子は、置換基で置換されていてもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキルで置換されたカルバモイル基および炭素原子数2〜6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、水酸基、炭素原子数1〜6のアルキル基がより好ましく、特にハロゲン原子、メチル基、エチル基が好ましい。
【0188】
12、L22、L32はそれぞれ独立して、−O−、−C(=O)−、−CH2−、−CH=CH−および−C≡C−ならびにこれらの組み合わせからなる群より選ばれることが好ましい。
【0189】
12、L22、L32はそれぞれ独立して、炭素数1〜20であることが好ましく、炭素数2〜14であることがより好ましい。炭素数2〜14が好ましく、−CH2−を1〜16個有することがより好ましく、−CH2−を2〜12個有することがさらに好ましい。
【0190】
12、L22、L32を構成する炭素数は、液晶の相転移温度と化合物の溶媒への溶解性に影響を及ぼす。一般的に炭素数は多くなるほど、ディスコティックネマチック相(ND相)から等方性液体への転移温度が低下する傾向にある。また、溶媒への溶解性は、一般的に炭素数は多くなるほど向上する傾向にある。
【0191】
一般式(I’−A)中のQ11、一般式(I’−B)中のQ21、一般式(I’−C)中のQ31はそれぞれ独立して重合性基又は水素原子を表す。また、Q11、Q21、Q31は重合性基であることが好ましい。重合反応は、付加重合(開環重合を含む)又は縮合重合であることが好ましい。すなわち、重合性基は、付加重合反応又は縮合重合反応が可能な官能基であることが好ましい。以下に重合性基の例については、上記と同様であり、好ましい例も上記と同様である。Q11、Q21、Q31が表す重合性基の具体例は、それぞれ、前記一般式(I−R)における重合性基Q1で挙げたものと同じであり、好ましい範囲も同じである。Q11、Q21、Q31は互いに同じでも異なってよいが、同じ場合が好ましい。
【0192】
前記一般式(DI)で表される化合物の具体例には、特開2006-76992号公報の[0052]の[化13]〜[化43]に記載の例示化合物、並びに特開2007−2220号公報の[0040]の[化13]〜[0063]の[化36]に記載の例示化合物が含まれる。但し、これらの化合物に限定されるものではない。
【0193】
上記化合物は、種々の方法により合成することができ、例えば、特開2007−2220号公報の[0064]〜[0070]に記載の方法により合成することができる。
【0194】
また、例えば、前記ディスコティック液晶化合物として、一般式(DI)で表される化合物とともに、又はそれに替えて下記一般式(DII)で表される化合物を使用してもよい。
【化36】

一般式(DII)中、LQ(又はQL)は、二価の連結基(L)と重合性基(Q)との組み合わせを意味する。
一般式(DII)において、二価の連結基(L)は、アルキレン基、アルケニレン基、アリーレン基、−CO−、−NH−、−O−、−S−およびそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。二価の連結基(L)は、アルキレン基、アリーレン基、−CO−、−NH−、−O−および−S−からなる群より選ばれる二価の基を少なくとも二つ組み合わせた二価の連結基であることがさらに好ましい。二価の連結基(L)は、アルキレン基、アリーレン基、−CO−および−O−からなる群より選ばれる二価の基を少なくとも二つ組み合わせた二価の連結基であることが最も好ましい。アルキレン基の炭素原子数は、1〜12であることが好ましい。アルケニレン基の炭素原子数は、2〜12であることが好ましい。アリーレン基の炭素原子数は、6〜10であることが好ましい。
【0195】
二価の連結基(L)の例を以下に示す。左側が円盤状コア(D)に結合し、右側が重合性基(Q)に結合する。ALはアルキレン基又はアルケニレン基、ARはアリーレン基を意味する。なお、アルキレン基、アルケニレン基およびアリーレン基は、置換基(例、アルキル基)を有していてもよい。
L1:−AL−CO−O−AL−、
L2:−AL−CO−O−AL−O−、
L3:−AL−CO−O−AL−O−AL−、
L4:−AL−CO−O−AL−O−CO−、
L5:−CO−AR−O−AL−、
L6:−CO−AR−O−AL−O−、
L7:−CO−AR−O−AL−O−CO−、
L8:−CO−NH−AL−、
L9:−NH−AL−O−、
L10:−NH−AL−O−CO−、
【0196】
L11:−O−AL−、
L12:−O−AL−O−、
L13:−O−AL−O−CO−、
L14:−O−AL−O−CO−NH−AL−、
L15:−O−AL−S−AL−、
L16:−O−CO−AL−AR−O−AL−O−CO−、
L17:−O−CO−AR−O−AL−CO−、
L18:−O−CO−AR−O−AL−O−CO−、
L19:−O−CO−AR−O−AL−O−AL−O−CO−、
L20:−O−CO−AR−O−AL−O−AL−O−AL−O−CO−、
L21:−S−AL−、
L22:−S−AL−O−、
L23:−S−AL−O−CO−、
L24:−S−AL−S−AL−、
L25:−S−AR−AL−。
【0197】
一般式(DII)の重合性基(Q)は、重合反応の種類に応じて決定する。重合性基(Q)の例を以下に示す。
【0198】
【化37】

【0199】
重合性基(Q)は、不飽和重合性基(Q1、Q2、Q3、Q7、Q8、Q15、Q16、Q17)又はエポキシ基(Q6、Q18)であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基(Q1、Q7、Q8、Q15、Q16、Q17)であることが最も好ましい。なお、複数のLとQの組み合わせは、異なっていてもよいが、同一であることが好ましい。
【0200】
本発明で用いる液晶性化合物は、良好なモノドメイン性を示す液晶相を発現することが望ましい。モノドメイン性を良好なものとすることにより、得られる構造が、ポリドメインとなり、ドメイン同士の境界に配向欠陥が生じ、光を散乱するようになるのを効果的に防ぐことができる。更に、良好なモノドメイン性を示すと、位相差板がより高い光透過率を有するため好ましい。
【0201】
本発明で用いる液晶性化合物が発現する液晶相としては、カラムナー相、及びディスコティックネマチック相(ND相)を挙げることができる。これらの液晶相の中では、良好なモノドメイン性を示し、かつ、ハイブリッド配向が可能なディスコティックネマチック相(ND相)が特に好ましい。
【0202】
本発明で用いる液晶性化合物は異方性の波長分散性が小さいほどよい。具体的には液晶性化合物が発現する位相差(波長λにおける液晶層の面内レターデーション値(nm))をRe(λ)としたとき、Re(450)/Re(650)が1.25未満であることが好ましく、1.20以下であることがより好ましく、1.15以下であることが特に好ましい。
【0203】
(2)棒状液晶化合物
本発明において前記液晶性化合物として使用可能な棒状液晶性化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が含まれる。また、前記棒状液晶性化合物としては、以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。
【0204】
前記光学異方性層において、棒状液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。本発明に使用可能な重合性棒状液晶性化合物の例は、例えば、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4,683,327号明細書、同5,622,648号明細書、同5,770,107号明細書、国際公開第95/22586号パンフレット、同95/24455号パンフレット、同97/00600号パンフレット、同98/23580号パンフレット、同98/52905号パンフレット、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、および特開2001−328973号公報等に記載されている。
【0205】
液晶組成物より成る光学異方性層には、棒状液晶化合物を用いることもできる。
棒状液晶化合物を用いる場合は、前記液晶組成物より成る光学異方性層に要求される特性を満足するために、2種以上の棒状液晶化合物を用いるのが好ましい。好ましい組み合わせとしては、下記一般式(1)で表される棒状液晶の少なくとも一種と、下記一般式(2)で表される棒状液晶の少なくとも一種との組み合わせが挙げられる。
【0206】
【化38】

【0207】
前記一般式(1)および(2)中、AおよびBはそれぞれ、芳香族もしくは脂肪族炭化水素環、又はヘテロ環の基を表し;R101〜R104はそれぞれ、置換もしくは無置換の、C1〜12(好ましくはC3〜7)のアルキレン基、又はC1〜12(好ましくはC3〜7)のアルキレン鎖を含むアルコキシ基、アシルオキシ基、アルコキシカルボニル基もしくはアルコキシカルボニルオキシ基を表し;Ra、RbおよびRcはそれぞれ置換基を表し;x、yおよびzはそれぞれ、1〜4の整数を表す。
【0208】
前記一般式(1)中、R101〜R104に含まれるアルキル鎖は、直鎖状および分岐状のいずれであってもよい。直鎖状であるのがより好ましい。また、組成物を硬化させるために、R101〜R104は末端に重合性基を有しているのが好ましく、該重合性基の例には、アクリロイル基、メタクリロイル基、およびエポキシ基等が含まれる。
【0209】
前記一般式(1)中、xおよびzは0で、且つyが1であるのが好ましく、1個のRbは、オキシカルボニル基又はアシルオキシ基に対してメタ位もしくはオルト位の置換基であるのが好ましい。RbはC1〜12のアルキル基(例えばメチル基)、ハロゲン原子(例えばフッ素原子)等が好ましい。
【0210】
前記一般式(2)中、AおよびBはそれぞれ、フェニレン基又はシクロへキシレン基であるのが好ましく、AおよびBの双方がフェニレン基であるか、又は一方がシクロへキシレン基で且つ他方がフェニレン基であるのが好ましい。
【0211】
(前記セルロースアシレートフィルムの表面処理)
前記セルロースアシレートフィルムは、表面処理を施すことが好ましい。
前記セルロースアシレートフィルムには、適宜、表面処理を行うことにより、各機能層(例えば、下塗層、バック層、光学異方性層)との接着を改善することが可能となる。前記表面処理には、グロー放電処理、紫外線照射処理、コロナ処理、火炎処理、鹸化処理(酸鹸化処理、アルカリ鹸化処理)が含まれ、特にグロー放電処理およびアルカリ鹸化処理が好ましい。ここでいう「グロー放電処理」とは、プラズマ励起性気体存在下でフィルム表面にプラズマ処理を施す処理である。これらの表面処理方法の詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)に記載があり、適宜、使用することができる。
【0212】
フィルム表面と機能層との接着性を改善するため、表面処理に加えて、或いは表面処理に代えて、前記セルロースアシレートフィルム上に、特開平7−333433号明細書に記載のように、下塗層(接着層)を設けることもできる。前記下塗層については、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)32頁に記載があり、これらを適宜、使用することができる。また、セルロースアシレートフィルム上に設けられる機能性層について、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)32頁〜45頁に記載があり、これに記載のものを適宜、前記セルロースアシレートフィルム上に使用することができる。
【0213】
フィルムの平面性を保持する観点から、これら処理において前記セルロースアシレートフィルムの温度をTg(ガラス転移温度)以下、具体的には150℃以下とすることが好ましい。
偏光板の透明保護膜として使用する場合、偏光膜との接着性の観点から、酸処理又はアルカリ処理、すなわちセルロースアシレートに対する鹸化処理を実施することが特に好ましい。以下、アルカリ鹸化処理を例に、具体的に説明する。
【0214】
アルカリ鹸化処理は、前記セルロースアシレートフィルムの表面をアルカリ溶液に浸漬した後、酸性溶液で中和し、水洗して乾燥するサイクルで行われることが好ましい。
アルカリ溶液の例としては、水酸化カリウム溶液、水酸化ナトリウム溶液が挙げられる。アルカリ溶液の水酸化イオンの規定濃度は、0.1〜3.0Nの範囲にあることが好ましく、0.5〜2.0Nの範囲にあることがさらに好ましい。アルカリ溶液の温度は、室温乃至90℃の範囲にあることが好ましく、40〜70℃の範囲にあることがさらに好ましい。
【0215】
表面処理後の前記セルロースアシレートフィルムの表面エネルギーは、55mN/m以上であることが好ましく、60m〜75mN/mであることがさらに好ましい。
固体の表面エネルギーは、「ぬれの基礎と応用」(リアライズ社 1989.12.10発行)に記載のように接触角法、湿潤熱法、および吸着法により求めることができる。前記セルロースアシレートフィルムの場合、接触角法を用いることが好ましい。
具体的には、表面エネルギーが既知である2種の溶液を前記セルロースアシレートフィルムに滴下し、液滴の表面とフィルム表面との交点において、液滴に引いた接線とフィルム表面のなす角で、液滴を含む方の角を接触角と定義し、計算によりフィルムの表面エネルギーを算出できる。
【0216】
(配向膜の形成)
配向膜は、液晶性化合物の配向方向を規定する機能を有する。配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。本発明のセルロースアシレートフィルムの製造方法において、配向膜は、ポリマーのラビング処理により形成する。配向膜の材料としては、上記光学異方性層の配向膜側の平均チルト角を所望の値にする為、ポリビニルアルコール、変性ポリビニルアルコール、ポリイミド、変性ポリイミドの他、アクリレートモノマー、メタクリレートモノマー、ポリスチレンなどを利用することができるが、所望の平均チルト角を達成できれば、上記範囲に限定されるものではない。例えば、特開2002−98836号公報段落番号[0014]〜[0016]、に記載のコポリマー化合物を用いることが好ましく、特に[0024]〜[0029]、及び[0173]〜[0180]に記載のコポリマー化合物を用いることが、光学異方性層の微小な配向軸分布を改善するという観点で、より好ましい。また、特開2005−99228号公報段落番号[0007]〜[0012]に記載のコポリマー化合物を用いることが好ましく、特に[0016]〜[0020]に記載のコポリマー化合物を用いることが微小な配向軸分布を改善するという観点でより好ましい。上記2つの公開公報に記載のコポリマー化合物は、配向膜と光学異方性層との密着性を改良する観点から各コポリマーの構成単位が、ビニル基などの重合性基で置換されていることがさらに好ましい。
【0217】
前記光学異方性層のReは、60nm未満であることが好ましいが、特に55〜20nmであることがより好ましい。
また、前記光学異方性層は、ハイブリッド配向した液晶組成物からなる。配向膜側の液晶分子の平均チルト角が、反対側の液晶分子の平均チルト角より大きいハイブリッド配向が特に好ましい。配向膜面側の液晶分子が45°以上傾いている(平均チルト角が45°以上である)のが好ましく、50°以上傾いているとラビングの方位角の方位角規制力に対する安定性が増し、微小な配向軸分布が改善される点で、より好ましい。一方で配向膜面側と反対側のDLC分子は45°以下の傾きを有する(平均チルト角が45°以下である)のが好ましく、40°以下の傾きであればハイブリッド配向が安定に形成され、斜め入射をより正確に補償することができ、より高い視野角CRを提供できるので、より好ましい。
なお、ディスコティック液晶分子が45°以上傾いている状態とは、分子の円盤面が平面方向となす角度が45°以上傾いていることを意味する。
配向膜側の液晶分子の平均チルト角を45°以上にする手段は、光学異方性層中にチルト角を調整可能な添加剤を添加して、平均チルト角を所望の範囲に調整する手段;配向膜を選択して、平均チルト角を所望の範囲にする手段;その他斜方蒸着、光配向などの手段;のいずれか1つ又は2以上を組合せて、実施することができる。
前記液晶組成物より成る光学異方性層にRe(550)が0nmになる方向が存在せず、且つRe(550)の絶対値が最小となる方向が、層の法線方向にも面内にもないことが好ましい。さらに、セルロースアシレートフィルムの配向処理後の配向膜上に、円盤状の液晶組成物をハイブリッド配向状態に固定して形成される光学異方性層であることが好ましい。
すなわち、前記液晶組成物より成る光学異方性層が円盤状液晶化合物を含むことが、液晶セルの補償の観点から好ましい。
【0218】
液晶組成物より成る光学異方性層のRe(550)が20nm以上であると、従来同様の構成のセルロースアシレートフィルムで達成していた光学補償能が十分得られる。また、60nm未満の場合、Re(550)が0nmになる方向が存在しない場合、Re(550)の絶対値が最小となる方向が層の法線方向か面内に存在しない場合には、ハイブリッド配向しているセルの液晶を十分補償する事ができるようになるためコントラスト視野角および色味が良化し、好ましい。
液晶組成物より成る光学異方性層のRe(550)は、20〜40nmであることがより好ましく、25〜40nmであることが特に好ましい。
【0219】
前記光学補償フィルムの製造方法は、前記セルロースアシレートフィルムの配向膜が形成されている側の表面に液晶組成物より成る光学異方性層を形成する工程を含む。前記液晶組成物より成る光学異方性層は、前記セルロースアシレートフィルムの配向膜が形成されている側の表面に形成される。詳しくは、前記液晶組成物より成る光学異方性層は、液晶化合物を少なくとも一種含有する液晶組成物より成る光学異方性層用の組成物を、前記セルロースアシレートフィルムの配向膜が形成されている側の表面に配置し、液晶化合物の分子を所望の配向状態とし、重合により硬化させ、その配向状態を固定して形成するのが好ましい。さらにRe(550)が0nmになる方向が存在せず、且つRe(550)の絶対値が最小となる方向が、層の法線方向にも面内にもないという、液晶組成物より成る光学異方性層に要求される特性を満足するためには、液晶化合物の分子(棒状および円盤状分子の双方を含む)をハイブリッド配向状態に固定することがより好ましい。ハイブリッド配向とは、層の厚み方向で液晶分子のダイレクタの方向が連続的に変化する配向状態をいう。棒状分子の場合は、ダイレクタは長軸方向、円盤状分子の場合は、ダイレクタは円盤面の法線方向となる。
【0220】
液晶化合物の分子を所望の配向状態とするため、および液晶組成物の塗布性もしくは硬化性の良化のために、前記組成物は一種以上の添加剤を含んでいてもよい。
液晶化合物(特に棒状液晶化合物)の分子をハイブリッド配向させるために、層の空気界面側の配向を制御し得る添加剤(以下、「空気界面配向制御剤」という)を添加してもよい。該添加剤として、フッ化アルキル基およびスルホニル基等の親水性基を有する低分子量もしくは高分子量の化合物が挙げられる。使用可能な空気界面配向制御剤の具体例には、特開2006−267171号公報等に記載の化合物が含まれる。
【0221】
また、前記液晶組成物を塗布液として調製し、塗布により前記液晶組成物より成る光学異方性層を形成する場合は、塗布性の良化のために界面活性剤を添加してもよい。界面活性剤としては、フッ素系化合物が好ましく、具体的には、例えば特開2001−330725号公報明細書中の段落番号[0028]〜[0056]記載の化合物が挙げられる。また市販の「メガファックF780」(大日本インキ製)などを用いてもよい。
【0222】
また、特開2006−11350号公報の段落番号[0010]〜[0016]、[0042]〜[0063]に記載の例示化合物、並びに、特開2006−195140号公報の段落番号[0209]〜[0238]に記載の例示化合物を添加することで配向膜側のチルト角を調整することができる。
【0223】
また、前記液晶組成物は、重合開始剤を含有しているのが好ましい。前記重合開始剤は、熱重合開始剤であっても光重合開始剤であってもよいが、制御が容易である等の観点から、光重合開始剤が好ましい。光の作用によりラジカルを発生させる光重合開始剤の例としては、α−カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)、アセトフェノン系化合物、ベンゾインエーテル系化合物、ベンジル系化合物、ベンゾフェノン系化合物、チオキサントン系化合物等が好ましい。アセトフェノン系化合物としては、例えば、2,2−ジエトキシアセトフェノン、2−ヒドロキシメチル−1−フェニルプロパン−1−オン、4'−イソプロピル−2−ヒドロキシ−2−メチル−プロピオフェノン、2−ヒドロキシ−2−メチル−プロピオフェノン、p−ジメチルアミノアセトン、p−tert−ブチルジクロロアセトフェノン、p−tert−ブチルトリクロロアセトフェノン、p−アジドベンザルアセトフェノン等が挙げられる。ベンジル系化合物としては、例えば、ベンジル、ベンジルジメチルケタール、ベンジル−β−メトキシエチルアセタール、1−ヒドロキシシクロヘキシルフェニルケトン等が挙げられる。ベンゾインエーテル系化合物としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾイン−n−プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン−n−ブチルエーテル、ベンゾインイソブチルエーテル等が挙げられる。ベンゾフェノン系化合物としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、ミヒラーズケトン、4,4'−ビスジエチルアミノベンゾフェノン、4,4'−ジクロロベンゾフェノン等が挙げられる。チオキサントン系化合物としては、例えば、チオキサントン、2−メチルチオキサントン、2−エチルチオキサントン、2−イソプロピルチオキサントン、4−イソプロピルチオキサントン、2−クロロチオキサントン、2,4−ジエチルチオキサントン等が挙げられる。このような芳香族ケトン類からなる感光性ラジカル重合開始剤の中でも、アセトフェノン系化合物およびベンジル系化合物が、硬化特性、保存安定性、臭気等の面で特に好ましい。これらの芳香族ケトン類からなる感光性ラジカル重合開始剤は、1種又は2種以上のものを所望の性能に応じて配合して使用することができる。
また、感度を高める目的で重合開始剤に加えて、増感剤を用いてもよい。増感剤の例には、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、およびチオキサントン等が含まれる。
【0224】
光重合開始剤は複数種を組み合わせてもよく、使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがより好ましい。液晶化合物の重合のための光照射は紫外線を用いることが好ましい。
【0225】
前記液晶組成物は、重合性液晶化合物とは別に、非液晶性の重合性モノマーを含有していてもよい。重合性モノマーとしては、ビニル基、ビニルオキシ基、アクリロイル基又はメタクリロイル基を有する化合物が好ましい。なお、重合性の反応性官能基数が2以上の多官能モノマー、例えば、エチレンオキサイド変性トリメチロールプロパンアクリレートを用いると、耐久性が改善されるので好ましい。
前記非液晶性の重合性モノマーは、非液晶性成分であるので、その添加量が、液晶化合物に対して15質量%を超えることはなく、0〜10質量%程度であるのが好ましい。
【0226】
前記液晶組成物よりなる光学異方性層は、前記液晶組成物を塗布液として調製し、該塗布液を、例えば、支持体となる前記セルロースアシレートフィルムの配向膜側の表面上に塗布し、乾燥して溶媒を除去するとともに、液晶化合物の分子を配向させ、その後、重合により硬化させて、形成することができる。利用可能な配向膜の例としては、前記配向膜の形成で例示したポリマーを用いることができ、例えばポリビニルアルコール膜やポリイミド膜等が挙げられる。
塗布方法としてはカーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、ワイヤーバー法等の公知の塗布方法が挙げられる。
塗膜を乾燥する際には、加熱してもよい。塗膜を乾燥して溶媒を除去すると同時に、塗膜中の液晶化合物の分子を配向させて、所望の配向状態を得る。
【0227】
次に、紫外線照射等によって重合を進行させて、配向状態を固定化し、液晶組成物より成なる光学異方性層を形成する。重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2〜50J/cm2であることが好ましく、100mJ/cm2〜800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
【0228】
本発明の製造方法により製造されたセルロースアシレートフィルムを捩れ配向モードの液晶表示装置に利用する一態様は、偏光板の保護フィルム、特に内側保護フィルムとして利用する態様である。内側保護フィルムとして利用され、且つ前記光学補償フィルムの支持体としも利用されていてもよい。具体的には、前記セルロースアシレートフィルムは、該セルロースアシレートフィルムと偏光膜とを少なくとも有する偏光板にも応用できる。前記偏光板を液晶表示装置に組み込む際は、前記セルロースアシレートフィルムを液晶セル側にして配置するのが好ましい。また、前記セルロースアシレートフィルムの表面と偏光膜の表面とを貼り合わせるのが好ましく、前記セルロースアシレートフィルムの面内遅相軸と、偏光膜の透過軸との交差角は、略0度として貼り合せるのが好ましい。厳密に0度である必要はなく、製造上許容される±5度程度の誤差は、本発明の効果に影響するものではなく、許容される。また、偏光膜の他方の面にも、セルロースアシレートフィルム等の保護フィルムが貼り合せられているのが好ましい。
【0229】
(偏光膜)
偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜があり、本発明にはいずれを使用してもよい。ヨウ素系偏光膜および染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。
【0230】
(保護フィルム)
偏光膜の他方の表面に貼合される保護フィルムには、透明なポリマーフィルムを用いることが好ましい。透明であるとは、光透過率が80%以上であることを意味する。保護フィルムとしては、セルロースアシレートフィルム、およびポリオレフィンを含むポリオレフィンフィルムが好ましい。セルロースアシレートフィルムの中でも、セルローストリアセテートフィルムが好ましい。また、ポリオレフィンフィルムの中でも、環状ポリオレフィンを含むポリノルボルネンフィルムが好ましい。
前記保護フィルムの厚さは、20〜500μmであることが好ましく、50〜200μmであることがさらに好ましい。
【0231】
(光拡散フィルム)
前記偏光板は、偏光膜の片側表面上に光拡散フィルムを有していてもよい。光拡散不フィルムは一層のフィルムであっても、また積層フィルムであってもよい。積層フィルムの態様の例としては、光透過性ポリマーフィルムの上に、光散乱層を有する光拡散フィルムが挙げられる。光拡散フィルムは、上下左右方向に視角を傾斜させたときの視野角改良に寄与するものであり、表示面側の偏光膜の外側に反射防止層を配置した態様において、特に高い効果を奏する。光拡散フィルム(又はその光散乱層)は微粒子をバインダー中に分散させた組成物から形成することができる。微粒子は無機微粒子であっても有機微粒子であってもよい。バインダーと微粒子とは、屈折率差が0.02〜0.20程度あるのが好ましい。また、前記光拡散フィルム(又はその光散乱層)は、ハードコート機能を兼ね備えていてもよい。本発明に利用可能な光拡散フィルムについては、例えば、光散乱係数を特定化した特開11−38208号公報、透明樹脂と微粒子の相対屈折率を特定範囲とした特開2000−199809号公報、ヘイズ値を40%以上と規定した特開2002−107512号公報等が挙げられる。
【0232】
(ハードコートフィルム、防眩フィルム、反射防止フィルム)
前記セルロースアシレートフィルムは、場合により、ハードコートフィルム、防眩フィルム、反射防止フィルムへ適用してもよい。LCD、PDP、CRT、EL等のフラットパネルディスプレイの視認性を向上する目的で、前記セルロースアシレートフィルムの片面又は両面にハードコート層、防眩層、反射防止層の何れか或いは全てを付与することができる。このような防眩フィルム、反射防止フィルムとしての望ましい実施態様は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)54頁〜57頁に詳細に記載されており、前記セルロースアシレートフィルムにおいても好ましく用いることができる。
【0233】
(偏光板の作製方法)
前記偏光板は、長尺状の偏光板として製造することができる。例えば、前記セルロースアシレートフィルムを用い、その表面に、所望により配向膜形成用塗布液を塗布して配向膜を形成し、引き続き、液晶組成物よりなる光学異方性層形成用塗布液を前記セルロースアシレートフィルムの配向膜側の表面上に連続的に塗布して、乾燥により所望の配向状態とした後、光照射して配向状態を固定して液晶組成物よりなる光学異方性層を形成して、長尺状の前記位相差フィルムを作製し、ロール状に巻き上げることができる。別途、長尺状の偏光膜、および保護フィルム用の長尺状のポリマーフィルムをロール状に巻き上げたものと、ロール・ツー・ロールで貼り合せ、長尺状の偏光板として作製することができる。長尺状の偏光板は、例えば、ロール状に巻き上げられた状態で搬送および保管等され、液晶表示装置に組み込まれる際に、所定の大きさに裁断される。なお、前記偏光板は長尺状でなくてもよく、ここに記載した作製方法は一例に過ぎない。
前記セルロースアシレートフィルムを作製する際に、フィルムの搬送方向と直交する方向に延伸すれば、偏光板作成時にロール・ツー・ロールの加工が可能となり、工程の簡略化、偏光膜の軸との貼り合わせ精度の向上等が達成できるため好ましい。
後述する垂直配向モードの液晶表示装置に用いられる偏光板には、捩れ配向モードの液晶表示装置に用いられる偏光板において形成する光学異方性層及び配向膜はなくてもよい。
【0234】
図1に本発明の製造方法によって製造されたセルロースアシレートフィルムを有する捩れ配向モード液晶表示装置の一例の断面模式図を示す。
図1に示す液晶表示装置は、TNモード等の捩れ配向モードの液晶セル10と、その上下に、楕円偏光板22a及び22bをそれぞれ有する。楕円偏光板22a及び22bは、直線偏光膜18a及び18bを有し、さらに、液晶組成物からなる光学異方性層12a及び12bと、その支持体であるセルロースアシレートフィルム14a及び14bとを有する光学補償フィルム16a及び16bを有する。光学異方性層12a及び12bは、捩れ配向モードの液晶セル10中の液晶分子が基板面近傍で傾斜配向しているのに起因して、斜め方向に生じる複屈折を光学補償する作用があり、その観点では、ハイブリッド配向状態に固定された円盤状液晶化合物を含有しているのが好ましい。セルロースアシレートフィルム14a及び14bは、本発明の製造方法で製造されたフィルムであり、高Re及び高Rthを示すフィルムであり、光学異方性層12a及び12bのみでは不足するRthを分担し、光学補償に寄与している。
【0235】
セルロースアシレートフィルム14a及び14bはそれぞれ、偏光子18a及び18bの保護フィルムとしても利用されている。直線偏光膜18a及び18bの吸収軸は互いに直交にして配置されている。またセルロースアシレートフィルム14a及び14bのそれぞれの面内遅相軸は、より近くに配置されている直線偏光膜18a及び18bそれぞれの吸収軸と、直交の関係になっている。直線偏光膜18a及び18bのそれぞれの外側には、外側保護フィルム20a及び20bが配置されている。外側保護フィルム20a及び20bは、本発明の製造方法によって製造されるセルロースアシレートフィルムであってもよいし、他のフィルムであってもよい。光学補償には関与しないので、耐久性及びコスト等の観点に、種々のポリマーフィルムから選択されるであろう。
【0236】
本発明において利用するTNモード液晶セルは、セル基板の内面に少なくとも3つの絵素領域に対応するように透過主波長の異なるカラーフィルタが形成されていることが好ましい。前記絵素領域は、R、G、Bの3つの絵素領域からなることが好ましい。本発明では、左右方向の黄色味変化を抑制するために、各絵素領域に対応する液晶層の厚みが少なくとも2つの絵素領域で異なることが好ましい。各絵素領域の好ましい液晶層の厚みは、液晶セルのΔnd、液晶の波長分散、カラーフィルタ透過率等により異なるが、B絵素の厚み≦G絵素の厚み≦R絵素の厚みの関係であることが好ましい。また、dB(B絵素厚み)/dR(R絵素厚み)は、0.95以下であることが好ましく、0.9以下であることがより好ましく、0.8以下であることがさらに好ましい。液晶層の厚みの調整は特に限定されないが、例えば、各色のカラーフィルタの厚みを変えることにより、対応する液晶層の厚みを変えることができる。また、液晶層厚み調整によるB絵素とR絵素のΔndの比、ΔndB(波長450nm)/ΔndR(波長630nm)は、1.05以下であることが好ましく、1.0以下であることがより好ましく、0.9以下であることがさらに好ましい。
【0237】
垂直配向モード液晶表示装置用セルロースアシレートフィルム:
本発明の製造方法によって製造されるセルロースアシレートフィルムは、光学補償フィルムとして、又は偏光板の保護フィルム(液晶セル側に配置される内側保護フィルムであるのが好ましい)として、VAモード等の垂直配向モード液晶表示装置に用いることができる。垂直配向モード液晶表示装置に用いられるセルロースアシレートフィルムは、高Re且つ高Rthを示すのが好ましく、Reが5〜50nm、且つRthが90〜150nmであるのが好ましい。
【0238】
図2に本発明の製造方法によって製造されたセルロースアシレートフィルムを有する垂直配向モード液晶表示装置の一例の断面模式図を示す。
図2に示す液晶表示装置は、VAモード等の垂直配向モードの液晶セル10’と、その上下に、楕円偏光板22a’及び22b’をそれぞれ有する。楕円偏光板22a’及び22b’は、直線偏光膜18a及び18bを有し、さらにその内側保護フィルムとして、セルロースアシレートフィルム14a’及び14b’をそれぞれ有する。セルロースアシレートフィルム14a’及び14b’は、本発明の製造方法で製造されたフィルムであり、高Re及び高Rthを示すフィルムである。セルロースアシレートフィルム14a’及び14b’は、斜め方向において、直線偏光膜18a及び18bの吸収軸の関係が、直交関係からずれることによって生じる黒表示時の光漏れを軽減するのに寄与する。
【0239】
セルロースアシレートフィルム14a’及び14b’はそれぞれ、偏光子18a及び18bの保護フィルムとしても利用されている。直線偏光膜18a及び18bの吸収軸は互いに直交にして配置されている。またセルロースアシレートフィルム14a’及び14b’のそれぞれの面内遅相軸は、より近くに配置されている直線偏光膜18a及び18bそれぞれの吸収軸と、直交の関係になっている。直線偏光膜18a及び18bのそれぞれの外側には、外側保護フィルム20a及び20bが配置されている。外側保護フィルム20a及び20bは、本発明の製造方法によって製造されるセルロースアシレートフィルムであってもよいし、他のフィルムであってもよい。外側保護フィルム20a及び20bは、光学補償には関与しないので、耐久性及びコスト等の観点に、種々のポリマーフィルムから選択してもよい。
【実施例】
【0240】
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
【0241】
《測定法》
まず、実施例および比較例において用いた特性の測定法および評価法を以下に示す。
(1)置換度
セルロースアシレートのアシル置換度は、Carbohydr.Res.273(1995)83-91(手塚他)に記載の方法で13C−NMRにより求めた。
【0242】
(2)結晶化熱(ΔHc)
DSC測定装置(DSC8230:(株)リガク製)を用い、DSCのアルミニウム製測定パン(Cat.No.8578:(株)リガク製)にセルロースアシレートフィルムを5〜6mg入れ、これを50mL/分の窒素気流中で25℃から120℃まで20℃/分の昇温速度で昇温して15分保持した後、30℃まで−20℃/分で冷却し、さらにこの後、再度30℃から320℃まで20℃/分の昇温速度で昇温した際に現れた発熱ピークと試料のベースラインとで囲まれる面積をセルロースアシレートフィルムの結晶化熱とした。
【0243】
1.セルロースアシレートフィルムの作製
(1−1)ドープの調製
下記表に示す組成、且つ数平均分子量のオリゴマーを、下記表に示す添加量で含む、セルロースアセテート溶液をそれぞれ調製した。
――――――――――――――――――――――――――――――――――――――
セルロースアセテート溶液の組成
――――――――――――――――――――――――――――――――――――――
・平均置換度2.86のセルロースアセテート 100.0質量部
・メチレンクロライド(第1溶媒) 475.9質量部
・メタノール(第2溶媒) 113.0質量部
・ブタノール (第3溶媒) 5.9質量部
・平均粒子サイズ16nmのシリカ粒子 0.13質量部
(AEROSIL R972、日本アエロジル(株)製)
・オリゴマー(組成を下記表に示す) 下記表に示す
――――――――――――――――――――――――――――――――――――――
【0244】
調製したそれぞれの溶液を、流延ギーサーを通して直径3mのドラムである鏡面ステンレス支持体上に、下記表に示すPITドロー条件で、それぞれ流延した。
次に、支持体上のウェブの残留溶媒量及び膜面温度が、それぞれ下記表に示す値になった時に、それぞれ下記表に示す延伸倍率で、ウェブをTD方向にそれぞれ延伸処理した。延伸処理は、ウェブの両端をピン状テンターで把持して搬送方向と直交する方向に広げることによりTD方向にそれぞれ延伸した。
延伸後、ウェブの残留溶媒量が下記表に示す値になった時、下記表に示す膜面温度で、ウェブをそれぞれ熱処理した。熱処理は、乾燥ゾーンの温度を乾燥風によって制御することにより行った。また、熱処理は、ピン状テンターを固定した条件で行った。
【0245】
以下の表に各フィルムの作製条件、及び各フィルムの光学特性を示す。なお、表中のReは流延方向に対して直交方向をプラスとして表記した。
【0246】
【表1】

【0247】
【表2】

【0248】
【表3】

【0249】
上記表に示す結果から、本発明の製造方法により製造された実施例1〜12のセルロースアシレートフィルムは、Reが5〜20nmで且つRthが90〜150nmの光学特性を示す、捩れ配向モード液晶表示装置用光学フィルムに有用なフィルムであることが理解できる。なお、実施例10及び11では、Reが5〜50nmで且つRthが90〜150nmの光学特性を示す、垂直配向モード液晶表示装置用光学フィルムに有用なフィルムであることが理解できる。
一方、芳香族基を含有していないオリゴマーやオリゴマー以外を可塑剤として利用し、実施例2と同一の条件で製造した比較例1及び2のセルロースアシレートフィルムは、Re及びRthの双方の発現性が低く、捩れ配向モード、垂直配向モード液晶表示装置用の光学フィルムとしては、適する特性ではなかった。
また、芳香族基含有オリゴマーを可塑剤として利用していても、オリゴマーの配向度を上昇させるに十分な温度で熱処理していない比較例3も、同様に、捩れ配向モード、垂直配向モード液晶表示装置用の光学フィルムとしては、適する特性のセルロースアシレートフィルムが得られなかった。
【0250】
2.TNモード液晶表示装置の作製
(2)−1 セルロースアシレートフィルムの鹸化処理
上記で得られたセルロースアシレートフィルム実施例1〜6、8、9のそれぞれについて、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、下記に示す組成のアルカリ溶液を、バーコーターを用いて14ml/m2で塗布し、110℃に加熱したスチーム式遠赤外線ヒーター((株)ノリタケカンパニー製)の下に10秒滞留させた後に、同じくバーコーターを用いて純水を3ml/m2塗布した。この時のフィルム温度は40℃であった。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に70℃の乾燥ゾーンに2秒滞留させて乾燥した。────────────────────────────────────
鹸化処理用のアルカリ溶液の組成
────────────────────────────────────
・水酸化カリウム 4.7質量部
・水 15.7質量部
・イソプロパノール 64.8質量部
・プロピレングリコール 14.9質量部
・界面活性剤(C1633O(CHCH0)10H) 1.0質量部
────────────────────────────────────
【0251】
(2)−2 配向膜の形成
鹸化したセルロースアシレートフィルムの鹸化処理面に、下記の組成の配向膜形成用塗布液を#14のワイヤーバーコーターで24ml/m2塗布し、100℃の温風で120秒乾燥した。配向膜の厚さは1.2μmであった。次に、フィルムの長手方向(搬送方向)を0°とし、形成した配向膜に幅2000mmのラビングローラを用いて、ラビングローラの回転数400rpmで0°方向に、ラビング処理を実施した。この際、搬送速度は40m/分であった。続いてラビング処理面を超音波除塵した。
――――――――――――――――――――――――――――――――――――――
配向膜形成用塗布液の組成
――――――――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコール 40質量部
・水 728質量部
・メタノール 228質量部
・グルタルアルデヒド(架橋剤) 2質量部
・クエン酸エステル(AS3、三共化学(株)) 0.69質量部
――――――――――――――――――――――――――――――――――――――
【0252】
【化39】

【0253】
(2)−3 光学異方性層の形成
除塵後の配向膜のラビング処理面に、下記表に示した組成の光学異方性層用塗布液をワイヤーバーで塗布した。その後、130℃の恒温槽中で120秒間加熱し、ディスコティック液晶化合物を配向させた。次に、80℃で160W/cm高圧水銀灯を用いて、40秒紫外線照射し架橋反応を進行させて、ディスコティック液晶化合物を重合させた。その後、室温まで放冷した。
得られた光学異方性層単独の波長550nmで測定したReは45nmであった。光学異方性層単独の膜厚を下記表に記載した。また、第1の光学異方性層中、円盤状液晶化合物の分子は、ハイブリッド配向状態に固定されていて、Re(550)が0nmになる方向が存在せず、且つRe(550)の絶対値が最小となる方向が、層の法線方向にも面内にもないことを、フィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長550nmの光を入射させて全部で11点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基にKOBRA 21ADHから確認した。同様にKOBRA 21ADHを用いて光学異方性層中のディスコティック液晶化合物の円盤面の傾斜角度を計測した。この場合、上チルト角は空気界面側を、下チルト角は配向膜側界面を表す。
【0254】
――――――――――――――――――――――――――――――――――――――
光学異方性層形成用塗布液の組成
――――――――――――――――――――――――――――――――――――――
・メチルエチルケトン 270質量部
・下記表(液晶組成)に示す第一液晶性化合物 90質量部
・下記表(液晶組成)に示す第二液晶性化合物 10質量部
・下記構造の空気界面配向制御剤 1.0質量部
・光開始剤 イルガキュア907 チバ・ジャパン(株)製 3.0質量部
・増感剤 カヤキュア DETX 日本化薬製 1.0質量部
――――――――――――――――――――――――――――――――――――――
【0255】
この様にして、光学補償フィルム21〜28を作製した。これらの光学補償フィルムの作製に支持体として利用したセルロースアシレートフィルム、及び光学異方性層の形成に利用した液晶化合物の種類を、以下の表にまとめる。
【0256】
【表4】

【0257】
【化40】

【0258】
【化41】

【0259】
(2)−4 光学補償フィルム29の作製
実施例7で作製したセルロースアシレートフィルムの上に、以下の方法により光学異方性層を形成し、光学補償シート29を作製した。
セルロースアシレートフィルムの鹸化処理:
上記で得られたセルロースアシレートフィルムを温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、下記に示す組成のアルカリ溶液をバーコーターを用いて14ml/m2で塗布し、110℃に加熱したスチーム式遠赤外線ヒーター((株)ノリタケカンパニー製)の下に10秒滞留させた後に、同じくバーコーターを用いて純水を3ml/m2塗布した。この時のフィルム温度は40℃であった。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に70℃の乾燥ゾーンに2秒滞留させて乾燥した。
【0260】
────────────────────────────────────
鹸化処理用のアルカリ溶液の組成
────────────────────────────────────
・水酸化カリウム 4.7質量部
・水 15.7質量部
・イソプロパノール 64.8質量部
・プロピレングリコール 14.9質量部
・界面活性剤(C1633O(CHCHO)10H) 1.0質量部
────────────────────────────────────
【0261】
配向膜の形成:
鹸化したセルロースアシレートフィルムの鹸化処理面に、下記の組成の配向膜形成用塗布液を#14のワイヤーバーコーターで24ml/m2塗布し、100℃の温風で120秒乾燥した。配向膜の厚さは1.2μmであった。次に、フィルムの長手方向(搬送方向)を0°とし、形成した配向膜に幅2000mmのラビングローラを用いて、ラビングローラの回転数400rpmで0°方向に、ラビング処理を実施した。この際、搬送速度は40m/分であった。続いてラビング処理面を超音波除塵した。
【0262】
―――――――――――――――――――――――――――――――――――――
配向膜形成用塗布液の組成
―――――――――――――――――――――――――――――――――――――
・下記の配向膜用ポリマー 40質量部
・水 700質量部
・メタノール 300質量部
・トリエチルアミン 20質量部
―――――――――――――――――――――――――――――――――――――
【0263】
【化42】

【0264】
光学異方性層の形成:
除塵後の配向膜のラビング処理面に、下記表に示した組成の光学異方性層用塗布液をワイヤーバーで塗布した。その後、130℃の恒温槽中で120秒間加熱し、ディスコティック液晶化合物を配向させた。次に、80℃で160W/cm高圧水銀灯を用いて、40秒紫外線照射し架橋反応を進行させて、ディスコティック液晶化合物を重合させた。その後、室温まで放冷した。
――――――――――――――――――――――――――――――――――――――
光学異方性層形成用塗布液の組成
――――――――――――――――――――――――――――――――――――――
・メチルエチルケトン 270質量部
・下記A1のディスコティック液晶性化合物 100質量部
・下記B1の空気界面配向制御剤 1.0質量部
・光開始剤 イルガキュア907 チバ・ジャパン(株)製 3.0質量部
・増感剤 カヤキュア DETX 日本化薬製 1.0質量部
――――――――――――――――――――――――――――――――――――――
【0265】
【化43】

【0266】
【化44】

【0267】
得られた光学異方性層の厚みは1μm、上チルト角と下チルト角はそれぞれ、20度及び70度であった。
【0268】
(2)−5 偏光板の作製
厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光膜を得た。
作製した光学補償フィルム21〜29それぞれのセルロースアシレートフィルム側の露出面(液晶組成物よりなる光学異方性層が形成されていない側の表面)を1.5モル/Lで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、0.005モル/Lで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬して希硫酸水溶液を十分に洗い流し、最後に120℃で十分に乾燥させた。
前記のように鹸化処理を行ったフィルムを、同じく鹸化処理を行った市販のセルロースアセテートフィルムと組合せて前記の偏光膜を挟むようにポリビニルアルコール系接着剤を用いて、鹸化処理面を貼り合せることにより偏光板を得た。ここで市販のセルロースアセテートフィルムとしてはフジタックTF80UL(富士フイルム(株)製)を用いた。このとき、偏光膜および偏光膜両側の保護膜はロール形態で作製されているため各ロールフィルムの長手方向が平行となっており連続的に貼り合わせた。従ってフィルムの長手方向(フィルムの流延方向)と偏光膜の吸収軸とは平行な方向となった。
光学補償フィルム21〜29をそれぞれ有する偏光板31〜39をそれぞれ作製した。
【0269】
(2)−6 TNモード液晶表示装置の作製
図1と同様の構成のTNモード液晶表示装置を作製した。具体的には、TNモード液晶セルを使用した液晶表示装置(AL2216W、日本エイサー(株)製)に設けられている一対の偏光板を剥がし、代わりに上記の作製した偏光板を、光学異方性層が液晶セル側となるように粘着剤を介して、観察者側およびバックライト側に一枚ずつ貼り付けた。このとき、観察者側の偏光板の透過軸と、バックライト側の偏光板の透過軸とが直交するように配置した。このようにして、TNモード液晶表示装置101〜109をそれぞれ作製した。
【0270】
3.VAモード液晶表示装置の作製
(3)−1 VA用偏光板の作製
厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光膜を得た。
市販のトリアセチルセルロースフィルムであるTD80(富士フイルム(株)製)を、それぞれ55℃の水酸化ナトリウム水溶液(濃度1.5モル/L)中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、35℃の希硫酸水溶液(濃度0.005モル/L)に1分間浸漬した後、水に浸漬して希硫酸水溶液を十分に洗い流した。最後に120℃で十分に乾燥させて鹸化処理を終了した。
上記で作製した実施例11のセルロースアシレートフィルムのそれぞれについても、同様に鹸化処理した。
【0271】
上記作製した偏光膜の一方の表面に貼合し、トリアセチルセルロースフィルムTD80の鹸化処理面、及び反対側の表面に、実施例11のセルロースアシレートフィルムの鹸化処理面をそれぞれ貼合し、偏光板41をそれぞれ作製した。
【0272】
(3)−2 VAパネル作製
LC−46LX1(Sharp社製)に貼られている表裏の偏光板を剥がし、光源側に偏光板41を液晶セルの遅相軸とリア偏光板の吸収軸が直交し、実施例11のセルロースアシレートフィルムが液晶セル側となるように粘着剤により貼り付け、また、液晶セルの反対側にも、偏光板41を液晶セルの遅相軸とリア偏光板の吸収軸が直交するように、偏光板の実施例11のセルロースアシレートフィルムを液晶セル側にし、粘着剤により貼り付けることにより、図2と同様の構成のVA型液晶表示装置を作製した。
【0273】
4. 液晶表示装置の評価
上記で作製したTNモード液晶表示装置について、上下左右の視野角、及びVAモード液晶表示装置について、斜め45度方向の視野角を算出した。
具体的には、各実施例で作製した液晶表示装置について、測定機(EZ−Contrast160D、ELDIM社製)を用いて、黒表示(L1)と白表示(L8)のコントラスト視野角を測定した。極角80度における上下左右方向(TN)又は斜め45度方向(VA)で、コントラスト比(白透過率/黒透過率)の平均値を求めた。以下の基準で評価した。
◎:50以上
○:50未満、40以上
△:40未満、30以上
×:30未満
【0274】
その結果、本発明の製造方法で作製したセルロースアシレートフィルムをそれぞれ有するTNモード、及びVAモード液晶表示装置のいずれについても、「○」以上の評価結果を得られた。また、実施例7及び11のセルロースアシレートフィルムをそれぞれ用いて作製した光学補償シート29及び30をそれぞれ適用したTNモード液晶表示装置は、実施例1〜6,8及び9のそれぞれのセルロースアシレートフィルムを利用したTNモード液晶表示装置と比べて正面コントラストが高く、具体的には1.5倍であった。
【0275】
5.TNモード液晶表示装置の作製
(5)−1 セルロースアシレートフィルムの作製(実施例14)
実施例3において、表5に示す波長分散調整剤をさらに3.2質量%添加させた以外は、実施例3と同様にして、実施例14のセルロースアシレートフィルムを作製した。
さらに、以下の表5〜表11に記載の作製条件に従って、実施例13、及び実施例15〜48のフィルムをそれぞれ作製した。得られた各フィルムの光学特性についても下記表中に示す。なお、表中のReは流延方向に対して直交方向をプラスとして表記した。
さらに、各セルロースアシレートフィルムのRth(450)/Rth(550)の波長550nmにおける厚み方向レターデーション(Rth(550))及び波長450nmにおける厚み方向レターデーション(Rth(450))を測定し、Rth(450)/Rth(550)をそれぞれ求めた。
なお、波長分散調整剤の残存量は、以下の方法により算出した。
得られたセルロースアシレートフィルムについて、「スーパーキセノンウェザーメーター SX75 (スガ試験機株式会社製)」を用いて150W/mの条件で、200時間照射し、波長分散調整剤の残存量を測定した。なお、セルロースアシレートフィルムとウェザーメーターの光源の間には、特開2008−116788号公報の段落[0080]〜[0082]に記載の光学フィルムを設置し測定を行った。各数値について、光照射後の残存率を以下の数式に当てはめて算出した。
((光照射後の波長分散調整剤の残存量)/(光照射前の波長分散調整剤の残存量))×100
【0276】
(5)−2 セルロースアシレートフィルムの鹸化処理
上記(2)−1と同様の方法により、実施例13〜実施例48のセルロースアシレートフィルムの鹸化処理をそれぞれ行った。
【0277】
(5)−3 配向膜の形成
鹸化したセルロースアシレートフィルムの鹸化処理面に、下記の組成の配向膜形成用塗布液を#14のワイヤーバーコーターで24ml/m2塗布し、100℃の温風で120秒乾燥した。配向膜の厚さは1.2μmであった。次に、フィルムの長手方向(搬送方向)を0°とし、形成した配向膜に幅2000mmのラビングローラを用いて、ラビングローラの回転数400rpmで0°方向に、ラビング処理を実施した。この際、搬送速度は40m/分であった。続いてラビング処理面を超音波除塵した。
【0278】
――――――――――――――――――――――――――――――――――――――
配向膜形成用塗布液の組成
――――――――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコール 40質量部
・水 728質量部
・メタノール 228質量部
――――――――――――――――――――――――――――――――――――――
【0279】
【化45】

【0280】
(5)−4 光学異方性層の形成
除塵後の配向膜のラビング処理面に、下記表に示した組成の光学異方性層用塗布液をワイヤーバーで塗布した。その後、130℃の恒温槽中で120秒間加熱し、ディスコティック液晶化合物を配向させた。次に、80℃で160W/cm高圧水銀灯を用いて、40秒紫外線照射し架橋反応を進行させて、ディスコティック液晶化合物を重合させた。その後、室温まで放冷した。
――――――――――――――――――――――――――――――――――――――
光学異方性層形成用塗布液の組成
――――――――――――――――――――――――――――――――――――――
・メチルエチルケトン 270質量部
・下記A1のディスコティック液晶性化合物 100質量部
・下記のフルオロ脂肪族基含有ポリマー1 1.0質量部
・下記の配向膜側配向制御剤1 0.5質量部
・下記の配向膜側配向制御剤2 1.5質量部
・4−ビニルフェニルボロン酸 0.1質量部
・光開始剤 イルガキュア907 チバ・ジャパン(株)製 3.0質量部
・増感剤 カヤキュア DETX 日本化薬製 1.0質量部
――――――――――――――――――――――――――――――――――――――
【0281】
【化46】

【0282】
【化47】

【0283】
【化48】

【0284】
【化49】

【0285】
得られた光学異方性層の厚みは1μm、上チルト角と下チルト角はそれぞれ、20度及び65度であった。
この様にして、光学補償フィルム31を作製し、光学補償フィルム31と同様にして光学補償フィルム30、32〜65をそれぞれ作製した。
【0286】
(5)−5 偏光板の作製
上記(2)−5と同様の方法により、偏光板42〜77を作製した。
【0287】
(5)−6 TNモード液晶表示装置の作製
上記(2)−6と同様の方法により、TNモード液晶表示装置110〜145を作製した。
【0288】
6.TNモード液晶表示装置の評価
(6)−1 視野角コントラストの評価
上記で作製したTNモード液晶表示装置のそれぞれについて、上記と同様にして、上下左右方向のコントラスト比(白透過率/黒透過率)の平均値を求め、以下の基準で評価した。
◎:50以上
○:50未満、40以上
△:40未満、30以上
×:30未満
その結果、いずれも「○」以上の評価結果を得られた。
【0289】
(6)−2 斜め横方向の黄色味付きの評価
作製した液晶表示装置110〜145について、明るさを黒から白まで8等分(黒表示(L1)〜白表示(L8))し、その黒から2段階目(L2)の明るさを表示した際に、表示面の法線方向を0°とし、0°から極角60°までの色味変化Δu’v'(左右方向の平均値)を測定し、黄色味のレベルを以下の基準で評価した。結果を表5〜表11に示す。
◎ :0.000 ≦ Δu’v'≦ 0.085
○ :0.085 < Δu’v'≦ 0.090
△ :0.090 < Δu’v'≦ 0.100
× :0.100 < Δu’v'≦ 0.105

※ Δu’v’:Σ{(u’n − u’n-12+(v’n − v’n-12} (0°〜極角60°まで、10°刻み)
【0290】
【表5】

【0291】
【表6】

【0292】
【表7】

【0293】
【表8】

【0294】
【表9】

【0295】
【表10】

【0296】
【表11】

表5〜表11中、
*1:「TPA」はテレフタル酸、「PA」はフタル酸、「AA」はアジピン酸、「SA」はコハク酸を意味する。
*2:「EG」はエタンジオール、「PG」は1,3−プロパンジオールを意味する。
*3:数平均分子量を意味する。
*4:「TPA」、「PA」、「AA」、「SA」、「EG」、および「PG」の単位は全てモル比を表す。
化合物1〜化合物5は、以下の構造式で示される化合物である。
【0297】
【化50】

【0298】
上記表に示す結果から、本発明の製造方法により製造された実施例13〜実施例48のセルロースアシレートフィルムは、Reが5〜20nmで且つRthが90〜150nmの光学特性を示す、捩れ配向モード液晶表示装置用光学フィルムに有用なフィルムであることが理解できる。また、上記した通り、実際に、上下左右の視野角コントラストの評価結果は、いずれも良好であった。
特に、本発明の製造方法により製造されたセルロースアシレートフィルムのうち、0.90 <Rth(450)/Rth(550)≦ 1.5を満足するセルロースアシレートフィルムを、TNモード液晶表示装置の光学補償に利用すると、斜め横方向に生じる黄色味付きを顕著に軽減できることが理解できる。また、波長分散性の調整には、芳香族基含有オリゴマーとともに、波長分散調整剤を添加することが有効であることも理解できる。
また、耐光性を向上させるには、一般式(IX)で表される化合物(化合物2)と一般式(IX−a)〜(IX−d)で表されるいずれかの化合物(化合物3、化合物5)とを混合させることが有効であることも理解できる。
【符号の説明】
【0299】
10、10’ 液晶セル
12a、12b 光学異方性層
14a、14a’、14b、14b’ 偏光板の内側保護フィルム
16a、16b 光学補償フィルム
18a、18b 直線偏光膜
20a、20b 外側保護フィルム
22a、22b 楕円偏光板

【特許請求の範囲】
【請求項1】
セルロースアシレート、芳香族基含有オリゴマー及び溶媒を含有する液を支持体上に流延してウェブを形成する流延工程と、
ウェブを延伸して、少なくとも芳香族基含有オリゴマーの分子を延伸方向に配向させる延伸工程と、
延伸後のウェブを熱処理して、少なくとも芳香族含有オリゴマーの分子の配向度を上昇させる熱処理工程と、
を少なくとも含むことを特徴とするセルロースアシレートフィルムの製造方法。
【請求項2】
前記芳香族基含有オリゴマーが、少なくとも1種の芳香族ジカルボン酸の残基、及び少なくとも1種の脂肪族ジオールの残基を含む重縮合エステルのオリゴマーであることを特徴とする請求項1に記載の方法。
【請求項3】
前記芳香族基含有オリゴマーの数平均分子量が、500〜2000であることを特徴とする請求項1又は2に記載の方法。
【請求項4】
前記液が、前記セルロースアシレート100質量部に対して、前記芳香族含有オリゴマーを3〜20質量部含有することを特徴とする請求項1〜3のいずれか1項に記載の方法。
【請求項5】
前記延伸工程において、残留溶媒量20〜300質量%のウェブを膜面温度−30〜80℃で延伸することを特徴とする請求項1〜4のいずれか1項に記載の方法。
【請求項6】
前記熱処理工程において、残留溶媒量が10〜120質量%のウェブを、膜面温度40〜200℃で加熱処理することを特徴とする請求項1〜5のいずれか1項に記載の方法。
【請求項7】
前記延伸工程において、ウェブを1〜50%の延伸倍率で延伸することを特徴とする請求項1〜6のいずれか1項に記載の方法。
【請求項8】
前記液を、ドラム表面に流延することを特徴とする請求項1〜7のいずれか1項に記載の方法。
【請求項9】
前記延伸工程において、ウェブを流延方向と直交する方向に延伸することを特徴とする請求項1〜8のいずれか1項に記載の方法。
【請求項10】
前記延伸工程の後、ウェブの延伸処理を行わないことを特徴とする請求項1〜9のいずれか1項に記載の方法。
【請求項11】
前記液が、250〜400nmに吸収極大を持つ波長分散調整剤を0.2〜20質量%含有することを特徴とする請求項1〜10のいずれか1項に記載の方法。
【請求項12】
前記波長分散調整剤が下記一般式(IX)で表されるメロシアニン系化合物であることを特徴とする請求項11に記載の方法;
【化1】

一般式(IX)中、Nは、窒素原子を表し、R1〜R7は、それぞれ水素原子又は置換基を表す。
【請求項13】
下記一般式(IXa−a)、(IXa−b)、(IXa−c)、および(IXa−d)で表されるいずれかの化合物と、前記一般式(IX)で表されるメロシアニン系化合物とを混合して使用することを特徴とする請求項12に記載の方法;
【化2】

一般式(IXa−a)中、R6a及びR7aは、それぞれ水素原子又は置換基を表し;一般式(IXa−b)中、R6b及びR7bは、それぞれ水素原子又は置換基を表し;一般式(IXa−c)中、R6C及びR7Cは、それぞれ水素原子又は置換基を表し;一般式(IXa−d)中、R11及びR12は、それぞれ、アルキル基、アリール基、シアノ基、又は−COOR13を表すか、互いに結合して窒素原子を含む環を表し;R13は、アルキル基、アリール基、又はヘテロ環基を表す。
【請求項14】
さらに、下記一般式(II)で表されるトリアジン系化合物を含有することを特徴とする請求項1〜13のいずれか1項に記載の方法;
【化3】

一般式(II)中、X1は、−NR4−、−O−又は−S−を表し;X2は、−NR5−、−O−又は−S−を表し;X3は、−NR6−、−O−又は−S−を表し;R1、R2及びR3は、それぞれ、アルキル基、アルケニル基、アリール基又は複素環基を表し;R4、R5及びR6は、それぞれ、水素原子、アルキル基、アルケニル基、アリール基又は複素環基を表す。
【請求項15】
請求項1〜14のいずれか1項に記載の方法によって製造されるセルロースアシレートフィルムであって、波長550nmにおける面内レターデーションRe(550)が5〜50nmであり、及び波長550nmにおける厚み方向レターデーションRth(550)が90〜150nmであることを特徴とするセルロースアシレートフィルム。
【請求項16】
請求項1〜14のいずれか1項に記載の方法によって製造されるセルロースアシレートフィルムであって、波長550nmにおける面内レターデーションRe(550)が5〜20nmであり、及び波長550nmにおける厚み方向レターデーションRth(550)が90〜150nmであることを特徴とするセルロースアシレートフィルム。
【請求項17】
長尺状であって、長手方向に対して直交する方向にセルロースアシレートの分子が配向していることを特徴とする請求項15又は16に記載のセルロースアシレートフィルム。
【請求項18】
請求項1〜14のいずれか1項に記載の方法によって製造されるセルロースアシレートフィルムであって、波長550nmにおける厚み方向レターデーションRth(550)と波長450nmにおける厚み方向レターデーションRth(450)が下記式(1)を満たすことを特徴とする請求項15〜17のいずれか1項に記載のセルロースアシレートフィルム。
0.90 < Rth(450) / Rth(550) ≦ 1.5 (1)
【請求項19】
偏光子と、請求項15〜18のいずれか1項に記載のセルロースアシレートフィルムとを少なくとも有することを特徴とする偏光板。
【請求項20】
前記偏光子の吸収軸と、前記セルロースアシレートフィルムの遅相軸とが直交していることを特徴とする請求項19に記載の偏光板。
【請求項21】
請求項15〜18のいずれか1項に記載のセルロースアシレートフィルム、及び/又は請求項19又は20に記載の偏光板を少なくとも有することを特徴とする液晶表示装置。
【請求項22】
捩れ配向モード又は垂直配向モードであることを特徴とする請求項21に記載の液晶表示装置。
【請求項23】
請求項15〜18のいずれか1項に記載のセルロースアシレートフィルムと重合性液晶化合物を含有する組成物とからなる光学異方性層を有することを特徴とする光学補償フィルム。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−67272(P2012−67272A)
【公開日】平成24年4月5日(2012.4.5)
【国際特許分類】
【出願番号】特願2010−268493(P2010−268493)
【出願日】平成22年12月1日(2010.12.1)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】