説明

センシング装置およびこれを用いたセンシング方法

【課題】センシング装置において、試料セル中の被測定物質をプラズモン活性基体の表面又はその近傍に効果的に捕捉させて、高感度なセンシングを行うことを可能とする。
【解決手段】センシング装置において、被測定物質を含む流動性を有する試料Sが充填または流下される試料セル10と、試料セル10内の試料Sに接触するように配置された、試料接触面20sに対して励起光L0を照射させることにより試料接触面20sにプラズモン増強場を生じるプラズモン活性基体20と、励起光L0を照射する励起光照射光学系30と、プラズモン活性基体20の試料接触面20s上の試料Sの物理特性を検出する物理特性検出系45と、プラズモン活性基体20試料接触面20sに捕捉光L3を集光させ、光捕捉効果により試料接触面20sに試料S中の被測定物質を捕捉させる光捕捉光照射光学系50を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被測定物質を含む試料を、励起光が照射されプラズモン増強場を生じさせるプラズモン活性基体と接触させた状態で、活性基体表面の被測定物質の特性を検出するセンシング装置および方法に関するものである。
【背景技術】
【0002】
一般に表面プラズモンあるいは局在プラズモンによるプラズモン増強場の効果を利用した測定を行う場合、プラズモン増強場を生じさせるデバイス(プラズモン活性基体)表面のごく近傍に被測定物質を配置する必要がある。これは、プラズモン増強場が、プラズモン活性基体表面のごく近傍にのみ生じるため、被測定物質がプラズモン活性基体表面から離れるにつれて増強場による効果が低減するからである。従って、試料溶液中の被測定物質の測定を行うに際しては、プラズモン活性基体表面での被測定物質の濃度を高くすることにより、測定精度を向上させることができる。
【0003】
プラズモン活性基体表面に被測定物質を吸着させる方法としては、例えば、表面プラズモン共鳴(SPR)測定装置の場合、プラズモン活性基体である金属膜上に被測定物質と特異結合するリガンドを固定しておき、リガンドに被測定物質を結合させる方法があげられ、これにより金属膜表面に試料中の被測定物質を固定してセンシングを行うことがなされている。
【0004】
また、特許文献1には、電気泳動法により金属膜上に被測定物質を集めることにより金属膜上における被測定物質濃度を高めて、表面プラズモン共鳴の測定を行う装置として、試料溶液中に複数の電極を設置して、この複数の電極への印加電圧を制御することにより測定箇所での被測定物質の濃度を上昇させる構成の誘電泳動検出装置が開示されている。
【特許文献1】特開2005-195397号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、リガンドを利用して被測定物質をプラズモン活性基体表面に被測定物質を吸着させる方法では、リガンドと被測定物質との反応を充分に待たなければ、充分な量の結合量を確保できず、測定を迅速に実施することが難しい。しかも、リガンドと結合する物質は限られており、被測定物質の種類が限定されてしまう。
【0006】
また、特許文献1に記載の装置では、溶液中に配置した複数の電極に対して印加電圧を制御する必要があり、また試料毎に印加電圧を調整しなければ基体表面での被測定物質濃度を高めることができないという問題がある。さらに、特許文献1に記載の装置では、実際には、金属表面近傍を通過する溶液の濃度を上昇させているだけで、実際の測定箇所への吸着効果が十分であるとは言えない。また、印加電圧をかける場合、被測定物質に対して電荷をチャージする必要があり、電荷をチャージすることで反応性が変化してしまう恐れがある。さらに、印加電圧をかけることで分子の特性が変化する恐れもある。
【0007】
本発明は上記事情に鑑みてなされたものであり、プラズモン活性基体の表面またはその近傍における被測定物質の濃度を効果的に上昇させて、高精度な測定を行うことができるセンシング装置、およびこれを用いたセンシング方法を提供することを目的とするものである。
【課題を解決するための手段】
【0008】
本発明のセンシング装置は、被測定物質を含む流動性を有する試料が充填または流下される試料セルと、
該試料セル内の試料に接触するように配置された、試料接触面に対して励起光を照射させることにより前記試料接触面にプラズモン増強場を生じるプラズモン活性基体と、
前記励起光を照射する励起光照射光学系と、
該プラズモン活性基体の前記試料接触面上の試料の物理特性を検出する物理特性検出系とを備えたセンシング装置であって、
前記プラズモン活性基体の前記試料接触面に捕捉光を集光させ、光捕捉効果により前記試料接触面に前記試料中の被測定物質を捕捉させる光捕捉光照射光学系を備えたことを特徴とするものである。
【0009】
ここで、試料は、試料セル内全体に充填又は流下されてもよいし、試料セル内の一部に充填又は流下されてもよい。
【0010】
また、ここで「被測定物質を捕捉させる」とは、「被測定物質を電場勾配によって、電場の強い領域に留まらせる」ことを意味するものである。
【0011】
本センシング装置においては、前記捕捉光の集光位置を前記試料セル内で走査させる走査部を備えていることが望ましい。走査部は、捕捉光の集光位置を試料セルに対して相対的に移動させることができるものであればよく、例えば、ガルバノミラーを備えて捕捉光自体を走査させるものであってもよいし、試料セルを配置するステージとして3次元に移動可能なXYZステージを備え、試料セルを移動させるものであってもよい、さらに捕捉光自体を走査する手段と試料セルを移動する1次元、2次元もしくは3次元ステージとの組合せであってもよい。
【0012】
物理特性検出系は、前記プラズモン活性基体の前記試料表面上に測定光を照射する測定光照射光学部と、該測定光の前記試料接触面における反射光および/または該試料接触面で生じる散乱光を検出する検出部とを備えていることが望ましい。このような物理特性検出系を備えるセンシング装置としては、例えば、表面プラズモン共鳴測定装置、局在プラズモン共鳴測定装置、増強ラマン分光装置などがあげられる。
【0013】
プラズモン活性基体は、前記励起光の波長よりも小さい凹凸構造を有する金属体で構成されていることが望ましい。
本明細書において、「測定光の波長よりも小さい凹凸構造」とは、凹凸構造をなす凸部及び凹部の平均的な大きさと平均的なピッチが測定光の波長よりも小さいことを意味する。凹部に金属はあってもなくてもよい。
【0014】
前記金属体の主成分は、Au、Ag、Cu、Al、Pt、Ni、Ti、及びこれらの合金からなる群より選択される少なくとも1種の金属であることが好ましい。
本明細書において、「主成分」は、含量90質量%以上の成分と定義する。
【0015】
前記試料セルは、一端が前記プラズモン活性基体の前記試料接触面に接したキャピラリー状セルであることが好ましい。
【0016】
前記プラズモン活性基体は、前記試料接触面に、前記被測定物質とイオン結合する表面修飾、及び/又は前記被測定物質と共有結合する表面修飾が施されたものであることが好ましい。
【0017】
さらに、被測定物質は、該被測定物質のサイズを大きくするための表面修飾が施されたものであることが望ましい。光捕捉可能な粒子サイズは数10nmであり、これ以下のサイズのものは光捕捉が困難であるため、被測定物質のサイズが小さく、光捕捉しづらい場合に表面修飾を実施することが望ましい。具体的には、被測定物質が、数10nm以下の粒子である場合に、被測定物質にポリメタクリル酸メチル(PMMA)ラテックス微粒子、ポリスチレン球、ガラスビーズなどを修飾すればよい。
【0018】
本発明のセンシング方法は、被測定物質を含む流動性を有する試料を、試料接触面に対して励起光が照射されて該試料接触面にプラズモン増強場を生じるプラズモン活性基体と接触させ、
前記励起光を前記プラズモン活性基体に照射して前記プラズモン増強場を生じさせた状態で、前記プラズモン活性基体の前記試料接触面上の被測定物質の物理特性を検出するセンシング方法であって、
前記試料を前記プラズモン活性基体と接触させた状態で、該プラズモン活性基体の前記試料接触面に捕捉光を集光させることにより、前記試料中の前記被測定物質を前記試料接触面上に移動させ、
前記試料接触面に前記被測定物質を捕捉させた状態で、前記被測定物質の物理特性の検出を行うことを特徴とするものである。
【0019】
本センシング方法においては、前記捕捉光を前記試料接触面に集光させる前に、該捕捉光を前記試料セル内で試料接触面から離間した位置から徐々に該試料接触面に近づく方向に走査させ、最後に該活性基体の試料接触面に集光させるようにしてもよい。
【発明の効果】
【0020】
本発明のセンシング装置は、プラズモン活性基体の試料接触面に捕捉光を集光させ、光捕捉効果により試料接触面に試料中の被測定物質を捕捉させる光捕捉光照射光学系を備えている。これにより、試料中の被測定物質を捕捉光の集光位置に光捕捉して試料接触面上に固定することができるので、試料接触面における被測定物質の濃度を上昇させることができる。本発明のセンシング装置では、プラズモン活性基体の表面またはその近傍に充分な量の被測定物質が存在した状態で、確実に分析を行うことができるので、高精度な分析を安定して実施することができる。また、特許文献1に記載のような電気泳動の場合と違い、被測定物質に電荷をチャージしたり、試料に印加電圧をかけたりすることがなく、被測定物質に対して非破壊かつ非接触で、試料接触面における被測定物質の濃度を上昇させることができるため、試料の特性を変化させることなく分析を行うことができる。
【0021】
さらに、捕捉光の集光位置を試料セル内で走査させる走査部を備えている場合、試料中の被測定物質をより多く捕捉することができ、試料接触面に被測定物質をより効率的に捕捉させることができ、高精度な分析を行うことができる。
【0022】
プラズモン活性基体が試料接触面に被測定物質と結合する表面修飾を有している場合には、光捕捉効果によって、プラズモン活性基体と被測定物質との結合を促進することができ、表面修飾と被測定物質との結合時間を短縮でき、かつ、高感度な分析を安定して実施することができる。
【0023】
本発明のセンシング方法によれば、試料をプラズモン活性基体と接触させた状態で、プラズモン活性基体の試料接触面に捕捉光を集光させることにより、試料中の被測定物質を試料接触面上に移動させ、試料接触面に被測定物質を捕捉させた状態で、被測定物質の物理特性の検出を行うので、試料接触の表面またはその近傍に充分な量の被測定物質が存在した状態で、確実に分析を行うことができるので、高感度な分析を安定して実施することができる。
【発明を実施するための最良の形態】
【0024】
光源からのレーザ光を集光し、微粒子の近傍に照射することにより、微粒子に発生する光放射圧(光圧)を利用して、その微粒子を捕捉して自由に移動させる光捕捉(光トラップ、または光ピンセット)技術が知られている。この光捕捉の原理は以下の通りである。
【0025】
<光捕捉の原理>
光に質量はないが、光を粒子(フォトン)と考えると一個のフォトンはh/λ(h:プランク定数、L: 光の波長)で与えられる運動量を持っている。光が屈折率の異なる媒質に入射し、媒質間の界面で反射、屈折される際、光の進行方向は変化し、運動量も変化するため、運動量の保存則から界面には反作用として力が働く。微小物質の表面で光が反射あるいは屈折する場合、フォトンの運動量はΔpだけ変化しているため、反作用として界面はΔpだけ押される。このことは、光が微小物体に力を与えたと考えることができ、これを光圧と称している。
【0026】
μmサイズの微粒子に働く光圧は以下のように説明される。周囲の媒質より高い屈折率を持つ透明な微粒子に顕微鏡下でレーザ光を集光したとき、微粒子に入射したレーザ光は微粒子の表面で屈折し、フォトンの運動量が変化し微粒子に光圧が働く。微粒子内を通過したフォトンは媒質に出るときにもう一度屈折し、再び微粒子に光圧が働く。すべての光線について光圧を計算し、積分するとレーザ光の焦点fへ向かう力Fとなる。
【0027】
なお、屈折率の低い微粒子や金属微粒子にレーザ光を集光したときに発生する光圧は、レーザ光の焦点位置から遠ざかる方向に発生するため光捕捉できない。微粒子の屈折率が周囲の媒質より低い場合は、屈折率が高い微粒子の場合とはフォトンの運動量変化の方向が逆になり、トータルの光圧はレーザ光の焦点fから遠ざかる方向に働く。また、金属微粒子のようにレーザ光を反射する微粒子の場合は、フォトンの衝突による力が微粒子を押すように働き、その力は屈折による光圧よりかなり大きいため金属微粒子は弾き飛ばされてしまう(増原極微変換プロジェクト編:マイクロ化学、化学同人(1993)参照)。
【0028】
一方、nmサイズの微粒子に働く光圧は以下のように説明される。分子やコロイド粒子のようにナノメートルサイズの物質、すなわち用いるレーザ光の波長に比べ十分に小さいナノ粒子(波長の1/10程度)に働く光圧を考える場合、Rayleigh近似が成り立ち、ナノ粒子はRayleighの光散乱の理論により誘起双極子と近似することができ、双極子に働く光圧は次式(1)で表される(Y. R. Shen : Principle Of Nonlinear Optics (Pure & Applied Optics Series:1-349), Wiley-Interscience (1984)参照)。
【数1】

【0029】
ここで、E:電場強度、B:磁束密度、a:分極率、eb:誘電率、r:ナノ粒子の半径、na:ナノ粒子の屈折率、nb:媒質の屈折率である。式(1)の右辺第1項が勾配力を表しており、これは誘起双極子が不均一な空間分布をした電場中に置かれたときに働く静電応力であり、ナノ粒子の屈折率が周囲の媒質の屈折率に比べて高い(na>nb)場合、式(2)により分極率αは正の値となり、勾配力は電場強度の高い場所にナノ微粒子を引き寄せる力として働くことになる。ナノ粒子の屈折率が周囲の媒質の屈折率に比べて低い(na<nb)場合、式(2)により分極率αは負の値となり、式(1)で与えられる光圧は電場強度の弱い場所の方向に働くためナノ粒子を光捕捉できない。一方、第2項は散乱力であり、ナノ粒子による光の散乱に起因する力であり、光のエネルギーの進行方向すなわちポインティングベクトルが時間的に変化することによって生じる力である。したがって、電場強度分布を持たない光を透明なナノ粒子に照射した場合には、散乱力のみが働き、光圧はナノ粒子を光の進行方向に押す向きに働くことになる。
【0030】
顕微鏡下で対物レンズによりレーザ光を集光した場合、集光位置における電場強度が周囲に比べて非常に大きくなり、勾配力が散乱力に比べて十分に大きくなる。よって、ナノ粒子に働く力は勾配力のみを考えればよくなるため、式(1)は下記式(3)と表される。対物レンズによりレーザ光を集光し、かつナノ粒子の屈折率が周囲の媒質の屈折率に比べて高い(na>nb)場合には、勾配力はナノ粒子に対して常に光強度の高い場所すなわち集光位置に向かって働くため、ナノ粒子は集光位置に集められることになる。
【数2】

【0031】
金属微粒子は反射の寄与が大きく、光捕捉されないと第2項で述べたが、金属微粒子が表皮深さ程度(粒径数十nm)になると、散乱力より勾配力が大きくなり、安定に光捕捉されることが報告されている(K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994)、T. Sugiura, T. Okada, Y. Inoue, O. Nakamura, and S. Kawata, Opt. Lett. 22, 1663 (1997)参照)
上述のような光捕捉の原理を利用した光捕捉技術は、例えば特開2005-7530号公報、特開2005-80516号公報および特開2006-130454号公報などに記載されており、本発明においては、光捕捉を行うための手段として周知のいかなる手段を用いてもよい。
【0032】
以下、図面を参照して本発明に係る実施の形態を説明する。本発明のセンシング装置は、表面プラズモンおよび/または局在プラズモンの効果を利用したセンシング装置であればいかなる装置にも適応することができる。具体的には、表面プラズモン共鳴測定装置、局在プラズモン共鳴測定装置のみならず、プラズモン増強場により増強されたラマン散乱を生じさせてそのラマン散乱を検出する増強ラマン分光装置などに用いることができる。
【0033】
<第1の実施形態>
まず、本発明のセンシング装置に係る第1の実施形態であるラマン分光装置の構成およびこれを用いたセンシング方法としてラマン分光方法について説明する。図1は装置の全体図、図2および図3はプラズモン活性基体の好適な例を示す図である。
【0034】
本実施形態のラマン分光装置1は、試料セル10と、試料セル10内の試料Sに接触するように配置され、試料接触面20sに励起光L0が照射されてプラズモン増強場を生じるプラズモン活性基体20と、プラズモン活性基体20の試料接触面20sに励起光L0かつ測定光L1となる光ビームLを照射する励起光照射光学系30(測定光照射光学部40)と、ラマン散乱光を検出する検出部43と、光捕捉光照射光学系50とを備えたものである。ここでは、試料セル10はxyzの3次元方向に試料セル10を移動させることができるステージ15上に載置されている。このステージ15は光捕捉光の集光位置を移動させる走査部に相当する。
【0035】
ここで、プラズモン活性基体20は、励起光L0(光ビームL)が照射されてラマン散乱光を生じるラマン散乱デバイスである。また、測定光照射光学部40と検出部43とにより、物理特性検出系45が構成されている。
【0036】
励起光照射光学系30(測定光照射光学部40)は、試料接触面20sに対して特定の単波長光である光ビームL(励起光L0、測定光L1)を照射する光学系であり、レーザ等の光源31、および必要に応じて光源31から出射される光を導光するミラー、レンズ等の導光系(図示略)により構成されている。
【0037】
検出部43は、測定光L1の照射によってプラズモン活性基体20の試料接触面20sで生じる反射光と散乱光とを含む検出光L2が入射し、検出光L2を分光してラマン散乱光を検出し、ラマンスペクトルを得る分光検出器である。
【0038】
試料セル10は、互いに対向して離間配置された底板11および上板12を備えた角型等の箱状セルである。上板12は捕捉光L3に対して透明な材料により構成されている。
【0039】
光捕捉光照射光学系50は、試料セル10の上板12から試料に捕捉光L3を照射し、基体20の試料接触面20sに捕捉光L3を集光させて、試料S中の被測定物質を試料接触面20sに捕捉させるものであり、捕捉光L3を出力するレーザ等の光源51と、試料セル10の上板12直上に配置され、捕捉光L3を試料接触面20sに集光させる対物レンズ52と、光源51から出力された捕捉光L3を対物レンズ52に反射するミラー53と、光源51から出力された捕捉光L3を平行光とするレンズ54を備えている。
【0040】
光捕捉の対象となる被測定物質の大きさは直径μmサイズからnmサイズの微粒子であり、例えば、蛋白質、ペプチド、アミノ酸、水溶液中のポリメタクリル酸メチル(PMMA)ラテックス微粒子、トルエン液滴、ベンジルアルコール液滴、シスーデカリン液滴、パラフィン液滴、シリコンオイル液滴、マイクロカプセル、シリカゲル、ポリスチレン球、ガラスビーズ、二酸化チタン、サルモネラ菌、仔ウシ胸腺DNA、量子半導体などである。
【0041】
捕捉光L3としては、被測定物質に吸収がない波長の光ビームを用いることが好ましい。特に、多くの物質に対して吸収がほとんどなく、高いパワーが得られる、波長1064nmの連続発振(CW)するNd:YAGレーザが光捕捉用の光源として好ましい。
【0042】
捕捉光の照射による光捕捉効果の具体例を挙げる。水溶液中の粒径5μmのポリメタクリル酸メチル(PMMA)ラテックス微粒子を100倍の対物レンズを用いて、1064nmのレーザ光をスポット径約500nmに集光した場合(ビームパワー50mW)、集光位置に存在するラテックス微粒子につねに焦点が合った状態が保たれる。焦点以外の微粒子はブラウン運動をしているため、焦点があった状態に保たれない。
【0043】
プラズモン活性基体20の試料接触面を構成する金属体23は、表面プラズモンを生じさせる平らな表面を有する金属薄膜でもよいが、表面に測定光L1の波長よりも小さい凹凸構造を有するものであってもよい。
【0044】
図2および図3を参照して、プラズモン活性基体20の好適な態様20A〜20Fについて説明する。図2(a)および(b)は斜視図、図2(c)および図3(a)〜(c)は断面図である。
【0045】
図2(a)に示すプラズモン活性基体20Aは、平坦な誘電体22の上に、複数の金属粒子23aがアレイ状に固着されたデバイスである。この例では、金属体23は、複数の金属粒子23aからなる金属粒子層である。
金属粒子23aの配列パターンは適宜設計でき、略規則的であることが好ましい。かかる構成では、個々の金属粒子23aが凸部であり、金属粒子23aの平均的な径及びピッチが測定光Lの波長よりも小さく設計される。
【0046】
図2(b)に示すプラズモン活性基体20Bは、平坦な誘電体22の上に、金属細線23bが格子状にパターン形成された金属パターン層からなる金属体23が形成されたデバイスである。金属パターン層のパターンは適宜設計でき、略規則的であることが好ましい。かかる構成では、金属細線23bの平均的な線幅及びピッチが測定光Lの波長よりも小さく設計される。
【0047】
図2(c)に示すプラズモン活性基体20Cは、図4(a)〜(c)に製造プロセスを示すように、被陽極酸化金属体(Al等)60の一部を陽極酸化して金属酸化物体(Al等)62とし、陽極酸化の過程で形成される金属酸化物体62の複数の微細孔62a内に各々金属23cをメッキ等により成長させて得られたデバイスである。このデバイスでは、金属酸化物体62の微細孔62a内に、頭部が金属酸化物体62の表面より突出するまで金属23cをマッシュルーム状に成長させてある(特開2005-172569号公報を参照)。微細孔62aを略規則的なパターンで開孔させることができるので、金属23cは略規則的なパターンで配列させることができる。図4(a),(b)は斜視図、図4(c)は断面図である。
【0048】
図2(c)に示すプラズモン活性基体20Cでは、電極21が被陽極酸化金属体の非陽極酸化部分(Al等)61からなり、金属体23が陽極酸化の過程で形成される金属酸化物体62の複数の微細孔62a内に成長させた複数のマッシュルーム状の金属23cにより構成されている。
【0049】
図2(c)に示す例では、マッシュルーム状の金属23cの頭部が粒子状であり、デバイスの表面から見れば、誘電体22の表面に金属粒子層が形成された構造になっている。かかる構成では、マッシュルーム状の金属23cの頭部が凸部であり、その平均的な径およびピッチが測定光Lの波長よりも小さく設計される。
【0050】
なお、プラズモン活性基体20は、試料Sに接触させられ表面増強ラマン散乱を生じさせる金属体23のみにより構成されてもよい。
【0051】
図3(a)に示すプラズモン活性基体20Dは、図4(a),(b)に示すように陽極酸化を実施し、陽極酸化により形成された金属酸化物体62を除去して、被陽極酸化金属体の非陽極酸化部分61のみを残したデバイスである(特開2006-250924号公報を参照)。かかるデバイスでは、金属体23が表面に複数のディンプル状の凹部23dを有する非陽極酸化部分61により構成される。
【0052】
図3(b)に示すプラズモン活性基体20Eは、上記プラズモン活性基体20Dの表面に、その凹凸形状に沿って金属層63を成膜したものである(特開2006-250924号公報を参照)。
【0053】
図3(c)に示すプラズモン活性基体20Fは、上記プラズモン活性基体20Eの金属層63をアニール処理により粒子化して、被陽極酸化金属体の非陽極酸化部分61上に金属粒子64を形成したものである(特願2006-198009号(本件特許出願時において未公開)を参照)。
【0054】
図2および図3に示したプラズモン活性基体20A〜20Fでは、略規則的な凹凸構造の金属体23が得られるので、増強ラマン(SERS)効果がデバイスの面全体でばらつきなく得られ、好ましい。
【0055】
金属体23は、表面が粗面化された金属層により構成してもよい。粗面化方法としては、酸化還元等を利用した電気化学的な方法等が挙げられる。その他、プラズモン活性基体20としては、SERS効果を有する公知のデバイスを用いることができる。例えば、J.AM.CHEM.SOC. 2005, Vol.127, 14992-14993, ”Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates”には、ITO基板上に、CTAB(cetyltrimethylammonium bromide)で表面修飾した複数のAu粒子を配列させたプラズモン活性基体が記載されている。特開2005-233637号公報には、基板上に金ナノロッド薄膜を形成したプラズモン活性基体が開示されている。
【0056】
本実施形態のラマン分光装置1では、試料セル10内に、被測定物質を含む流動性を有する試料Sが充填または流下されて、測定が行われる。試料Sは流動性を有していればよく、その状態としては液状、ゲル状、およびゾル状等が挙げられる。
【0057】
プラズモン活性基体20は、試料接触面20sに被測定物質とイオン結合する表面修飾または共有結合する表面修飾が施されたものであることが好ましい。かかる構成では、被測定物質がイオン結合または共有結合によって試料接触面20sに対して強固に吸着され、好ましい。この場合、捕捉光の照射により、このようなリガンドへの被測定物質の結合を促進させ、試料接触面20sにおける被測定物質の濃度を効果的に上昇させることができるので、高精度な分析を迅速に行うことができる。
【0058】
被測定物質が蛋白質、ペプチド、およびアミノ酸からなる群より選ばれた少なくとも1種である場合、被測定物質とイオン結合する表面修飾としては、被測定物質と反対荷電を有する表面修飾基を用いることができ、カルボキシ基、スルホン酸基、リン酸基、アミノ基、4級アンモニウム基、イミダゾール基、グアニジニウム基、及びこれらの誘導体基等の表面修飾基が挙げられる。試料接触面20sは、これらの表面修飾基を2種以上有していてもよい。
【0059】
被測定物質が蛋白質、ペプチド、及びアミノ酸からなる群より選ばれた少なくとも1種である場合、被測定物質と共有結合する表面修飾としては、N−ヒドロキシスクニンイミジルエステル等の反応性エステル基、カルボジイミド基、1−ヒドロキシベンゾトリアゾール基、ヒドラジド基、チオール基、反応性ジスルフィド基、マレイミド基、アルデヒド基、エポキシド基、(メタ)アクリレート基、ヒドロキシル基、イソシアネート基、イソチオシアネート基、及びこれらの誘導体基等の表面修飾基が挙げられる。試料接触面20sは、これらの表面修飾基を2種以上有していてもよい。
例示した表面修飾基の中でも、反応性エステル基、ヒドラジド基、チオール基、及び反応性ジスルフィド基等が好ましい。
上記記載中、「反応性」とは被測定物質と反応性を有することを意味する。
【0060】
プラズモン活性基体20は、試料接触面20sに被測定物質とイオン結合する表面修飾及び共有結合する表面修飾が施されたものであることが、特に好ましい。
この場合、試料接触面20sに対して、被測定物質とイオン結合する表面修飾と、被測定物質と共有結合する表面修飾とを同時に施してもよいし、これらの表面修飾を順次実施しても構わない。また、これらの表面修飾の表面修飾位置は特に制限されず、これらの表面修飾同士が互いに結合していてもよいし、これらの表面修飾は互いに独立して試料接触面20sに結合していてもよい。
【0061】
試料接触面20sに対して、被測定物質とイオン結合する表面修飾を施し、さらにこの表面修飾を、被測定物質と共有結合する表面修飾で活性化することが特に好ましい。この場合、被測定物質とイオン結合する表面修飾と、被測定物質と共有結合する表面修飾とが互いに近接しており、1つ1つの被測定物質がイオン結合及び共有結合によって試料接触面20sに対して強固に吸着されることとなり、好ましい。
【0062】
例えば、はじめに試料接触面20sに被測定物質とイオン結合するカルボキシ基を導入し、さらに導入したカルボキシ基を反応性エステル基、ヒドラジド基、チオール基、及び反応性ジスルフィド基等の被測定物質と共有結合する官能基の形態に誘導して、活性化することが好ましい。
【0063】
被測定物質とイオン結合する表面修飾基と、被測定物質と共有結合する表面修飾基とを両方備えた表面修飾物質としては、
4,4−ジチオジブチル酸(DDA)、10−カルボキシ−1−デカンチオール、11−アミノ−1−ウンデカンチオール、7−カルボキシ−1−へプタンチオール、16−メルカプトヘキサデカン酸、11,11’−チオジウンデカン酸等の自己組織化膜を形成する分子;
アガロース、デキストラン、カラゲナン、アルギン酸、デンプン、及びセルロース等のヒドロゲル、又はこれらの誘導体(例えばカルボキシメチル誘導体);
ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、及びポリエチレングリコール等の水膨潤性有機ポリマー等が挙げられる。
【0064】
例えば被測定物質がアデニンの場合、被測定物質とイオン結合する表面修飾基と、被測定物質と共有結合する表面修飾基とを両方備えた表面修飾物質としては、4,4−ジチオジブチル酸(DDA)、及びカルボキシメチルデキストラン(CMD)等が好ましく用いられる。
【0065】
また、一方、被測定物質のサイズが直径30nm以下(球形でない場合は、最も幅広の部分の幅が30nm以下)のような非常に小さなものである場合、被測定物質内での分極が起こりにくいために、光捕捉光を照射しても光捕捉されにくいという問題があるため、予め被測定物質に表面修飾を施して被測定物質内で分極を生じさせることができる程度の大きさ、目安として直径60nm以上(球形でない場合は、最も幅広の部分の幅が60nm以上)となるようにする。具体的には、被測定物質にポリメタクリル酸メチル(PMMA)微粒子、ポリスチレン微粒子、シリカ微粒子などを修飾する。
【0066】
修飾方法は一般的な修飾方法に従えば良く、例えば該微粒子分散液に該被測定物質を混合することによって非特異的に吸着させることができる。また、PMMA微粒子なら加水分解処理、ポスチレン微粒子なら表面酸化、シリカ微粒子ならシランカップリング処理を行うことによって、反応性官能基を露出し、そこを基点により強固に修飾しても良い。
【0067】
本実施形態のラマン分光装置1による分光分析方法は次の通りである。
被測定物質を含む流動性を有する試料Sを、試料接触面20sに対して励起光L0が照射されて試料接触面20sにプラズモン増強場を生じるプラズモン活性基体20と接触させた状態で、プラズモン活性基体20の試料接触面20sに捕捉光L3を集光させることにより、試料S中の被測定物質を捕捉光L3の集光位置である試料接触面20s上に移動させ、試料接触面20sに被測定物質を捕捉させた状態で、測定光L1(励起光)を試料接触面20sに照射し、それに伴って生じるラマン散乱光L2を検出する。
【0068】
ここでは、励起光L0(測定光L1)を試料接触面20sに照射することにより、表面プラズモンおよび局在プラズモンを生じ試料接触面20sおよびその近傍にプラズモン増強場が形成される。ラマン散乱光はこのプラズモン増強場により増強される。さらに、捕捉光により被測定物質を試料接触面20sに捕捉させているために信号を大きくすることができ、SN比を高くすることができ、高精度な測定を行うことができる。
【0069】
さらに、捕捉光を試料接触面に集光させる前に、捕捉光の集光位置(集光スポット)を試料セル内で試料接触面から離間した位置から徐々に該試料接触面に近づく方向に走査させ、最後に該活試料接触面に集光させるようにすることが望ましい。xyzステージ15により試料セルを水平方向(x−y方向)および垂直方向(z方向)に移動させることにより集光スポットの走査を行うことができる。
【0070】
このように、試料セル内にて被測定物質を光捕捉しつつ集光スポットを移動させることにより、試料セル全体に亘って広がっている被測定物質をより効果的に基体の試料接触面に捕捉させることができ、単に基体の試料接触面上で捕捉光を集光させただけの場合よりも表面での被測定物質濃度を効果的に上昇させることができる。
【0071】
従って、本実施形態のラマン分光装置1では、プラズモン活性基体20の表面またはその近傍に充分な量の被測定物質が存在した状態で、確実に分析を行うことができ、SERS効果も効果的に得られるので、高感度な分析を安定して実施することができる。
【0072】
また、プラズモン活性基体20が試料接触面20sに被測定物質と結合する表面修飾を有している場合には、上記光捕捉効果によって、プラズモン活性基体20と被測定物質との結合を促進することができ、プラズモン活性基体20表面への被測定物質の吸着量を増加させることができる。この場合も、高感度な分析を安定して、かつ迅速に実施することができる。
【0073】
測定光、励起光として使用できる波長は限定されない。具体例として、785nm、633nm、532nm、355nmに中心波長を有するものを用いることができる。測定光、励起光のパワーは、例えばR6G(6−カルボキシローダミン)のを測定する場合、785nm波長では800μW、633nm波長では20μW程度、532nm波長では500nW程度とすればよい。捕捉光の波長は測定物質に吸収の少ない赤外光の1064nmがよく、パワーは50mW程度が好ましい。
【0074】
なお、本実施形態のように、測定光・励起光と、捕捉光とを異なる波長のものとする場合、測定を阻害しない波長の捕捉光を用いることが好ましい。検出器の手前にフィルタなどを配置することにより、検出器に捕捉光が入射するのを防ぐのが好ましいが、フィルタを配置してもなお捕捉光の入射を完全にカットすることは困難である。検出器への捕捉光の入射は非常に微弱なラマン光にとっては大きなノイズとなり、正確なラマン分光検出が困難となる。ラマン分光法では、一般にラマンシフトが4000cm-1以下の散乱光を分光している。そのため、測定光と捕捉光は4000cm-1以上離れていることが好ましい。
【0075】
(第1実施形態の設計変更例)
第1実施形態では、試料セルが箱状セルである場合について説明したが、図5に示すように、試料セル10は一端がプラズモン活性基体20の試料接触面20sに接したキャピラリー状セルであってもよい。
かかる構成においても、第1実施形態と同様に測定を実施することができ、同様の効果が得られる。かかる構成では、試料の量が微量で済み、試料のジュール熱による対流の影響を無視でき、好ましい。
【0076】
<第2実施形態>
図6を参照して、本発明に係る第2実施形態のセンシング装置である顕微ラマン分光装置の構成、およびこれを用いたラマン分光方法について説明する。図6は装置の全体図である。ここでは、第1実施形態と同じ構成要素には同じ参照符号を付してある。
【0077】
本実施形態のラマン分光装置2は、第1実施形態と同様、試料セル10と、試料セル10内の試料Sに接触するように配置され、試料接触面20sに励起光L1が照射されてプラズモン増強場を生じる板状のプラズモン活性基体20と、プラズモン活性基体20の試料接触面20sに光ビームLを照射する照射光学系70と、ラマン散乱光を検出する検出部43とを備えたものである。
【0078】
本実施形態において、照射光学系70は、励起光照射光学部30、測定光照射光学部40および光捕捉光照射光学系50を兼ねるものであり、試料セル10の上板12から試料に光ビームLを照射し、基体20の試料接触面20sに光ビームLを集光させて、試料S中の被測定物質を試料接触面20sに捕捉させるものである。すなわち、照射光学系70から出射される光ビームLは、励起光L0、測定光L1および光捕捉光L3としての役割を全て担うものである。ここで、照射光学系70は、光ビームを出力するレーザ等の光源71と、試料セル10の上板12直上に配置され、光ビームLを試料接触面20sに集光させる対物レンズ72と、光源71から出力された光ビームLを対物レンズ72側に反射し、プラズモン活性基体20の試料接触面20sで生じる反射光と散乱光とを含む検出光L2を透過させて検出部43に導くダイクロイックミラー73と、光源71から出力された光ビームLを平行光とするレンズ74を備えている。
【0079】
本実施形態では、試料Sの顕微観察を行うために、対物レンズ72の上方に検出部43が配置されている。対物レンズ72は、試料セル10に対して図示x−y方向に2次元的に相対移動可能とされている。対物レンズ72は、試料セル10に対して図示z方向にも相対移動可能とされている。ここでは、試料セルが載置されているxyzステージ15により試料セル10を対物レンズ72に対して移動させる構成である。
【0080】
検出部43は、第1実施形態と同様、測定光L1の照射によってプラズモン活性基体20の試料接触面20sで生じる検出光L2が入射し、検出光L2を分光してラマン散乱光を検出し、ラマンスペクトルを得る分光検出器である。本実施形態には、試料Sの顕微画像モニタも備えられている(図示略)。
【0081】
試料セル10は、第1実施形態と同様の箱状セルであり、試料セル10の底板11上に第1実施形態と同様のプラズモン活性基体20が固定されている。
【0082】
本実施形態のように、照射光学系70から出射される光ビームLが、励起光L0、測定光L1および捕捉光L3としての役割を全て担うものであれば、すなわち、一波長で被測定物質の光捕捉、プラズモンの励起、および測定を行うことができる構成であれば、装置構成が簡単なものとなり小型な装置とすることができる。ここで、光ビームLは光捕捉を行うことができるように、通常の測定光もしくは励起光と比較して光を十分に絞り、スポット位置でのパワー密度を50mW以上とし、開口数の大きなレンズで光を集光させる必要がある。
【0083】
試料Sの顕微観察を実施しながら、ラマン分光分析の測定を実施できることを除けば、分光分析方法は第1実施形態と同様である。このように、本発明は顕微ラマン分光装置2にも適用することができ、第1実施形態と同様の効果が得られる。
【0084】
(第2実施形態の変更例)
第2の実施形態においては、1つの光源70が、励起光L0、測定光L1、捕捉光L3の光源として用いられているが、第1の実施形態の場合と同様に顕微ラマン分光装置においても、励起光L0、測定光L1用の光源30、40と、捕捉光L3用の光源50とを分離した図7に示すような顕微ラマン分光装置2’の構成としてもよい。
【0085】
ここでは、第2の実施形態の構成に加え、光捕捉光照射光学系50と、光源71からのレーザ光Lと光捕捉光L3とを共通の対物レンズ72に入力するためのダイクロイックミラー73と、検出器43の手前に捕捉光カットフィルタ(ノッチフィルタ)76とを備えている。
【0086】
光源51から出力された捕捉光L3は、レンズ54で平行光化されて、ダイクロイックミラー75および73で反射されて対物レンズ72を経てプラズモン活性基体20の試料接触面20s上に照射される。捕捉光カットフィルタ76は、捕捉光L3の反射光、散乱光などが検出器43に入射するのを防ぎラマン散乱光のみを精度よく検出できるよう配置されている。
【0087】
かかる構成においても、第2実施形態と同様に測定を実施することができ、同様に、プラズモン活性基体20の表面またはその近傍に充分な量の被測定物質が存在した状態で、確実に分析を行うことができ、SERS効果も効果的に得られるので、高感度な分析を安定して実施することができる。
【0088】
<第3実施形態>
図8を参照して、本発明に係る第3実施形態のセンシング装置である表面プラズモン共鳴測定装置3、およびこれを用いた測定方法について説明する。ここでは、第1実施形態と同じ構成要素には同じ参照符号を付してある。
【0089】
表面プラズモン共鳴測定装置3は、光ビームLを発する半導体レーザ等の光源131と、上記光ビームLを透過させる材料からなり、この光ビームLが一端面から入射する位置に配されたプリズム110と、このプリズム110の一表面110aに形成された、例えば金、銀等からなる金属膜23と、プリズム110と反対側から金属膜23に液体状試料Sが接するように該試料Sを保持する試料保持部(試料セル)10dと、光源131から発散光状態で出射した光ビームLをプリズム110の長軸に垂直な面(紙面に平行な面)内のみで集束させるシリンドリカルレンズ132と、プリズム110と金属膜20との界面110aで全反射した光ビームLの強度を検出する検出部である光検出器143とを備えている。またさらに、第1の実施形態と同様の光捕捉光照射光学系50を備えている。
【0090】
本実施形態においては、プリズム110の一端面110aに形成された金属膜23がプラズモン活性基体20であり、このプリズム110と、光源131、シリンドリカルレンズ132、および光検出器143により物理特性検出系145が構成されており、光源131とシリンドリカルレンズにより励起光照射光学系130が構成されている。また、界面へ入射される光ビームLはプラズモンを励起させる励起光L0であると伴に測定光L1でもある。
【0091】
光ビームLは、シリンドリカルレンズ132の作用により上述のように集束するので、図中に最小入射角θ1 と最大入射角θ2 とを例示するように、界面110aに対して種々の入射角θで入射する成分を含むことになる。なおこの入射角θは、全反射角以上の角度とされる。そこで、光ビームLは界面110aで全反射し、この反射した光ビームLには、種々の反射角で反射する成分が含まれることになる。
【0092】
光検出器143としては、上記のように種々の反射角で反射した全部の光ビームLを受光できる方向に受光部が延びる、例えばCCDラインセンサ等が用いられている。そこで、この光検出器143の各受光素子毎に出力される光検出信号Snは、上記種々の反射角毎に(つまり、種々の入射角毎に)光ビームLの強度を示すものとなる。
【0093】
以下、上記構成の表面プラズモン共鳴測定装置3による試料分析方法について説明する。試料分析に際しては、光捕捉光照射光学系50により、光捕捉光L3が金属膜23上に集光され、これにより試料S中の被測定物質が捕捉光L3による光捕捉効果により金属膜23上の捕捉光の集光スポットに捕捉された状態で行う。シリンドリカルレンズ115の作用で上述のように集束する光ビームLが金属膜23に向けて照射される。この金属膜23とプリズム110との界面110aで全反射した光ビームLは、光検出器143で検出される。
【0094】
前述した通り、光検出器143の各受光素子毎に出力される光検出信号Snは、全反射した光ビームLの強度Iを入射角θ毎に示すものとなる。
【0095】
ここで、ある特定の入射角θSP で入射した光は、金属膜23と試料Sとの界面に表面プラズモンを励起させるので、この光については反射光強度Iが鋭く低下する。光検出器手段143の各受光素子毎に出力される光検出信号Snを用いれば上記入射角θSPが分かり、このθSPの値に基づいて試料S中の被測定物質を定量分析することができる。
【0096】
本実施形態においても、光捕捉光照射光学系50により、プラズモン活性基体である金属膜23上に被測定物質を捕捉させた上で、全反射減衰角の信号を得るため、SN比よく高精度な信号を得ることができる。
【図面の簡単な説明】
【0097】
【図1】本発明に係る第1実施形態のラマン分光装置の全体図
【図2】(a)〜(c)はプラズモン活性基体の好適な例を示す図
【図3】(a)〜(c)はプラズモン活性基体の好適な例を示す図
【図4】(a)〜(c)は図2(c)に示すプラズモン活性基体の製造プロセス図
【図5】図1のラマン分光装置の設計変更例
【図6】本発明に係る第2実施形態のラマン分光装置(顕微ラマン分光装置)の全体図
【図7】図6のラマン分光装置の設計変更例
【図8】本発明に係る第3実施形態の表面プラズモン共鳴測定装置の全体図
【符号の説明】
【0098】
1、2 センシング装置(ラマン分光装置)
3 センシング装置(表面プラズモン共鳴測定装置)
10a〜10d 試料セル
15 走査部(xyzステージ)
20、20A〜20F プラズモン活性基体
20s 試料接触面
22 誘電体
23 金属体
30、130 励起光照射光学系
40 測定光照射光学部
43、143 検出部
45 145 物理特性検出系
50 光捕捉光照射光学系
52 対物レンズ
S 試料
L 光ビーム
L0 励起光
L1 測定光
L2 検出光
L3 捕捉光

【特許請求の範囲】
【請求項1】
被測定物質を含む流動性を有する試料が充填または流下される試料セルと、
該試料セル内の試料に接触するように配置された、試料接触面に対して励起光を照射させることにより前記試料接触面にプラズモン増強場を生じるプラズモン活性基体と、
前記励起光を照射する励起光照射光学系と、
該プラズモン活性基体の前記試料接触面上の試料の物理特性を検出する物理特性検出系とを備えたセンシング装置であって、
前記プラズモン活性基体の前記試料接触面に捕捉光を集光させ、光捕捉効果により前記試料接触面に前記試料中の被測定物質を捕捉させる光捕捉光照射光学系を備えたことを特徴とするセンシング装置。
【請求項2】
前記捕捉光の集光位置を前記試料セル内で走査させる走査部を備えていることを特徴とする請求項1記載のセンシング装置。
【請求項3】
前記物理特性検出系が、前記プラズモン活性基体の前記試料接触面上に測定光を照射する測定光照射光学部と、該測定光の前記試料接触面における反射光および/または該試料接触面で生じる散乱光を検出する検出部とを備えていることを特徴とする請求項1または2記載のセンシング装置。
【請求項4】
前記プラズモン活性基体が、前記励起光の波長よりも小さい凹凸構造を有する金属体で構成されていることを特徴とする請求項1から3いずれか1項記載のセンシング装置。
【請求項5】
前記金属体の主成分が、Au、Ag、Cu、Al、Pt、Ni、Ti、およびこれらの合金からなる群より選択される少なくとも1種の金属であることを特徴とする請求項4記載のセンシング装置。
【請求項6】
前記試料セルが、一端が前記プラズモン活性基体の前記試料接触面に接したキャピラリー状セルであることを特徴とする請求項1から5いずれか1項記載のセンシング装置。
【請求項7】
前記プラズモン活性基体が、前記試料接触面に、前記被測定物質とイオン結合する表面修飾が施されたものであることを特徴とする請求項1から6いずれか1項記載のセンシング装置。
【請求項8】
前記被測定物質が蛋白質、ペプチド、及びアミノ酸からなる群より選ばれた少なくとも1種であり、
前記被測定物質とイオン結合する前記表面修飾が、カルボキシ基、スルホン酸基、リン酸基、アミノ基、4級アンモニウム基、イミダゾール基、及びグアニジニウム基からなる群より選ばれた少なくとも1種の基であることを特徴とする請求項7記載のセンシング装置。
【請求項9】
前記プラズモン活性基体が、前記試料接触面に前記被測定物質と共有結合する表面修飾が施されたものであることを特徴とする請求項1から8いずれか1項記載のセンシング装置。
【請求項10】
前記被測定物質が蛋白質、ペプチド、及びアミノ酸からなる群より選ばれた少なくとも1種であり、
前記被測定物質と共有結合する前記表面修飾が、反応性エステル基、ヒドラジド基、チオール基、及び反応性ジスルフィド基からなる群より選ばれた少なくとも1種の基であることを特徴とする請求項9記載のセンシング装置。
【請求項11】
前記被測定物質が、該被測定物質のサイズを大きくするための表面修飾が施されたものであることを特徴とする請求項1から10いずれか1項記載のセンシング装置。
【請求項12】
被測定物質を含む流動性を有する試料を、試料接触面に対して励起光が照射されて該試料接触面にプラズモン増強場を生じるプラズモン活性基体と接触させ、
前記励起光を前記プラズモン活性基体に照射して前記プラズモン増強場を生じさせた状態で、前記プラズモン活性基体の前記試料接触面上の被測定物質の物理特性を検出するセンシング方法であって、
前記試料を前記プラズモン活性基体と接触させた状態で、該プラズモン活性基体の前記試料接触面に捕捉光を集光させることにより、前記試料中の前記被測定物質を前記試料接触面上に移動させ、
前記試料接触面に前記被測定物質を捕捉させた状態で、前記被測定物質の物理特性の検出を行うことを特徴とするセンシング方法。
【請求項13】
前記捕捉光を前記試料接触面に集光させる前に、該捕捉光を前記試料セル内で試料接触面から離間した位置から徐々に該試料接触面に近づく方向に走査させ、最後に該試料接触面に集光させることを特徴とする請求項12記載のセンシング方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2009−42112(P2009−42112A)
【公開日】平成21年2月26日(2009.2.26)
【国際特許分類】
【出願番号】特願2007−208317(P2007−208317)
【出願日】平成19年8月9日(2007.8.9)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】