説明

タイヤ

【課題】低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性が高いレベルでバランスしたタイヤを提供する。
【解決手段】特定の構造を有するメタロセン錯体及びハーフメタロセンカチオン錯体の中から選ばれる少なくとも1種の錯体を含む重合触媒組成物の存在下、芳香族ビニル化合物及び共役ジエン化合物を付加重合して得られた、共役ジエン化合物部分のシス−1,4結合量が80%以上の芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)と、シス−1,4結合量が75%以上の共役ジエン系重合体(a−2)とを、質量比5:95〜95:5の割合で含むゴム成分(A)を含有するゴム組成物をタイヤ部材に用いたことを特徴とするタイヤである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性に優れたタイヤに関する。さらに詳しくは、本発明は、メタロセン錯体を含む重合触媒を用いて得られた共役ジエン化合物部分のシス−1,4結合量が80%以上の芳香族ビニル化合物−共役ジエン化合物共重合体、好ましくは、ハイシスSBRと、シス−1,4結合量が75%以上の共役ジエン系重合体、好ましくはプロトン性アミノ基及び/又は保護されたアミノ基を有する変性ハイシスBRとの混合物を含むゴム成分を含有するゴム組成物を、タイヤ部材、好ましくはトレッドに用いてなる上記性状を有するタイヤに関するものである。
【背景技術】
【0002】
近年の自動車に対する低燃費化要求に伴い、タイヤ用ゴム材料として転がり抵抗が小さく、ウェットスキッド抵抗に代表される操縦安定性に優れ、更に耐摩耗性及び耐亀裂成長性が良好なゴム材料が望まれている。
これについて、タイヤ用ゴム材料として、補強材に含水ケイ酸(湿式シリカ)あるいは含水ケイ酸とカーボンブラックの混合物を配合したゴム組成物を使用する方法が提案されている。(例えば、特許文献1〜4)
含水ケイ酸あるいは含水ケイ酸とカーボンブラックの混合物を配合したタイヤトレッドは転がり抵抗が小さく、ウェットスキッド抵抗に代表される操縦安定性能は良いが、その反面、耐摩耗性や耐亀裂成長性が低いという問題がある。また、ゴム中への含水ケイ酸の分散が不十分なためゴム組成物のムーニー粘度が高くなり、押出しなどの加工性に劣るなどの欠点を有していた。更に、含水ケイ酸粒子の表面が酸性であることから、ゴム組成物を加硫する際に、加硫促進剤として使用される塩基性物質を吸着し、加硫が十分行われず、弾性率が上がらないという欠点も有していた。
これらの欠点を改良するために、シランカップリング剤が開発されたが、依然として含水ケイ酸の分散は十分なレベルには達しておらず、特に工業的に良好な含水ケイ酸粒子の分散を得ることは困難であった。
また、低発熱性を高めるため、含水ケイ酸を大粒径化することが行われているが、大粒径化することで含水ケイ酸の比表面積が低下し、補強性が悪くなる。
【0003】
ところで、含水ケイ酸あるいは含水ケイ酸とカーボンブラックの混合物を配合した加硫物の耐摩耗性や耐亀裂成長性を改良する目的で、含水ケイ酸と親和性のある官能基を導入した変性重合体を含むゴム組成物が種々提案されている。
一方、含水ケイ酸配合においてもカーボンブラック配合においても、効果的な変性重合体として、アミノ基の導入された重合体が知られている。含水ケイ酸配合については、アミノ基が導入されたジエン系ゴム(例えば、特許文献5参照)などが提案されており、カーボンブラック配合についてはリチウムアミド開始剤を用いて重合末端にアミノ基が導入された重合体(例えば、特許文献6参照)などが提案されている。
これらの方法で得られた重合体は、含水ケイ酸配合・カーボンブラック配合のそれぞれの配合において、種々の物性の改良をある程度までは達成できるものの、上記文献では、主に重合体にアミノ基を導入する方法については詳細に述べられており、重合体そのものの構造と各性能の関係については、一般的な事項以上には言及されていなかった。
【0004】
他方、スチレン−ブタジエン共重合体等の芳香族ビニル化合物−共役ジエン化合物共重合体は、通常のアニオン系及びラジカル系重合開始剤等を用いた重合により合成され、その共役ジエン化合物部分の異性構造の一つである1,4構造は、トランス−1,4構造が一般に多く含まれる。また、該共役ジエン化合物部分の異性構造は、ビニル結合量以外の構造制御が困難であった。
【0005】
これに対し、共役ジエン化合物部分の立体規則性、例えば、シス−1,4構造の含有率を制御するため、配位子と金属原子とからなる金属触媒を用いて、芳香族ビニル化合物−共役ジエン化合物共重合体を生成させる手法が知られている(例えば、特許文献7〜特許文献9参照)。しかしながら、該手法により得られる芳香族ビニル化合物−共役ジエン化合物共重合体は、芳香族ビニル化合物部分のブロック化や低分子量化等の問題を含む場合があった。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平6−248116号公報
【特許文献2】特開平7−70369号公報
【特許文献3】特開平8−245838号公報
【特許文献4】特開平3−252431号公報
【特許文献5】特開平9−71687号公報
【特許文献6】特開平7−53616号公報
【特許文献7】特許第3207502号公報
【特許文献8】特開2006−137897号公報
【特許文献9】特許第3738315号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、このような状況下でなされたもので、低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性が高いレベルでバランスしたタイヤを提供することを目的とするものである。
【課題を解決するための手段】
【0008】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記の知見を得た。
特定のメタロセン錯体を含む重合触媒組成物の存在下、芳香族ビニル化合物及び共役ジエン化合物を付加重合させることにより、共役ジエン化合物部分のシス−1,4結合量が80%以上の芳香族ビニル化合物−共役ジエン化合物共重合体が得られ、該芳香族ビニル化合物−共役ジエン化合物共重合体をゴム成分として用いたゴム組成物をタイヤに適用することで、耐摩耗性及び耐ウェットスキッド性を大幅に向上できることを見出した。
一方、シス−1,4結合量が75%以上の共役ジエン系重合体、好ましくは窒素原子を含む変性ポリブタジエンゴムを含有するゴム組成物が、低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性に優れるタイヤを与えることを見出した。
本発明者らは、これらの知見に基づき、さらに研究を重ねた結果、メタロセン錯体を含む重合触媒を用いて得られた共役ジエン化合物部分のシス−1,4結合量が80%以上の芳香族ビニル化合物−共役ジエン化合物共重合体と、シス−1,4結合量が75%以上の共役ジエン系重合体、好ましくは窒素原子を含む変性ポリブタジエンゴムとを特定の割合で含むゴム成分を含有するゴム組成物をタイヤ部材に用いることにより、低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性が高いレベルでバランスしたタイヤが得られることを見出した。
本発明は、かかる知見に基づいて完成したものである。
【0009】
すなわち、本発明は、
[1]下記一般式(1)
【化1】

(式中、M1は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR1及びCpR2は、それぞれ独立して無置換もしくは置換インデニルを示し、Ra〜Rfは、それぞれ独立して炭素数1〜3のアルキル基を示し、L1は、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、下記一般式(2)
【0010】
【化2】

(式中、M2は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR3及びCpR4は、それぞれ独立して無置換もしくは置換インデニルを示し、X1、X2及びX3は、それぞれ独立して水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、L2は、中性ルイス塩基を示し、xは、0〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(3)
【0011】
【化3】

(式中、M3は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR5は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、X4は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、L3は、中性ルイス塩基を示し、yは、0〜3の整数を示し、[B]-は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体からなる群より選択される少なくとも1種類の錯体を含む重合触媒組成物の存在下、芳香族ビニル化合物及び共役ジエン化合物を付加重合して得られた、共役ジエン化合物部分のシス−1,4結合量が80%以上の芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)と、シス−1,4結合量が75%以上の共役ジエン系重合体(a−2)とを、質量比5:95〜95:5の割合で含むゴム成分(A)を含有するゴム組成物をタイヤ部材に用いたことを特徴とするタイヤ、
【0012】
[2]芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)において、共役ジエン化合物部分のビニル結合量が10%以下である上記[1]に記載のタイヤ、
[3]芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)において、芳香族ビニル化合物部分の繰り返し単位のNMR測定でのブロック量が、全芳香族ビニル化合物部分の10%以下である上記[1]又は[2]に記載のタイヤ、
[4]芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)が、融点(Tm)を有する上記[1]〜[3]のいずれかに記載のタイヤ、
[5]芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)が、スチレン−ブタジエン共重合体である上記[1]〜[4]のいずれかに記載のタイヤ、
[6]共役ジエン系重合体(a−2)のシス−1,4結合量が、90%以上である上記[1]〜[5]のいずれかに記載のタイヤ、
[7]共役ジエン系重合体(a−2)のビニル結合量が、1.2%以下である上記[1]〜[6]のいずれかに記載のタイヤ、
[8]共役ジエン系重合体(a−2)が、ポリブタジエンゴムである上記[1]〜[7]のいずれかに記載のタイヤ、
[9]共役ジエン系重合体(a−2)が、変性ポリブタジエンゴムである上記[1]〜[8]のいずれかに記載のタイヤ、
[10]変性ポリブタジエンゴムが、窒素原子を含む変性ポリブタジエンゴムである上記[9]に記載のタイヤ、
[11]変性ポリブタジエンゴムが、プロトン性アミノ基及び/又は保護されたアミノ基を含む変性ポリブタジエンゴムである上記[10]に記載のタイヤ、
[12]プロトン性アミノ基が、プロトン性第一アミノ基である上記[11]に記載のタイヤ、
[13]保護されたアミノ基が、保護された第一アミノ基である上記[11]に記載のタイヤ、
[14]ゴム組成物が、ゴム成分(A)100質量部に対し、シリカ(B)を20〜120質量部の割合で含む上記[1]〜[13]のいずれかに記載のタイヤ、
[15]ゴム組成物が、ゴム成分(A)100質量部に対し、さらにカーボンブラック(C)を5〜50質量部の割合で含む上記[1]〜[14]のいずれかに記載のタイヤ、
[16]ゴム成分(A)が、芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)と共役ジエン系重合体(a−2)との合計50質量%以上と、天然ゴム及び/又は他の共役ジエン系合成ゴム50質量%以下を含む上記[1]〜[15]のいずれかに記載のタイヤ、及び
[17]タイヤ部材がトレッドである上記[1]〜[16]のいずれかに記載のタイヤ、
を提供するものである。
【発明の効果】
【0013】
本発明によれば、メタロセン錯体を含む重合触媒を用いて得られた共役ジエン化合物部分のシス−1,4結合量が80%以上の芳香族ビニル化合物−共役ジエン化合物共重合体、好ましくはハイシスSBRと、シス−1,4結合量が75%以上の共役ジエン系重合体、好ましくはプロトン性アミノ基及び/又は保護されたアミノ基を有する変性ハイシスBRとの混合物を含むゴム成分を含有するゴム組成物を、タイヤ部材、好ましくはトレッドに用いることにより、低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性が高いレベルでバランスしたタイヤを提供することができる。
【発明を実施するための形態】
【0014】
本発明のタイヤは、下記の一般式(1)で表されるメタロセン錯体、下記の一般式(2)で表されるメタロセン錯体及び下記の一般式(3)で表されるハーフメタロセンカチオン錯体の中から選ばれる少なくとも1種の錯体を含む重合触媒組成物の存在下、芳香族ビニル化合物及び共役ジエン化合物を付加重合して得られた、共役ジエン化合物部分のシス−1,4結合量が80%以上の芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)と、シス−1,4結合量が75%以上の共役ジエン系重合体(a−2)とを、質量比5:95〜95:5の割合で含むゴム成分(A)を含有するゴム組成物をタイヤ部材に用いたことを特徴とする。
本発明のタイヤにおいて、タイヤ部材に用いるゴム組成物においては、ゴム成分(A)として、下記の性状を有する芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)と、下記の性状を有する共役ジエン系重合体(a−2)とを含むものが用いられる。
まず、芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)について説明する。
【0015】
[芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)]
本発明におけるゴム成分(A)において、成分(a−1)として用いられる芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)[以下、共重合体(a−1)と略称することがある。]は、メタロセン錯体やハーフメタロセンカチオン錯体を含む重合触媒組成物の存在下で、芳香族ビニル化合物及び共役ジエン化合物を付加重合させて得られたものであって、共役ジエン化合物部分のシス−1,4結合量が80%以上である。
【0016】
(重合触媒組成物)
<メタロセン錯体>
芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)の製造において用いられる重合触媒組成物としては、本発明においては、下記一般式(1)
【化4】

(式中、M1は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR1及びCpR2は、それぞれ独立して無置換もしくは置換インデニルを示し、Ra〜Rfは、それぞれ独立して炭素数1〜3のアルキル基を示し、L1は、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、下記一般式(2)
【0017】
【化5】

(式中、M2は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR3及びCpR4は、それぞれ独立して無置換もしくは置換インデニルを示し、X1、X2及びX3は、それぞれ独立して水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、L2は、中性ルイス塩基を示し、xは、0〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(3)
【0018】
【化6】

(式中、M3は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR5は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、X4は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、L3は、中性ルイス塩基を示し、yは、0〜3の整数を示し、[B]-は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体からなる群より選択される少なくとも1種類の錯体を含むものが用いられる。
【0019】
本発明で云うメタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物を指し、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称する。
【0020】
上記一般式(1)及び式(2)で表されるメタロセン錯体において、式中のCpR1〜CpR4は、それぞれ独立に無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpR1〜CpR4は、C97-XX又はC911-XXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(1)及び式(2)におけるCpR1〜CpR4は、それぞれ互いに同一でも異なっていてもよい。
【0021】
上記一般式(3)で表されるハーフメタロセンカチオン錯体において、式中のCpR5は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCpR5は、C55-XXで示される。ここで、Xは0〜5の整数である。また、Rはそれぞれ独立してヒドロカルビル基;メタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR5として、具体的には、以下のものが例示される。
【0022】
【化7】

(式中、Rは水素原子、メチル基又はエチル基を示す。)
【0023】
一般式(3)において、上記インデニル環を基本骨格とするCpR5は、一般式(1)のCpR1と同様に定義され、好ましい例も同様である。
一般式(3)において、上記フルオレニル環を基本骨格とするCpR5は、C139-XX又はC1317-XXで示され得る。ここで、Xは0〜9又は0〜17の整数である。また、Rはそれぞれ独立してヒドロカルビル基;メタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
【0024】
一般式(1)、式(2)及び式(3)における中心金属M1〜M3は、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属M1〜M3としては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
【0025】
一般式(1)で表されるメタロセン錯体は、ビストリアルキルシリルアミド配位子[−N(SiR32]を含む。ビストリアルキルシリルアミドに含まれるアルキル基R(一般式(1)におけるRa〜Rf)は、それぞれ独立して炭素数1〜3のアルキル基であり、メチル基であることが好ましい。
【0026】
一般式(2)で表されるメタロセン錯体は、シリル配位子[−SiX123]を含む。シリル配位子[−SiX123]に含まれるX1、X2及びX3は、たがいに同一でも異なっていてもよく、また下記で説明される一般式(3)のX4と同様に定義される基であり、好ましい基も同様である。
【0027】
一般式(3)において、X4は水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基及び炭素数1〜20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシド基が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。
【0028】
一般式(3)において、X4が表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6−トリイソプロピルチオフェノキシ基が好ましい。
【0029】
一般式(3)において、X4が表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、これらの中でも、ビストリメチルシリルアミド基が好ましい。
【0030】
一般式(3)において、X4が表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
【0031】
一般式(3)において、X4が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、X4が表す炭素数1〜20の炭化水素基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
【0032】
一般式(3)において、X4としては、ビストリメチルシリルアミド基又は炭素数1〜20の炭化水素基が好ましい。
【0033】
一般式(3)において、[B]-で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
【0034】
上記一般式(1)及び式(2)で表されるメタロセン錯体、並びに上記一般式(3)で表されるハーフメタロセンカチオン錯体は、それぞれ更に0〜3個、好ましくは0〜1個の中性ルイス塩基L1〜L3を含む。ここで、中性ルイス塩基L1〜L3としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基L1〜L3を含む場合、中性ルイス塩基L1〜L3は、それぞれにおいて同一であっても異なっていてもよい。
【0035】
また、上記一般式(1)及び式(2)で表されるメタロセン錯体、並びに上記一般式(3)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
【0036】
上記一般式(1)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミドの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(1)で表されるメタロセン錯体を得るための反応例を示す。この反応例は、2つのCpR1及びCpR2が同じCpRであり、Ra〜Rfが全て同じRである場合の例である。
【0037】
【化8】

(式中、X5はハロゲン原子を示す。)
【0038】
上記一般式( 2 )で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(2)で表されるメタロセン錯体を得るための反応例を示す。この反応例は、2つのCpR3及びCpR4が同じCpRであり、X1〜X3が全て同じXである場合の例である。
【0039】
【化9】

(式中、X5はハロゲン原子を示す。)
【0040】
上記一般式(3)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
【0041】
【化10】

【0042】
ここで、一般式(4)で表される化合物において、M3は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR5は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、X4は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、L3は、中性ルイス塩基を示し、yは、0〜3の整数を示す。また、一般式[A]+[B]-で表されるイオン性化合物において、[A]+は、カチオンを示し、[B]-は、非配位性アニオンを示す。
【0043】
[A]+で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。
【0044】
上記反応に用いる一般式[A]+[B]-で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A]+[B]-で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。なお、一般式(3)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(3)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(4)で表される化合物と一般式[A]+[B]-で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(3)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(1)又は式(2)で表されるメタロセン錯体と一般式[A]+[B]-で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(3)で表されるハーフメタロセンカチオン錯体を形成させることもできる。
【0045】
一般式(1)及び式(2)で表されるメタロセン錯体、並びに上記一般式(3)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。
【0046】
<助触媒>
本発明で用いる重合触媒組成物は、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。
上記重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
【0047】
上記アルミノキサンとしては、アルキルアルミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、上記重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度、好ましくは100程度となるようにすることが好ましい。
【0048】
一方、上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
【0049】
更に、上記重合触媒組成物においては、一般式(1)及び式(2)で表されるメタロセン錯体、並びに上記一般式(3)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス−1,4結合量や得られる共重合体の分子量を増大できる。
【0050】
(共重合体(a−1)の製造)
芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)は、前述した重合触媒組成物を用いる以外は特に制限されず、例えば、通常の配位イオン重合触媒を用いる付加重合体の製造方法と同様にして、単量体である芳香族ビニル化合物と共役ジエン化合物との混合物を付加重合させて得ることができる。なお、重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、該溶媒の使用量は任意であるが、重合触媒組成物に含まれる錯体の濃度を0.1〜0.0001mol/Lとする量であることが好ましい。ここで、芳香族ビニル化合物としては、スチレン、p−メチルスチレン、m−メチルスチレン、p−tert−ブチルスチレン、α−メチルスチレン、クロロメチルスチレン、ビニルトルエン等が挙げられ、これらの中でも、スチレンが好ましい。一方、共役ジエン化合物としては、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチルブタジエン等が挙げられ、これらの中でも、1,3−ブタジエンが好ましい。従って、当該芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)としては、スチレン−ブタジエン共重合体が特に好ましい。なお、重合触媒組成物に含まれるメタロセン錯体の使用量は、単量体に対して1/10000〜1/100倍モルの範囲が好ましい。
【0051】
また、上記付加重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。
上記付加重合反応の重合温度は、特に制限されないが、例えば−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4選択性が低下することがある。一方、上記付加重合反応の反応時間も特に制限されず、例えば1秒〜10日の範囲が好ましいが、重合される単量体の種類、触媒の種類、重合温度等の条件によって適宜選択することができる。
【0052】
(共重合体(a−1)の性状)
前述した方法により得られた芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)は、共役ジエン化合物部分のシス−1,4結合量は、80%以上であることを要し、90%以上であることが好ましい。該共役ジエン化合物部分のシス−1,4結合量が80%未満では、シス連鎖が不十分のため、融点(Tm)は測定されず、耐摩耗性は低下する。
なお、共役ジエン化合物部分のシス-1,4結合量は、1H-NMRスペクトル及び13C-NMRスペクトルの積分比より求めることができ、その具体的な手法は特開2004−27179号公報に開示されている。
また、当該芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)は、共役ジエン化合物部分のビニル結合量が10%以下であることが好ましく、5%以下であることが更に好ましい。共役ジエン化合物部分のビニル結合量が10%を超えると、シス−1,4結合量が低下し、耐摩耗性の向上効果が十分に得られなくなる。
【0053】
当該芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)は、芳香族ビニル化合物部分の繰り返し単位のNMR測定でのブロック量が、全芳香族ビニル化合物部分の10%以下であることが好ましく、7%以下であることが更に好まく、0%であることが特に好ましい。上記重合触媒組成物を用いて得られる共重合体(a−1)は、芳香族ビニル化合物がランダムに重合する傾向があり、芳香族ビニル化合物のブロック化を抑制することができる。ここで、ランダムとは、芳香族ビニル化合物部分の繰り返し単位のNMR測定でのブロック量(以下、ブロック芳香族ビニル化合物含有率と称することがある)が、全芳香族ビニル化合物部分の10%以下であることをいい、ブロックとは、芳香族ビニル化合物−芳香族ビニル化合物の結合を有する芳香族ビニル化合物部分を指す。上記ブロック芳香族ビニル化合物含有率が10%を超えると、芳香族ビニル化合物の単独重合体としての挙動が現われ、ガラス転移温度が上昇し、耐摩耗性が低下する場合がある。なお、ブロック芳香族ビニル化合物含有率は、1H−NMRスペクトルの積分比より求めることができる。
【0054】
更に、当該芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)は、DSC測定(示差走査熱量測定)において、融点(Tm)を示す。ここで、DSC測定における融点(Tm)は、共役ジエン化合物部分の連鎖に由来する静的結晶の融点を指す。
【0055】
次に、共役ジエン系重合体(a−2)について説明する。
[共役ジエン系重合体(a−2)]
本発明におけるゴム成分(A)において、成分(a−2)として用いられる共役ジエン系重合体(a−2)は、シス−1,4結合量が75%以上であり、90%以上であることが好ましい。シス−1,4結合量が75%未満では、得られるタイヤの低発熱性が低下する。また、同じ見地からビニル結合量が1.2%以下であることが好ましい。
共役ジエン系重合体(a−2)のシス−1,4結合量及び下記のビニル結合量は、上述の方法以外に、フーリエ変換赤外分光光度計を使用し、特開2005−015590号公報に記載されたフーリエ変換赤外分光法によっても測定できる。
【0056】
(共役ジエン系重合体(a−2)の製造)
本発明に係る共役ジエン系重合体(a−2)を得るための製造方法については特に制限はなく、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、特に溶液重合法が好ましい。また、重合形式は、回分式及び連続式のいずれであっても良い。
そして、上記のシス−1,4結合量及びビニル結合量(以下、両者を併せて「ミクロ構造」ということがある。)を有する共役ジエン系重合体を得るためには、有機溶媒中でランタン系列希土類元素化合物を含む重合触媒による共役ジエンモノマーを配位アニオン重合させる反応が好ましい。
【0057】
<ランタン系列希土類元素化合物を含む重合触媒>
上記のランタン系列希土類元素化合物を含む重合触媒としては、以下に示す(x)成分、(y)成分及び(z)成分それぞれの中から選ばれる少なくとも1種の化合物を組み合わせてなるものが好ましい。
【0058】
〔(x)成分〕
下記の(x1)〜(x4)から選ばれる希土類化合物で、そのまま不活性有機溶媒溶液として用いても、不活性固体上に担持して用いても良い。
(x1)酸化数3の希土類化合物で、炭素数2〜30のカルボキシル基、炭素数2〜30のアルコキシ基、炭素数6〜30のアリールオキシ基、及び炭素数5〜30の1,3−ジカルボニル含有基の内から自由に選ばれる配位子を合計三つ有するもの、又はこれとルイス塩基化合物(特に、遊離カルボン酸、遊離アルコール、1,3−ジケトン、環状エーテル、直鎖状エーテル、トリヒドロカルビルホスフィン、トリヒドロカルビルホスファイト等から選ばれる)の錯化合物である。具体的には、ネオジムトリ−2−エチルヘキサノエート、それとアセチルアセトンとの錯化合物、ネオジムトリネオデカノエート、それとアセチルアセトンとの錯化合物、ネオジムトリ−n−ブトキシドなどがある。
(x2)希土類の3ハロゲン化物とルイス塩基の錯化合物である。例えばネオジム三塩化物のTHF錯体がある。
(x3)少なくとも一つの(置換)アリル基が直接希土類原子に結合した、酸化数3の有機希土類化合物である。例えばテトラアリルネオジムとリチウムの塩がある。
(x4)少なくともひとつの(置換)シクロペンタジエニル基が直接希土類原子に結合した酸化数2又は3の有機希土類化合物、又はこの化合物と、トリアルキルアルミニウム又は非配位性アニオンと対カチオンからなるイオン性化合物との反応生成物である。例えばジメチルアルミニウム(μ−ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウムがある。
上記希土類化合物の希土類元素としては、ランタン、ネオジム、プラセオジム、サマリウム、ガドリニウムが好ましく、更に好ましくはランタン、ネオジム、サマリウムである。
上記(x)成分の中では、ネオジムのカルボン酸塩及びサマリウムの置換シクロペンタジエニル化合物が好ましい。ネオジムのカルボン酸塩としては、例えば、バーサチック酸ネオジムが挙げられる。
【0059】
〔(y)成分〕
次の一つから選ばれる少なくとも1種類の有機アルミニウム化合物で、複数を同時に用いることができる。
(y1)式Ra3A1であらわされるトリヒドロカルビルアルミニウム化合物(ただし、Raは炭素数1〜30の炭化水素基で、互いに同一であっても異なっていても良い。)
(y2)式Rb2A1H又はRbA1H2であらわされるヒドロカルビルアルミニウム水素化物(ただし、Rbは炭素数1〜30の炭化水素基で、互いに同一であっても異なっていても良い。)
(y3)炭素数1〜30の炭化水素基をもつヒドロカルビルアルミノキサン化合物である。
上記(y)成分としては、例えばトリアルキルアルミニウム、ジアルキルアルミニウムヒドリド、アルキルアルミニウムジヒドリド、アルキルアルミノキサンがある。これらの化合物は混合して用いても良い。(y)成分の中では、アルミノキサンと他の有機アルミニウム化合物との併用が好ましい。
【0060】
〔(z)成分〕
次の一から選ばれる化合物であるが、(x)がハロゲン原子又は非配位性アニオンを含む場合、及び(y)がアルミノキサンを含む場合は必ずしも必要ない。
(z1)加水分解可能なハロゲン原子を有する周期表(長周期型)2族、12〜14族に属する元素の無機もしくは有機化合物又はこれらとルイス塩基の錯化合物である。例えばアルキルアルミニウム二塩化物、ジアルキルアルミニウム塩化物、四塩化珪素、四塩化スズ、塩化亜鉛とアルコール等ルイス塩基との錯体、塩化マグネシウムとアルコール等ルイス塩基との錯体などである。
(z2)少なくとも一つの三級アルキルハライド、ベンジルハライド、及びアリールハライドから選ばれる構造を有する有機ハロゲン化物である。例えば塩化ベンジル、塩化t−ブチル、臭化ベンジル、臭化t−ブチルなどである。
(z3)亜鉛のハロゲン化物又はこれとルイス塩基の錯化合物である。
(z4)非配位性アニオンと対カチオンからなるイオン性化合物である。例えばトリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレートが好ましく用いられる。
【0061】
上記触媒の調製は、予備的に、上記の(x)、(y)、(z)成分以外に、必要に応じて、重合用モノマーと同じ共役ジエンモノマー及び/又は非共役ジエンモノマーを併用しても良い。
また、(x)成分又は(z)成分の一部もしくは全部を不活性な固体上に担持して用いても良く、この場合はいわゆる気相重合で行うことができる。
上記触媒の使用量は、適宜設定することができるが、通常(x)成分はモノマー100g当たり0.001〜0.5ミリモル程度である。また、モル比で(y)成分/(x)成分は5〜1000程度、(z)成分/(x)成分は0.5〜10程度である。
溶液重合の場合において用いられる溶媒としては、反応に不活性な有機溶媒、例えば脂肪族、脂環族、芳香族炭化水素化合物などの炭化水素系溶媒がある。具体的には、炭素数3〜8のものが好ましく、例えばプロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、n−ヘキサン、シクロヘキサン、プロペン、1−ブテン、イソブテン、トランス−2−ブテン、シス−2−ブテン、1−ペンテン、2−ペンテン、1−ヘキセン、2−ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどを挙げることができる。これらは単独で用いても良く、二種以上を混合して用いても良い。
【0062】
この重合反応における温度は、好ましくは−80〜150℃、更に好ましくは−20〜120℃の範囲で選定される。重合反応は、発生圧力下で行うことができるが、通常はモノマーを実質的に液相に保つに十分な圧力で操作することが望ましい。即ち、圧力は重合される個々の物質や用いる重合媒体及び重合温度にもよるが、所望ならばより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
この重合においては、触媒、溶媒、モノマーなど、重合に関与する全ての原材料は、水、酸素、二酸化炭素、プロトン性化合物などの反応阻害物質を実質的に除去したものを用いることが望ましい。
【0063】
本発明に係る共役ジエン系重合体に用いる共役ジエンモノマーは、例えば1,3−ブタジエン;イソプレン;2,3−ジメチル−1,3−ブタジエン;2−エチル−1,3−ブタジエン;1,3−ペンタジエン;2−メチル−1,3−ペンタジエン;3−メチル−1,3−ペンタジエン;4−メチル−1,3−ペンタジエン;2−フェニル−1,3−ブタジエン;1,3−ヘキサジエン;2,4−ヘキサジエンなどが挙げられる。これらは単独で用いても良く、二種以上を組み合わせて用いても良いが、これらの中で、1,3−ブタジエンが特に好ましい。
また、これらの共役ジエンモノマーに少量の他の炭化水素モノマーを少量共存せさても良いが、共役ジエンモノマーは、全モノマー中80モル%以上であることが好ましい。
上記のように、本発明に係る共役ジエン系重合体としては、ポリブタジエンゴムであることが好ましい。
【0064】
(共役ジエン系重合体の変性)
本発明においては、上述のようにして得られた活性末端を有する共役ジエン系重合体の該活性末端に、所定の変性剤を反応させて、重合末端に窒素原子を含む官能基を導入することが好ましく、重合末端にプロトン性アミノ基及び/又は保護されたアミノ基を導入することがより好ましい。ゴム組成物に補強性充填材として含まれるシリカとの反応性を高めるためである。
ここで、プロトン性アミノ基とは、プロトン性第一アミノ基及びプロトン性第二アミノ基の双方を包含するものであり、プロトン性第一アミノ基であることが更に好ましい。また、保護されたアミノ基とは、保護された第一アミノ基及び保護された第二アミノ基の双方を包含するものであり、保護された第一アミノ基が更に好ましい。プロトン性第一アミノ基及び保護された第一アミノ基が好ましいのは、更に前記シリカとの反応性を高めるためである。
【0065】
上記プロトン性アミノ基及び/又は保護されたアミノ基としては、例えば−NH2、−NHRg、−NL45及び−NRh6(ただし、Rg及びRhは、それぞれ炭化水素基を示し、L4、L5及びL6は、それぞれ水素原子又は解離し得る保護基を示す。)の中から選ばれる少なくとも一種の基を挙げることができる。
上記のRg、Rhで示される炭化水素基としては、各種のアルキル基、アルケニル基、アリール基、アラルキル基を挙げることができる。L4、L5、L6としては、容易に解離し得る保護基であれば良く、特に制限はなく、後述で説明するような基を挙げることができる。
【0066】
また、プロトン性アミノ基及び/又は保護されたアミノ基とヒドロカルビルオキシシラン基とを導入することも好ましく、同一の重合末端に上記のプロトン性アミノ基及び/又は保護されたアミノ基とヒドロカルビルオキシシラン基とを導入することが更に好ましい。
上述のようにして得られる変性共役ジエン系重合体としては、変性ポリブタジエンゴムであることが好ましい。
【0067】
<変性剤>
本発明においては、変性共役ジエン系重合体として、(a)同一の分子内にプロトン性アミノ基及び/又は保護されたアミノ基とヒドロカルビルオキシシラン基とを有するもの、特に(b)同一の重合末端にプロトン性アミノ基及び/又は保護されたアミノ基とヒドロカルビルオキシシラン基とを有するものが好ましく、従って変性剤としては、同一分子内に保護されたアミノ基に加えて他の官能基を1つ以上有する2官能性以上の多官能性化合物を用いることが好ましい。
【0068】
これらの同一分子内に保護されたアミノ基を有する2官能性以上の多官能性化合物としては、例えば、カルボニル基{特に、ケト基}、エポキシ基、カルボキシル基、チオカルボニル基{特に、チオケト基}、チオエポキシ基、チオカルボキシル基、ニトリル基、イソシアナート基及びハロシリル基{Si−X基(Xはハロゲン原子であり、塩素原子が好ましい。)}から選ばれる少なくとも1種の官能基と保護されたアミノ基(特に、ジシリルアミノ基)とを有する化合物(例えば、下記一般式(5)で示される化合物)、あるいは保護されたアミノ基(特に、ジシリルアミノ基)を有するハロシラン化合物(例えば、下記一般式(5)、下記一般式(6)、下記一般式(7)及び下記一般式(8)で示される化合物)を好適に挙げることができる。
【0069】
以下に、同一分子内に保護されたアミノ基を有する2官能性以上の多官能性化合物の好適例としての下記一般式(5)、下記一般式(6)、下記一般式(7)及び下記一般式(8)で示される化合物を説明する。
【0070】
【化11】

式中、R1は単結合、又は置換もしくは非置換の2価の有機基、好ましくは置換もしくは非置換の2価の炭化水素基である。R2はそれぞれ独立に水素原子、又は置換もしくは非置換の1価の有機基、好ましくは置換もしくは非置換の1価の炭化水素基である。R3はそれぞれ独立にR2であっても良いし、R3の双方が共に置換又は非置換の2価の有機基、好ましくは置換又は非置換の2価の炭化水素基を形成し、ジシリルアミノ基の2つのケイ素原子及び1つの窒素原子と共に環状構造を構成しても良い。この環状構造として、下記一般式(8)のR19に結合する環状ジシリルアミノ基が例示される。Qは下記一般式(5−a)又は下記一般式(5−b)で表わされる官能基である。
【0071】
【化12】

式中、R4は上記一般式(5)のR2と同じである。Jは酸素原子又は硫黄原子である。
【0072】
【化13】

式中、R5、R6及びR7はそれぞれ独立に上記一般式(5)のR2と同じである。Jは酸素原子又は硫黄原子である。
【0073】
【化14】

式中、Xはハロゲン原子である。R11はハロゲン原子、ヒドロカルビルオキシ基、又は置換もしくは非置換の2価の有機基(好ましくは置換もしくは非置換の2価の炭化水素基)である。R12は置換もしくは非置換の2価の有機基、好ましくは置換もしくは非置換の2価の炭化水素基である。R13は置換もしくは非置換の1価の有機基(好ましくは置換もしくは非置換の1価の炭化水素基)又は加水分解性基である。
【0074】
【化15】

式中、Xはハロゲン原子である。R14は置換もしくは非置換の2価の有機基、好ましくは置換もしくは非置換の2価の炭化水素基である。R15及びR16はそれぞれ独立に置換もしくは非置換の1価の有機基(好ましくは置換もしくは非置換の1価の炭化水素基)又は加水分解性基であっても良いし、R15及びR16が結合して1つの置換もしくは非置換の2価の有機基(好ましくは置換もしくは非置換の2価の炭化水素基)を形成しても良い。R17及びR18はそれぞれ独立にハロゲン原子、ヒドロカルビルオキシ基、又は置換もしくは非置換の1価の有機基(好ましくは置換もしくは非置換の1価の炭化水素基)である。
15及びR16の双方が加水分解性基であっても良く、R17及びR18の少なくとも一方が置換もしくは非置換の1価の有機基(好ましくは置換もしくは非置換の1価の炭化水素基)であっても良い。
【0075】
上記一般式(7)において、R15及びR16は結合して加水分解性の2価の有機基を形成しても良い。この場合、具体的には、加水分解性の2価の有機基としては、α,ω−ジアルキルシリルアルキレン基が例示され、それは下記一般式(8)に規定されるハロシランを形成する。
【0076】
【化16】

式中、R19及びR20はそれぞれ独立に置換もしくは非置換の2価の有機基、好ましくは置換もしくは非置換の2価の炭化水素基である。R21、R22、R23及びR24はそれぞれ独立に置換もしくは非置換の1価の有機基、好ましくは置換もしくは非置換の1価の炭化水素基である。R25及びR26はそれぞれ独立にハロゲン原子、ヒドロカルビルオキシ基、又は置換もしくは非置換の1価の有機基(好ましくは置換もしくは非置換の1価の炭化水素基)である。Xはハロゲン原子である。
【0077】
上記一般式(5)、上記一般式(6)、上記一般式(7)及び上記一般式(8)で示される、同一分子内に保護されたアミノ基を有する2官能性以上の多官能性化合物において、置換もしくは非置換の1価の炭化水素基としては、置換又は非置換の炭素数1〜20のアルキル基、置換又は非置換の炭素数3〜20のシクロアルキル基、置換又は非置換の炭素数2〜20のアルケニル基、置換又は非置換の炭素数3〜20のシクロアルケニル基、置換又は非置換の炭素数2〜20のアルキニル基、置換又は非置換の炭素数6〜20のアリール基、置換又は非置換の炭素数7〜20のアラルキル基、置換又は非置換の炭素数7〜20のアルカリール基等が挙げられる。
【0078】
上記の置換又は非置換の炭素数1〜20のアルキル基としては、炭素数1〜12であることがより好ましく、炭素数1〜10であることが更に好ましく、炭素数1〜8であることが特に好ましい。
炭素数1〜10のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、2−エチルヘキシル基、n−オクチル基、n−ノニル基及びn−デシル基が例示される。
炭素数3〜20のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、2−メチルシクロヘキシル基、2−t−ブチルシクロヘキシル基及び4−t−ブチルシクロヘキシル基が例示される。
炭素数6〜20のアリール基としては、フェニル基、置換フェニル基、ビフェニル基、置換ビフェニル基、ビサイクリックアリール基、置換ビサイクリックアリール基、ポリサイクリックアリール基及び置換ポリサイクリックアリール基が例示される。
【0079】
上記一般式(5)、上記一般式(6)、上記一般式(7)及び上記一般式(8)で示される、同一分子内に保護されたアミノ基を有する2官能性以上の多官能性化合物において、置換もしくは非置換の2価の炭化水素基としては、置換又は非置換の炭素数1〜20のアルキレン基、置換又は非置換の炭素数3〜20のシクロアルキレン基、置換又は非置換の炭素数2〜20のアルケニレン基、置換又は非置換の炭素数3〜20のシクロアルケニレン基、置換又は非置換の炭素数2〜20のアルキニレン基、置換又は非置換の炭素数6〜20のアリーレン基、置換又は非置換の炭素数7〜20のアラルキレン基、置換又は非置換の炭素数7〜20のアルカリーレン基等が挙げられる。
【0080】
上記の1価又は2価の置換炭化水素基は、窒素原子、ホウ素原子、酸素原子、ケイ素原子、硫黄原子及びリン原子から選ばれる少なくとも1原子を有していても良いが、これらの原子に制限されるものではない。
【0081】
上記一般式(6)及び上記一般式(7)における加水分解性基としてはトリヒドロカルビルシリル基のようなシリル基が挙げられ、トリメチルシリル基[即ち、(−Si(CH33)]、tert−ブチルジメチルシリル基、トリエチルシリル基、トリプロピルシリル基及びトリフェニルシリル基が例示される。上記一般式(8)における加水分解性基としては、R19に隣接する窒素原子に結合するα,ω−ジアルキルシリルアルキレン基が例示される。
保護されたアミノ基に含まれるこれらの加水分解性基は、非水雰囲気では安定であるが、水にさらされる(接触する)と窒素原子から開裂し、保護されたアミノ基はプロトン性アミノ基となる。また、保護されたアミノ基をプロトン性アミノ基に変化させるためには触媒が用いられても良く、好適な触媒としては、塩酸等の強酸やフッ化テトラブチルアンモニウムが例示される。
【0082】
上記一般式(6)、上記一般式(7)及び上記一般式(8)におけるヒドロカルビルオキシ基としては−ORが例示される。ここで、Rは置換もしくは非置換の1価の有機基(好ましくは置換もしくは非置換の1価の炭化水素基)である。この−ORとしては、炭素数1〜20のアルコキシ基、炭素数6〜20のアリールオキシ基等が例示される。
【0083】
1価又は2価の置換炭化水素基は、窒素原子、ホウ素原子、酸素原子、ケイ素原子、硫黄原子及びリン原子から選ばれる少なくとも1原子を有していても良いが、これらに制限されるものではない。
【0084】
上記一般式(5)に示される好適な化合物として、Qが上記一般式(5−a)であって、Jが酸素原子である場合が挙げられ、このとき、R1がフェニレン基であることが好ましい。この場合の上記一般式(5)に示される化合物の好適な具体例としては、N,N−ビス(トリメチルシリル)−2−アミノベンゾフェノン、N,N−ビス(トリメチルシリル)−3−アミノベンゾフェノン、N,N−ビス(トリメチルシリル)−4−アミノベンゾフェノン、N,N−ビス(トリメチルシリル)−2−アミノアセトフェノン、N,N−ビス(トリメチルシリル)−4−アミノアセトフェノン、N,N−ビス(トリメチルシリル)−4−アミノアセトフェノン、N,N−ビス(トリメチルシリル)−2−アミノベンズアルデヒド、N,N−ビス(トリメチルシリル)−1−アミノアントラキノン、N,N−ビス(トリメチルシリル)−2−アミノアントラキノン、N,N−ビス(トリメチルシリル)−6−アミノフラボン、N,N−ビス(トリメチルシリル)−7−アミノフラボン、N,N−ビス(トリメチルシリル)−1−アミノ−9−フルオレノン、N,N−ビス(トリメチルシリル)−2−アミノ−9−フルオレノン、N,N−ビス(トリメチルシリル)−3−アミノ−9−フルオレノン、N,N−ビス(トリメチルシリル)−4−アミノ−9−フルオレノン、N,N−ビス(トリメチルシリル)−3−アミノクマリン、N,N−ビス(トリメチルシリル)−7−アミノ−2−メチルクロモン、N,N−ビス(トリメチルシリル)−7−アミノ−4−メチルクマリン、N,N,N’,N’−テトラキス(トリメチルシリル)−1,2−ジアミノアントラキノン、N,N,N’,N’−テトラキス(トリメチルシリル)−1,4−ジアミノアントラキノン、N,N,N’,N’−テトラキス(トリメチルシリル)−1,5−ジアミノアントラキノン、N,N,N’,N’−テトラキス(トリメチルシリル)−2,6−ジアミノアントラキノン、N,N,N’,N’−テトラキス(トリメチルシリル)−1,3−ジアミノアセトン、N,N,N’,N’−テトラキス(トリメチルシリル)−2,2’−ジアミノベンゾフェノン、N,N,N’,N’−テトラキス(トリメチルシリル)−3,3’−ジアミノベンゾフェノン、N,N,N’,N’−テトラキス(トリメチルシリル)−4,4’−ジアミノベンゾフェノン、N,N,N’,N’−テトラキス(トリメチルシリル)−2,3−ジアミノベンゾフェノン、N,N,N’,N’−テトラキス(トリメチルシリル)−2,4−ジアミノベンゾフェノン、N,N,N’,N’−テトラキス(トリメチルシリル)−3,4−ジアミノベンゾフェノン、N,N,N’,N’−テトラキス(トリメチルシリル)−2,7−ジアミノ−9−フルオレノン、N,N,N’,N’−テトラキス(トリメチルシリル)−1,4−ジアミノアントラキノン、N,N,N’,N’−テトラキス(トリメチルシリル)−1,8−ジアミノアントラキノン及びN,N,N’,N’−テトラキス(トリメチルシリル)−1,4−ジアミノアントラキノンが挙げられるが、これらに制限されるものではない。
【0085】
上記一般式(5)に示される好適な化合物として、Qが上記一般式(5−b)でありJが酸素原子である場合が挙げられ、このとき、R1が炭素数1〜6のアルキレン基であることが好ましい。この場合の上記一般式(5)に示される化合物の好適な具体例としては、N,N−ビス(トリメチルシリル)グリシジルアミンが挙げられる。
【0086】
上記一般式(6)、上記一般式(7)及び上記一般式(8)に示されるハロシラン化合物類としては、1−トリヒドロカルビルシリル−2−ハロ−2−ヒドロカルビル−1−アザ−2−シラシクロヒドロカーボン類、特に1−トリ(C1−C12)ヒドロカルビルシリル−2−ハロ−2−(C1−C12)ヒドロカルビル−1−アザ−2−シラ(C1−C12)シクロヒドロカーボンが挙げられるが、これらに制限されるものではない。
【0087】
上記ハロシラン化合物の好適な化合物類としては、1−トリアルキルシリル−2−ハロ−2−アルキル−1−アザ−2−シラシクロアルカン、1−トリアルキルシリル−2−ハロ−2−アリール−1−アザ−2−シラシクロアルカン、1−トリアルキルシリル−2−ハロ−2−シクロアルキル−1−アザ−2−シラシクロアルカン、1−トリアリールシリル−2−ハロ−2−アルキル−1−アザ−2−シラシクロアルカン、1−トリアリールシリル−2−ハロ−2−アリール−1−アザ−2−シラシクロアルカン、1−トリアリールシリル−2−ハロ−2−シクロアルキル−1−アザ−2−シラシクロアルカン、1−トリシクロアルキルシリル−2−ハロ−2−アルキル−1−アザ−2−シラシクロアルカン、1−トリシクロアルキルシリル−2−ハロ−2−アリール−1−アザ−2−シラシクロアルカン及び1−トリシクロアルキルシリル−2−ハロ−2−シクロアルキル−1−アザ−2−シラシクロアルカンが挙げられるが、これらに制限されるものではない。
【0088】
上記ハロシラン化合物の好適な具体例としては、N−トリメチルシリル−2−クロロ−2−メチル−1−アザ−2−シラシクロペンタン、1−トリメチルシリル−2−クロロ−2−エチル−1−アザ−2−シラシクロペンタン、1−トリメチルシリル−2−クロロ−2−フェニル−1−アザ−2−シラシクロペンタン、1−トリイソプロピルシリル−2−クロロ−2−フェニル−1−アザ−2−シラシクロペンタン、1−トリ−tert−ブチルシリル−2−クロロ−2−フェニル−1−アザ−2−シラシクロペンタン、1−トリ−n−ブチルシリル−2−クロロ−2−フェニル−1−アザ−2−シラシクロペンタン、1−トリエチルシリル−2−クロロ−2−メチル−1−アザ−2−シラシクロペンタン、1−トリエチルシリル−2−クロロ−2−シクロペンチル−1−アザ−2−シラシクロペンタン、1−トリエチルシリル−2−クロロ−2−シクロヘキシル−1−アザ−2−シラシクロヘキサン、1−トリフェニルシリル−2−クロロ−2−メチル−1−アザ−2−シラシクロペンタン、1−トリフェニルシリル−2−クロロ−2−フェニル−1−アザ−2−シラシクロペンタン、1−トリフェニルシリル−2−クロロ−2−エチル−1−アザ−2−シラシクロヘキサン、1−シクロペンチルシリル−2−クロロ−2−エチル−1−アザ−2−シラシクロヘキサン及び1−シクロペンチルシリル−2−クロロ−2−シクロヘキシル−1−アザ−2−シラシクロヘキサンが挙げられるが、これらに制限されるものではない。
【0089】
上記ハロシラン化合物の他の好適な化合物類としては、[N,N−ビス(トリアルキルシリル)−3−アミノ−1−プロピル](アルキル)(ジハロ)シラン、[N,N−ビス(トリアルキルシリル)−3−アミノ−1−プロピル](トリハロ)シラン、[N,N−ビス(トリアルキルシリル)−3−アミノ−1−プロピル](ジアルキル)(ハロ)シラン、(3−ジアルキルアミノ−1−プロピル)(アルキル)(ジハロ)シラン、(3−ジアルキルアミノ−1−プロピル)(トリハロ)シラン、(3−ジアルキルアミノ−1−プロピル)(ジアルキル)(ハロ)シラン、(3−ジアリールアミノ−1−プロピル)(アルキル)(ジハロ)シラン、(3−ジアリールアミノ−1−プロピル)(トリハロ)シラン、(3−ジアリールアミノ−1−プロピル)(ジアルキル)(ハロ)シラン、[N,N−ビス(トリアルキルシリル)−4−アミノ−1−ブチル](アルキル)(ジハロ)シラン、[N,N−ビス(トリアルキルシリル)−4−アミノ−1−ブチル](トリハロ)シラン、[N,N−ビス(トリアルキルシリル)−4−アミノ−1−ブチル](ジアルキル)(ハロ)シラン、(4−ジアルキルアミノ−1−ブチル)(アルキル)(ジハロ)シラン、(4−ジアルキルアミノ−1−ブチル)(トリハロ)シラン、(4−ジアルキルアミノ−1−ブチル)(ジアルキル)(ハロ)シラン、(4−ジアリールアミノ−1−ブチル)(アルキル)(ジハロ)シラン、(4−ジアリールアミノ−1−ブチル)(トリハロ)シラン及び(4−ジアリールアミノ−1−ブチル)(ジアルキル)(ハロ)シランが挙げられるが、これらに制限されるものではない。
【0090】
上記ハロシラン化合物の他の好適な具体例としては、[N,N−ビス(トリメチルシリル)−3−アミノ−1−プロピル](メチル)(ジクロロ)シラン、[N,N−ビス(トリメチルシリル)−3−アミノ−1−プロピル](トリクロロ)シラン、[N,N−ビス(トリメチルシリル)−3−アミノ−1−プロピル](ジメチル)(クロロ)シラン、[N,N−ビス(トリエチルシリル)−3−アミノ−1−プロピル](エチル)(ジクロロ)シラン、[N,N−ビス(トリエチルシリル)−3−アミノ−1−プロピル](トリクロロ)シラン、[N,N−ビス(トリエチルシリル)−3−アミノ−1−プロピル](ジエチル)(クロロ)シラン、(3−ジメチルアミノ−1−プロピル)(メチル)(ジクロロ)シラン、(3−ジメチルアミノ−1−プロピル)(トリクロロ)シラン、(3−ジメチルアミノ−1−プロピル)(ジメチル)(クロロ)シラン、(3−ジエチルアミノ−1−プロピル)(エチル)(ジクロロ)シラン、(3−ジエチルアミノ−1−プロピル)(トリクロロ)シラン、(3−ジエチルアミノ−1−プロピル)(ジエチル)(クロロ)シラン、(3−ジフェニルアミノ−1−プロピル)(メチル)(ジクロロ)シラン、(3−ジフェニルアミノ−1−プロピル)(トリクロロ)シラン、(3−ジフェニルアミノ−1−プロピル)(ジメチル)(クロロ)シラン、[N,N−ビス(トリメチルシリル)−4−アミノ−1−ブチル](メチル)(ジクロロ)シラン、[N,N−ビス(トリメチルシリル)−4−アミノ−1−ブチル](トリクロロ)シラン、[N,N−ビス(トリメチルシリル)−4−アミノ−1−ブチル](ジメチル)(クロロ)シラン、(4−ジメチルアミノ−1−ブチル)(メチル)(ジクロロ)シラン、(4−ジメチルアミノ−1−ブチル)(トリクロロ)シラン、(4−ジメチルアミノ−1−ブチル)(ジメチル)(クロロ)シラン、(4−ジフェニルアミノ−1−ブチル)(メチル)(ジクロロ)シラン、(4−ジフェニルアミノ−1−ブチル)(トリクロロ)シラン及び(4−ジフェニルアミノ−1−ブチル)(ジメチル)(クロロ)シランが挙げられるが、これらに制限されるものではない。
【0091】
上記ハロシラン化合物の他の好適な化合物類としては、[3−(2,2,5,5−テトラアルキル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](アルキル)(ジハロ)シラン、[3−(2,2,5,5−テトラアリール−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](アルキル)(ジハロ)シラン、[3−(2,2,5,5−テトラアルキル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](トリハロ)シラン、[3−(2,2,5,5−テトラアリール−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](トリハロ)シラン、[3−(2,2,5,5−テトラアルキル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](ジアルキル)(ハロ)シラン、[3−(2,2,5,5−テトラアリール−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](ジアルキル)(ハロ)シラン、[4−(2,2,5,5−テトラアルキル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](アルキル)(ジハロ)シラン、[4−(2,2,5,5−テトラアリール−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](アルキル)(ジハロ)シラン、[4−(2,2,5,5−テトラアルキル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](トリハロ)シラン、[4−(2,2,5,5−テトラアリール−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](トリハロ)シラン、[4−(2,2,5,5−テトラアルキル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](ジアルキル)(ハロ)シラン及び[4−(2,2,5,5−テトラアリール−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](ジアルキル)(ハロ)シランが挙げられるが、これらに制限されるものではない。
【0092】
上記ハロシラン化合物の他の好適な具体例としては、[3−(2,2,5,5−テトラメチル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](メチル)(ジクロロ)シラン、[3−(2,2,5,5−テトラフェニル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](メチル)(ジクロロ)シラン、[3−(2,2,5,5−テトラメチル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](トリクロロ)シラン、[3−(2,2,5,5−テトラフェニル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](トリクロロ)シラン、[3−(2,2,5,5−テトラメチル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](ジメチル)(クロロ)シラン、[3−(2,2,5,5−テトラフェニル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−プロピル](ジメチル)(クロロ)シラン、[4−(2,2,5,5−テトラメチル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](メチル)(ジクロロ)シラン、[4−(2,2,5,5−テトラフェニル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](メチル)(ジクロロ)シラン、[4−(2,2,5,5−テトラメチル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](トリクロロ)シラン、[4−(2,2,5,5−テトラフェニル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](トリクロロ)シラン、[4−(2,2,5,5−テトラメチル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](ジメチル)(クロロ)シラン及び[4−(2,2,5,5−テトラフェニル−1−アザ−2,5−ジシラ−1−シクロペンチル)−1−ブチル](ジメチル)(クロロ)シランが挙げられるが、これらに制限されるものではない。
【0093】
上記の変性剤は、一種単独で用いても良く、二種以上組み合わせて用いても良い。
上記の変性剤の使用量は、重合触媒や所望する変性度に応じて、種々選択されるが、ランタン系列希土類元素化合物を含む重合触媒を用いる場合は、モル比(変性剤:希土類元素化合物)は(0.1:1)〜(200:1)の範囲であることが好ましく、(1:1)〜(200:1)の範囲であることがより好ましく、(5:1)〜(150:1)の範囲であることが更に好ましく、(10:1)〜(100:1)の範囲であることが特に好ましい。
変性剤の使用量を上記範囲にすることによって、充填材の分散性に優れ、加硫後の破壊特性、摩耗特性、低発熱性が改良される。
なお、上記変性剤の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法などが挙げられるが、一括して添加する方法が好ましい。
【0094】
また、変性剤は、重合開始末端、重合終了末端、重合体主鎖、側鎖のいずれに結合していても良いが、重合体末端からエネルギー消失を抑制して低発熱性を改良しうる点から、重合開始末端あるいは重合終了末端に導入されていることが好ましい。
この変性反応における温度は、好ましくは0〜150℃、より好ましくは10〜150℃、更に好ましくは20〜100℃の範囲で選定される。変性反応時間は、例えば10〜60分程度行なわれる。
変性反応の停止剤としては、1種以上のプロトン性化合物が挙げられ、例えば、アルコール類、カルボン酸類、無機酸類、水等が例示される。
【0095】
<縮合促進剤>
本発明では、特に、上記一般式(6)、上記一般式(7)及び上記一般式(8)に示されるハロシラン化合物を用いた上記の変性反応後にヒドロカルビルオキシ基等の第二変性反応を可能とする官能基が変性共役ジエン系重合体中に残置している場合は、所望により、上記の変性反応中又は変性反応後の第二変性反応として、縮合促進剤を用いる縮合反応を行なっても良い。
【0096】
このような縮合反応に用いる縮合促進剤としては、第三アミノ基を含有する化合物、又は周期律表(長周期型)の3族、4族、5族、12族、13族、14族及び15族のうちのいずれかの属する元素を一種以上含有する有機化合物を用いることができる。更に縮合促進剤として、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、アルミニウム(Al)、及びスズ(Sn)からなる群から選択される少なくも一種以上の金属を含有する、アルコキシド、アセチルアセトナート錯塩又はカルボン酸塩であることが好ましく、アルコキシド又はアセチルアセトナート錯塩が特に好ましい。
ここで用いる縮合促進剤は、上記変性反応前に添加することもできるが、変性反応の途中及び又は終了後に変性反応系に添加することが好ましい。変性反応前に添加した場合、活性末端との直接反応が起こり、活性末端に保護されたアミノ基を有する変性剤が導入されない場合がある。
縮合促進剤の添加時期としては、通常、変性反応開始5分〜5時間後、好ましくは変性反応開始15分〜1時間後である。
【0097】
上記縮合促進剤としてのチタン化合物として、具体的には、テトラキス(2−エチル−1,3−ヘキサンジオラト)チタン、テトラキス(2−メチル−1,3−ヘキサンジオラト)チタン、テトラキス(2−プロピル−1,3−ヘキサンジオラト)チタン、テトラキス(2−ブチル−1,3−ヘキサンジオラト)チタン、テトラキス(1,3−ヘキサンジオラト)チタン、テトラキス(1,3−ペンタンジオラト)チタン、テトラキス(2−メチル−1,3−ペンタンジオラト)チタン、テトラキス(2−エチル−1,3−ペンタンジオラト)チタン、テトラキス(2−プロピル−1,3−ペンタンジオラト)チタン、テトラキス(2−ブチル−1,3−ペンタンジオラト)チタン、テトラキス(1,3−ヘプタンジオラト)チタン、テトラキス(2−メチル−1,3−ヘプタンジオラト)チタン、テトラキス(2−エチル−1,3−ヘプタンジオラト)チタン、テトラキス(2−プロピル−1,3−ヘプタンジオラト)チタン、テトラキス(2−ブチル−1,3−ヘプタンジオラト)チタン、テトラキス(2−エチルヘキソキシ)チタン、テトラメトキシチタン、テトラエトキシチタン、テトラ−n−プロポキシチタン、テトライソプロポキシチタン、テトラ−n−ブトキシチタン、テトラ−n−ブトキシチタンオリゴマー、テトライソブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン、ビス(オレエート)ビス(2−エチルヘキサノエート)チタン、チタンジプロポキシビス(トリエタノールアミネート)、チタンジブトキシビス(トリエタノールアミネート)、チタントリブトキシステアレート、チタントリプロポキシステアレート、チタントリプロポキシアセチルアセトネート、チタンジプロポキシビス(アセチルアセトネート)、チタントリプロポキシ(エチルアセトアセテート)、チタンプロポキシアセチルアセトネートビス(エチルアセトアセテート)、チタントリブトキシアセチルアセトネート、チタンジブトキシビス(アセチルアセトネート)、チタントリブトキシエチルアセトアセテート、チタンブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタンテトラキス(アセチルアセトネート)、チタンジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2−エチルヘキサノエート)チタンオキサイド、ビス(ラウレート)チタンオキサイド、ビス(ナフテネート)チタンオキサイド、ビス(ステアレート)チタンオキサイド、ビス(オレエート)チタンオキサイド、ビス(リノレート)チタンオキサイド、テトラキス(2−エチルヘキサノエート)チタン、テトラキス(ラウレート)チタン、テトラキス(ナフテネート)チタン、テトラキス(ステアレート)チタン、テトラキス(オレエート)チタン、テトラキス(リノレート)チタン、チタンジ−n−ブトキサイド(ビス−2,4−ペンタンジオネート)、チタンオキサイドビス(ステアレート)、チタンオキサイドビス(テトラメチルヘプタンジオネート)、チタンオキサイドビス(ペンタンジオネート)、チタンテトラ(ラクテート)等が挙げられる。中でも、テトラキス(2−エチル−1,3−ヘキサンジオラト)チタン、テトラキス(2−エチルヘキソキシ)チタン、チタンジ−n−ブトキサイド(ビス−2,4−ペンタンジオネート)が好ましい。
【0098】
上記スズ化合物としては、具体的には、2−エチルヘキサン酸スズ{[CH3(CH2)3CH(C25)CO2]2Sn(二価)}が挙げられる。
上記ビスマス化合物としては、具体的には、トリス(2−エチルヘキサノエート)ビスマス、トリス(ラウレート)ビスマス、トリス(ナフテネート)ビスマス、トリス(ステアレート)ビスマス、トリス(オレエート)ビスマス、トリス(リノレート)ビスマス等を挙げることができる。
【0099】
上記ジルコニウム化合物としては、具体的には、テトラエトキシジルコニウム、テトラn−プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラn−ブトキシジルコニウム、テトラsec−ブトキシジルコニウム、テトラtert−ブトキシジルコニウム、テトラ(2−エチルへキシル)ジルコニウム、ジルコニウムトリブトキシステアレート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2−エチルヘキサノエート)ジルコニウムオキサイド、ビス(ラウレート)ジルコニウムオキサイド、ビス(ナフテネート)ジルコニウムオキサイド、ビス(ステアレート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、ビス(リノレート)ジルコニウムオキサイド、テトラキス(2−エチルヘキサノエート)ジルコニウム、テトラキス(ラウレート)ジルコニウム、テトラキス(ナフテネート)ジルコニウム、テトラキス(ステアレート)ジルコニウム、テトラキス(オレエート)ジルコニウム、テトラキス(リノレート)ジルコニウム等を挙げることができる。
【0100】
上記アルミニウム化合物としては、具体的には、トリエトキシアルミニウム、トリn−プロポキシアルミニウム、トリイソプロポキシアルミニウム、トリn−プトキシアルミニウム、トリsec−ブトキシアルミニウム、トリtert−ブトキシアルミニウム、トリ(2−エチルへキシル)アルミニウム、アルミニウムジブトキシステアレート、アルミニウムジブトキシアセチルアセトネート、アルミニウムブトキシビス(アセチルアセトネート)、アルミニウムジブトキシエチルアセトアセテート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、トリス(2−エチルヘキサノエート)アルミニウム、トリス(ラウレート)アルミニウム、トリス(ナフテネート)アルミニウム、トリス(ステアレート)アルミニウム、トリス(オレエート)アルミニウム、トリス(リノレート)アルミニウム等を挙げることができる。
【0101】
上述の縮合促進剤の内、チタン系縮合促進剤が好ましく、チタン金属のアルコキシド、又はチタン金属のアセチルアセトナート錯塩が特に好ましい。この縮合促進剤の使用量としては、上記化合物のモル数が、反応系内に存在する変性剤由来の官能基総量に対するモル比として、0.1〜10となることが好ましく、0.5〜5が特に好ましい。縮合促進剤の使用量を上記範囲にすることによって縮合反応が効率よく進行する。
【0102】
本発明における縮合反応は、上述の縮合促進剤と、水蒸気又は水の存在下で進行する。水蒸気の存在下の場合として、スチームストリッピングによる脱溶媒処理が挙げられ、スチームストリッピング中に縮合反応が進行する。
また、縮合反応を水溶液中で行っても良い。
また、該縮合促進剤を用いた縮合反応は20〜180℃の温度で行うことが好ましく、更には30〜170℃の範囲が好ましく、特に40〜150℃の範囲が好ましい。反応時間としては、0.5分〜10時間程度、好ましくは0.5分〜5時間、より好ましくは0.5〜120分程度、3〜60分の範囲が更に好ましい。
なお、縮合反応時の反応系の圧力は、通常、0.01〜20MPa、好ましくは0.05〜10MPaである。
【0103】
縮合反応を水溶液中で行う場合の形式については特に制限はなく、バッチ式反応器を用いても、多段連続式反応器等の装置を用いて連続式で行っても良い。また、この縮合反応と脱溶媒を同時に行っても良い。
本発明の変性共役ジエン系重合体の変性剤由来のプロトン性アミノ基は、上述のように脱保護処理を行うことによって生成する。上述したスチームストリッピング等の水蒸気を用いる脱溶媒処理以外の脱保護処理の好適な具体例を以下に詳述する。
即ち、アミノ基上の保護基を加水分解することによってプロトン性アミノ基に変換する。これを脱溶媒処理することにより、プロトン性アミノ基を有する変性共役ジエン系重合体を得ることができる。なお、該縮合処理を含む段階から、脱溶媒して乾燥ポリマーまでのいずれかの段階において必要に応じて変性剤由来の保護されたアミノ基の脱保護処理を行うことができる。
【0104】
本発明において得られる変性共役ジエン系重合体のムーニー粘度(ML1+4、100℃)は、好ましくは10〜150、より好ましくは20〜90である。ムーニー粘度の値を上記範囲にすることによって、混練り作業性及び加硫後の機械的特性のすぐれたゴム組成物を得ることができる。
本発明における変性共役ジエン系重合体は、重合体中にプロトン性アミノ基及び/又は保護されたアミノ基を有し、上記のプロトン性アミノ基や保護されたアミノ基の解離基は、カーボンブラックや含水ケイ酸に対して良好な相互作用を有する。当該変性共役ジエン系重合体を含むゴム組成物は、トレッドに用いた場合、低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性に優れたタイヤを提供することができる。
【0105】
次に、本発明のタイヤにおいて、タイヤ部材に用いるゴム組成物について説明する。
[ゴム組成物]
(ゴム成分(A))
当該ゴム組成物においては、ゴム成分(A)として、前述した共役ジエン化合物部分のシス−1,4結合量が80%以上の芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)と、シス−1,4結合量が75%以上の共役ジエン系重合体(a−2)、好ましくは変性共役ジエン系重合体とを、質量比5:95〜95:5の割合で含むものが用いられる。
前記の共重合体(a−1)と共役ジエン系重合体(a−2)との割合が上記の範囲にあれば、低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性に優れたタイヤを得ることができる。さらに、低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性が高いレベルでバランスしたタイヤを得るには、前記の(a−1)成分と(a−2)成分との割合は、質量比で50:50〜80:20の範囲が好ましく、50:50〜70:30の範囲がより好ましい。
前記の共重合体(a−1)及び共役ジエン系重合体(a−2)は、それぞれ1種用いてもよく、2種以上を組み合わせて用いてもよい。
【0106】
当該ゴム成分(A)としては、芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)と共役ジエン系重合体(a−2)との合計50質量%以上と、天然ゴム及び/又は他の共役ジエン系合成ゴム50質量%以下を含むものが好ましい。
前記他の共役ジエン系合成ゴムとしては、共役ジエン化合物部分のシス−1,4結合量が80%以上の芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)及びシス−1,4結合が75%以上の共役ジエン系重合体(a−2)以外の合成ゴム、例えば合成イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、エチレン−α−オレフィン共重合ゴム、エチレン−α−オレフィン−ジエン共重合ゴム、アクリロニトリル−ブタジエン共重合ゴム、クロロプレンゴム、ハロゲン化ブチルゴム及びこれらの混合物などが挙げられる。また、その一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでも良い。
前記の芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)と共役ジエン系重合体(a−2)との合計含有量が70質量%以上であり、天然ゴム及び/又は他の共役ジエン系合成ゴムの含有量が30質量%以下であることがより好ましい。
【0107】
(充填材)
当該ゴム組成物は、充填材としてシリカ(B)を含有することが好ましい。
シリカとしては特に制限はなく、従来ゴムの補強用充填材として慣用されているものの中から任意に選択して用いることができる。このシリカとしては、例えば湿式シリカ(含水ケイ酸),乾式シリカ(無水ケイ酸),が挙げられるが、中でも破壊特性の改良効果並びにウェットグリップ性及び低転がり抵抗性の両立効果が最も顕著である湿式シリカが好ましい。
この湿式シリカは、補強性、加工性、ウェットグリップ性、耐摩耗性のバランス等の面から、BET法による窒素吸着比表面積(N2SA)が140〜280m2/gであることが好ましく、170〜250m2/gであることがより好ましい。好適な湿式シリカとしては、例えば東ソー・シリカ(株)製のAQ、VN3、LP、NA等、デグッサ社製のウルトラジルVN3(N2SA:210m2/g)等が挙げられる。
その含有量は、補強効果及び他の物性改良効果の観点から、前記ゴム成分(A)100質量部に対して、20〜120質量部程度が好ましく、50〜100質量部がより好ましい。
当該ゴム組成物においては、充填材として、さらにカーボンブラック(C)を含有することができる。
カーボンブラックは、HAF級グレード、N339グレード、IISAFグレード、ISAF級グレード及びSAF級グレードの中から選ばれる少なくとも一種を用いることが好ましく、補強性を確保するために、SAF級グレード及びISAF級グレードを、低ヒステリシスロスを確保するために、HAF級グレード、N339グレード及びIISAFグレードを用いることが好ましい。
このカーボンブラックの含有量は、前記ゴム成分(A)に対し、通常5〜50質量部程度、好ましくは5〜30質量部である。
【0108】
(シランカップリング剤(D))
当該ゴム組成物においては、補強用充填材としてシリカを用いる場合、その補強性及び低発熱性をさらに向上させる目的で、シランカップリッグ剤(D)を配合することができる。
このシランカップリング剤としては、例えばビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−卜リエトキシシリルエチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリエトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリエトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルメタクリレートモノスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、3−メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィドなどが挙げられるが、これらの中で補強性改善効果などの点から、ビス(3−トリエトキシシリルプロピル)ポリスルフィド及び3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィドが好適である。
これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
シランカップリング剤の配合量は、シランカップリング剤の種類などにより異なるが、シリカに対して、好ましくは1〜20質量%の範囲で選定される。この量が1質量%未満ではカップリング剤としての効果が充分に発揮されにくく、また、20質量%を超えるとゴム成分のゲル化を引き起こすおそれがある。カップリング剤としての効果及びゲル化防止などの点から、このシランカップリング剤の好ましい配合量は、5〜15質量%の範囲である。
【0109】
(ゴム組成物の調製)
当該ゴム組成物には、本発明の目的が損なわれない範囲で、所望により、通常ゴム工業界で用いられる各種薬品、例えば加硫剤、加硫促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸などを含有させることができる。
上記加硫剤としては、硫黄等が挙げられ、その使用量は、ゴム成分(A)100質量部に対し、硫黄分として0.1〜10.0質量部が好ましく、更に好ましくは1.0〜5.0質量部である。0.1質量部未満では加硫ゴムの破壊強度、耐摩耗性、低発熱性が低下するおそれがあり、10.0質量部を超えるとゴム弾性が失われる原因となる。
【0110】
本発明で使用できる加硫促進剤は、特に限定されるものではないが、例えば、M(2−メルカプトベンゾチアゾール)、DM(ジベンゾチアゾリルジスルフィド)、CZ(N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)等のチアゾール系、あるいはDPG(ジフェニルグアニジン)等のグアニジン系の加硫促進剤等を挙げることができ、その使用量は、ゴム成分(A)100質量部に対し、0.1〜5.0質量部が好ましく、更に好ましくは0.2〜3.0質量部である。
【0111】
また、当該ゴム組成物で使用できるプロセス油としては、例えばパラフィン系、ナフテン系、アロマチック系等を挙げることができる。引張強度、耐摩耗性を重視する用途にはアロマチック系が、ヒステリシスロス、低温特性を重視する用途にはナフテン系又はパラフィン系が用いられる。その使用量は、ゴム成分(A)100質量部に対して、0〜100質量部が好ましく、100質量部を超えると加硫ゴムの引張強度、低発熱性が悪化する傾向がある。
【0112】
当該ゴム組成物は、ロール、インターナルミキサー等の混練り機を用いて混練りすることによって得られ、成形加工後、加硫を行い、キャップ/ベース構造のトレッドゴムとして、特にトレッドキャップゴムとして、好適に使用される。
【0113】
[タイヤ]
本発明のタイヤは、前述したゴム組成物をタイヤ部材に用いたことを特徴とする。タイヤ部材としては、トレッド、ベーストレット、サイドウォール、サイド補強ゴム及びビードフィラーを好ましく挙げることができ、これらのいずれかに、当該ゴム組成物を用いることができるが、特にトレッドに用いることが好ましい。
当該ゴム組成物をトレッドに用いたタイヤは、低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性に優れる。なお、本発明のタイヤに充填する気体としては、通常の或いは酸素分圧を変えた空気、又は窒素等の不活性ガスが挙げられる。ゴム組成物をトレッドに用いる場合は、例えばトレッド用部材に押出し加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。
【実施例】
【0114】
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例によって何ら限定されるものではない。
なお、諸特性は下記の方法に従って測定した。
<ハーフメタロセンカチオン錯体の構造解析>
合成例1で得たハーフメタロセンカチオン錯体について、その構造を1H−NMR及びX線結晶構造解析により確認した。なお、1H−NMRはTHF−d8を溶媒とし、室温で測定を行った。X線結晶構造解析は「RAXIS CS」(リガク社製)を用いて行った。
【0115】
<SBR(a−1グループ)の性状>
製造例1及び2で得たハイシスSBR−A及びハイシスSBR−Bについて、数平均分子量(Mn)、分子量分布(Mw/Mn)、ミクロ構造、結合スチレン量、ブロックスチレン含有率、ガラス転移点(Tg)及び融点(Tm)を下記の方法で測定した。
【0116】
(1)数平均分子量(Mn)及び分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー[GPC:東ソー製「HLC−8020」、カラム:東ソー製「GMH−XL」(2本直列)、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、各重合体のポリスチレン換算の数平均分子量(Mn)及び分子量分布(Mw/Mn)を求めた。
【0117】
(2)ミクロ構造及び結合スチレン量
特開2004−27179号公報に開示されている手法に基づき、共重合体のミクロ構造を1H-NMRスペクトル及び13C-NMRスペクトルの積分比より求め、重合体の結合スチレン量を1H-NMRスペクトルの積分比より求めた。また、共重合体の結合スチレン量を1H−NMRスペクトルの積分比より求めた。
なお、1H-NMR及び13C-NMRは1,1,2,2−テトラクロロエタンを溶媒とし、120℃で測定を行った。
【0118】
(3)ブロックスチレン含有率
スチレン部分の繰り返し単位のNMR測定でのブロック量(ブロックスチレン含有率)が全スチレン部分に占める割合を1H−NMRスペクトルの積分比より求めた。
【0119】
(4)ガラス転移点(Tg)(℃)及び融点(Tm)(℃)
サンプルを10mg±0.5mg秤量し、アルミニウム製の測定パンに入れ蓋をしたものを、DSC装置(TAインスツルメント社製)にて、室温から50℃まで加温し、10分間安定させた後、−80℃まで冷却し、−80℃で10分間安定させてから、10℃/minの昇温速度で50℃まで昇温しながらガラス転移点(Tg)及び融点(Tm)を測定した。
【0120】
<BR(a−2グループ)及び比較例用ローシスBRの性状>
製造例3〜6で得たアミン変性ハイシスBR−C、アミン変性ハイシスBR−D、アミン変性ハイシスBR−E及びSn変性ローシスBR−Fについて、数平均分子量(Mn)、分子量分布(Mw/Mn)、ムーニー粘度ML1+4(100℃)及びミクロ構造を下記の方法で測定した。
【0121】
(1)数平均分子量(Mn)及び分子量分布(Mw/Mn)
前述したSBR(a−1グループ)の測定方法と同じである。
(2)ムーニー粘度ML1+4(100℃)の測定
JIS K 6300−1:2001に従って測定した。
(3)ミクロ構造の分析
フーリエ変換赤外分光光度計(商品名「FT/IR−4100」,日本分光社製)を使用し、特開2005−015590号公報に記載されたフーリエ変換赤外分光法によって、シス−1,4−結合量(%)、トランス−1,4−結合量(%)及びビニル結合量(%)を測定した。
【0122】
<タイヤ性能の評価>
実施例1〜4及び比較例1〜4で得られたタイヤについて、低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性のタイヤ性能を、タイヤトレッドから加硫ゴムサンプルを切り出し、以下のようにして評価を行った。
【0123】
(1)低発熱性
粘弾性スペクトロメーター(東洋精機株式会社製)を用い、周波数52Hz、初期歪10%、測定温度60℃、動歪1%でtanδを測定し、比較例1のtanδ値の逆数を100として以下の式により指数で表示した。この指数の値が大きい程、低発熱性が良好である。
低発熱性指数={(比較例1のtanδ値)/(供試タイヤのtanδ値)}×100
【0124】
(2)ウェット性能
粘弾性スペクトロメーター(東洋精機株式会社製)を用い、周波数52Hz、初期歪10%、測定温度0℃、動歪1%でtanδを測定し、比較例1のtanδ値を100として以下の式により指数で表示した。この指数の値が大きい程、ウェット性能が良好である。
ウェット性能指数={(供試タイヤのtanδ値)/(比較例1のtanδ値)}×100
【0125】
(3)耐摩耗性
JIS K6264に従い、ランボーン型摩耗試験機を用い、室温におけるスリップ率60%の摩耗量を測定し、比較例1の摩耗量の逆数を100として以下の式により指数で表示した。この指数の値が大きい程、耐摩耗性が良好である。
耐摩耗性指数={(比較例1の摩耗量)/(供試タイヤの摩耗量)}×100
【0126】
(4)耐亀裂成長性
JIS3号試験片中心部に0.5mmの亀裂を入れ、室温で50〜100%の歪みで繰り返し疲労を与え、試験片が切断するまでの回数を測定した。比較例1の回数を100として以下の式により指数で表示した。この指数の値が大きい程、耐亀裂成長性が良好である。
耐亀裂成長性指数={(供試タイヤの回数)/(比較例1の回数)}×100
【0127】
合成例1 [(2−MeC96)GdN(SiMe3)2(THF)3][B(C65)4]の合成
窒素雰囲気下、(2−MeC96)2GdN(SiMe3)2(0.150g,0.260mmol)のTHF溶液5mLに、トリエチルアニリニウムテトラキスフェニルボレート(Et3NHB(C66)4)(0.110g,0.260mmol)を添加し室温で12時間攪拌した。その後、THFを減圧留去し、得られた残査をヘキサンで3回洗浄したところ、オイル状化合物を得た。その残査をTHF/ヘキサン混合溶媒で再結晶を行い、白色結晶として[(2−MeC96)GdN(SiMe3)2(THF)3][B(C65)4](150mg,59%)を得た。構造確認はX線結晶解析で行った。
【0128】
合成例2 変性剤a{N,N,N’,N’−テトラキス(トリメチルシリル)−4,4’−ジアミノベンゾフェノン}の合成
4,4’−ジアミノベンゾフェノン約5.1g、トリエチルアミン10.7g及びトルエン10mLを丸底反応フラスコ中で混合した後、氷浴中で冷却した。この混合物に、トルエン50mL中のトリフルオロメタンスルホン酸トリメチルシリル23.5gの溶液を滴下した。
得られた混合物を室温で2日間撹拌した後、トルエンと未反応の反応剤を真空下で除去した。残留物をヘキサン100mLで抽出した。そのヘキサン層を40℃で真空蒸留して、11.0g(収率92%)の黄色固体を得た。
【0129】
1H NMR分光法データ(C66、25℃、テトラメチルシランを基準とする。)から生成物の構造は下記化学構造式(a)を有するN,N,N’,N’−テトラキス(トリメチルシリル)−4,4’−ジアミノベンゾフェノンであると確認された。この化合物は、上記一般式(5)において、R1がフェニレン基、R2及びR3がそれぞれメチル基、Qが一般式(5−a)で表わされ、Jが酸素原子であり、R4がジシリルアミノ基置換フェニレン基である。
【0130】
【化17】

【0131】
合成例3 変性剤b{N,N−ビス(トリメチルシリル)−4−アミノベンゾフェノン}の合成
4−アミノベンゾフェノン約12.0g、トリエチルアミン13.5g及びトルエン15mLを丸底反応フラスコ中で混合した後、氷浴中で冷却した。この混合物に、トルエン50mL中のトリフルオロメタンスルホン酸トリメチルシリル29.7gの溶液を滴下した。
得られた混合物を室温で2日間撹拌した後、トルエンと未反応の反応剤を真空下で除去した。残留物をシクロヘキサン100mLで抽出した。そのシクロヘキサン層を50℃で真空蒸留して、19.3g(収率93%)の茶色がかった黄色粘性液体を得た。
【0132】
1H NMR分光法データ(C66、25℃、テトラメチルシランを基準とする。)から生成物の構造は下記化学構造式(b)を有するN,N−ビス(トリメチルシリル)−4−アミノベンゾフェノンであると確認された。この化合物は、上記一般式(5)において、R1がフェニレン基、R2及びR3がそれぞれメチル基、Qが一般式(5−a)で表わされ、Jが酸素原子であり、R4がフェニル基である。
【0133】
【化18】

【0134】
合成例4 変性剤c{N,N−ビス(トリメチルシリル)グリシジルアミン}の合成
エピクロロヒドリン約10.4g及び リチウムビス(トリメチルシリル)アミドの1.0mol/Lテトラヒドロフラン(THF)溶液112mLをフラスコ中で混合した後、還流冷却器に接続した。この混合物を加熱し約1時間還流した。その後、室温で真空下での蒸発により反応混合物から溶媒を除去した。残った反応混合物を真空下で蒸留して、12.1g(収率50%)の無色液体を得た。
【0135】
1H NMR分光法データ(C66、25℃、テトラメチルシランを基準とする。)から生成物の構造は下記化学構造式(c)を有するN,N−ビス(トリメチルシリル)グリシジルアミンであると確認された。この化合物は、上記一般式(5)において、R1がメチレン基、R2及びR3がそれぞれメチル基、Qが一般式(5−b)で表わされ、Jが酸素原子であり、R5、R6及びR7がそれぞれ水素原子である。
【0136】
【化19】

【0137】
製造例1 SBR(a−1グループ)であるハイシスSBR−Aの製造
窒素雰囲気下のグローブボックス中で、十分に乾燥した1L耐圧ガラスボトルに、スチレン104g(1mol)及びトルエン50gを添加し、ボトルを打栓した。その後、グローブボックスからボトルを取り出し、1,3−ブタジエンを54g(1mol)仕込み、モノマー溶液とした。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器に、ビス(2−メチルインデニル)ガドリニウム(トリメチルシリルアミド)[(2−MeC96)2GdN(SiMe32]を40μmol、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(Ph3CB(C654)を40μmol、ジイソブチルアルミニウムハライドを1mmol仕込み、トルエン10mlで溶解させ触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、モノマー溶液へ添加し、70℃で30分間重合を行った。重合後、2,6−ビス(t−ブチル)−4−メチルフェノール(BHT)の10質量%のメタノール溶液10mlを加えて反応を停止させ、さらに大量のメタノール/塩酸混合溶媒で重合体を分離させ、60℃で真空乾燥した。得られたハイシスSBR−Aの収量は47gであった。
このハイシスSBR−Aの性状を表1に示す。
【0138】
製造例2 SBR(a−1グループ)であるハイシスSBR−Bの製造
触媒溶液におけるジイソブチルアルミニウムハライドの使用量を0.8mmolとした以外は、製造例1と同様の方法で重合を行った。得られたハイシスSBR−Bの収量は46gであった。
このハイシスSBR−Bの性状を表1に示す。
【0139】
【表1】

【0140】
[注]
タフデン2000:スチレン−ブタジエン共重合体、旭化成工業社製、商品名
【0141】
製造例3 BR(a−2グループ)であるアミン変性ハイシスBR−Cの製造
タービンアジテイターブレイドを装備する反応器にヘキサン1.526kg及び1,3−ブタジエン18.8質量%のヘキサン溶液2.940kgが加えられた。
次に、メチルアルミノキサン4.32mol/Lのトルエン溶液7.35mL、1,3−ブタジエン20.6質量%のヘキサン溶液1.66g、バーサチック酸ネオジム0.537mol/Lのシクロヘキサン溶液0.59mL、水素化ジイソブチルアルミニウム1.0mol/Lのヘキサン溶液6.67mL、及び塩化ジエチルアルミニウム1.0mol/Lのヘキサン溶液1.27mLを混合することにより触媒を準備した。この触媒は反応に先立ち15分熟成した。
【0142】
反応ジャケットの温度を65℃に設定し、触媒を投入して60分間経過後、重合体混合物を室温に冷却した。得られた重合体セメント423gを窒素パージした瓶に移した後、その瓶に変性剤a{N,N,N’,N’−テトラキス(トリメチルシリル)−4,4’−ジアミノベンゾフェノン}0.200mol/Lのシクロヘキサン溶液8.88mLを投入し、65℃に保った水浴中で、その瓶を30分間回転した。瓶内の重合体を2,6−ジ−tert−ブチル−4−メチルフェノール0.5gを含むイソプロパノール3Lで凝固した後、ドラム乾燥した。
得られたアミン変性ハイシスBR−Cの諸特性を表2に示す。
【0143】
製造例4 BR(a−2グループ)であるアミン変性ハイシスBR−Dの製造
製造例3と同様にして得られた重合体セメント433gを窒素パージした瓶に移した後、その瓶に変性剤b{N,N−ビス(トリメチルシリル)−4−アミノベンゾフェノン}0.300mol/Lのシクロヘキサン溶液6.06mLを投入し、65℃に保った水浴中で、その瓶を30分間回転した。瓶内の重合体を2,6−ジ−tert−ブチル−4−メチルフェノール0.5gを含むイソプロパノール3Lで凝固した後、ドラム乾燥した。
得られたアミン変性ハイシスBR−Dの諸特性を表2に示す。
【0144】
製造例5 BR(a−2グループ)であるアミン変性ハイシスBR−Eの製造
タービンアジテイターブレイドを装備する反応器にヘキサン1.512kg及び1,3−ブタジエン21.5質量%のヘキサン溶液2.954kgが加えられた。
次に、製造例3と同様にして触媒を準備し、熟成した。
反応ジャケットの温度を65℃に設定し、触媒を投入して55分間経過後、重合体混合物を室温に冷却した。得られた重合体セメント435gを窒素パージした瓶に移した後、その瓶に変性剤c{N,N−ビス(トリメチルシリル)グリシジルアミン}0.463mol/Lのヘキサン溶液5.26mLを投入し、65℃に保った水浴中で、その瓶を30分間回転した。瓶内の重合体を2,6−ジ−tert−ブチル−4−メチルフェノール0.5gを含むイソプロパノール3Lで凝固した後、ドラム乾燥した。
得られたアミン変性ハイシスBR−Eの諸特性を表2に示す。
【0145】
製造例6 比較例用Sn変性ローシスBR−Fの製造
乾燥し、窒素置換した800mLの耐圧ガラス容器に、シクロヘキサン300g、1,3−ブタジェン50gを注入し、ジテトラヒドロフリルプロパン/n−ブチルリチウムのモル比が0.03になるようにジテトラヒドロフリルプロパンを注入した。更にn−ブチルリチウムを0.36mmol加えた後、50℃で5時間重合反応を行った。この際の重合転化率は、ほぼ100%であった。次に、重合反応系に、変性剤d(四塩化スズ)をリチウム対比で1/4モルを加え更に50℃で30分間変性反応を行った。その後、重合反応系に、2,6−ジ−tert−ブチル−p−クレゾール(BHT)のイソプロパノール溶液(BHT濃度:5質量%)0.5mLを加えて、重合反応を停止させ、更にスチームストリッピングにより脱溶媒し乾燥して、Sn変性ローシスBR−Fを得た。
得られたSn変性ローシスBR−Fの諸特性を表2に示す。
【0146】
【表2】

【0147】
実施例1〜4及び比較例1〜4
製造例で得たハイシスSBR−A、ハイシスSBR−B、アミン変性ハイシスBR−C、アミン変性BR−D、アミン変性ハイシスBR−E、Sn変性ローシスBR−F(比較例用)及びSBR[旭化成工業社製、「タフデン2000」](比較例用)を用い、表3に示す配合組成を有する8種類のゴム組成物を調製した。次いでそれら8種類のゴム組成物を夫々乗用車用空気入りラジアルタイヤ(タイヤサイズ195/60R15)のトレッド(トレッドキャップ部)に配設して、8種類の乗用車用空気入りラジアルタイヤを常法に従って製造し、それら8種類のタイヤのトレッドからゴムサンプルを切り出し、前記の方法に従い、低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性を評価した。評価結果を表3に示す。
【0148】
【表3】

【0149】
[注]
1) SBR「タフデン2000」:旭化成工業社製、商品名
2) プロセスオイル:三共油化工業(株)製、商品名「A/O ミックス」
3) カーボンブラック:ISAF、旭カーボン(株)製、商品名「旭#80」
4) シリカ:東ソー・シリカ(株)製、商品名「Nipsil AQ」
5) シランカップリング剤:デグッサ社製、 商品名「Si75」
6) ミクロクリスタリンワックス:精工化学(株)製、商品名「サンタイト S」
7) 老化防止剤:N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン、精工化学(株)製、商品名「オゾノン 6C」
8) 加硫促進剤DPG:ジフェニルグアニジン、大内新興化学工業(株)製、商品名「ノクセラー D」
9) 加硫促進剤CZ: N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学工業(株)製、商品名「ノクセラー CZ」
10) 加硫促進剤DM:ジ−2−ベンゾチアゾリルジスルフィド、大内新興化学工業(株)製、商品名「ノクセラー DM」
【0150】
表3から分かるように、本発明のタイヤ(実施例1〜4)は、いずれも低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性が高いレベルでバランスしている。これに対し、比較例1〜4のタイヤは、耐摩耗性及び耐亀裂成長性が、実施例のタイヤに比べて劣る。
【産業上の利用可能性】
【0151】
本発明のタイヤは、メタロセン錯体を含む重合触媒を用いて得られた共役ジエン化合物部分のシス−1,4結合量が80%以上の芳香族ビニル化合物−共役ジエン化合物共重合体、好ましくはハイシスSBRと、シス−1,4結合量が75%以上の共役ジエン系重合体、好ましくは変性ハイシスBRとの混合物を含むゴム成分を含有するゴム組成物をタイヤ部材、好ましくはトレッドに用いてなる低発熱性、ウェット性能、耐摩耗性及び耐亀裂成長性に優れたタイヤである。

【特許請求の範囲】
【請求項1】
下記一般式(1)
【化1】

(式中、M1は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR1及びCpR2は、それぞれ独立して無置換もしくは置換インデニルを示し、Ra〜Rfは、それぞれ独立して炭素数1〜3のアルキル基を示し、L1は、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、下記一般式(2)
【化2】

(式中、M2は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR3及びCpR4は、それぞれ独立して無置換もしくは置換インデニルを示し、X1、X2及びX3は、それぞれ独立して水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、L2は、中性ルイス塩基を示し、xは、0〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(3)
【化3】

(式中、M3は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR5は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、X4は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、L3は、中性ルイス塩基を示し、yは、0〜3の整数を示し、[B]-は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体からなる群より選択される少なくとも1種類の錯体を含む重合触媒組成物の存在下、芳香族ビニル化合物及び共役ジエン化合物を付加重合して得られた、共役ジエン化合物部分のシス−1,4結合量が80%以上の芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)と、シス−1,4結合量が75%以上の共役ジエン系重合体(a−2)とを、質量比5:95〜95:5の割合で含むゴム成分(A)を含有するゴム組成物をタイヤ部材に用いたことを特徴とするタイヤ。
【請求項2】
芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)において、共役ジエン化合物部分のビニル結合量が10%以下である請求項1に記載のタイヤ。
【請求項3】
芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)において、芳香族ビニル化合物部分の繰り返し単位のNMR測定でのブロック量が、全芳香族ビニル化合物部分の10%以下である請求項1又は2に記載のタイヤ。
【請求項4】
芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)が、融点(Tm)を有する請求項1〜3のいずれかに記載のタイヤ。
【請求項5】
芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)が、スチレン−ブタジエン共重合体である請求項1〜4のいずれかに記載のタイヤ。
【請求項6】
共役ジエン系重合体(a−2)のシス−1,4結合量が、90%以上である請求項1〜5のいずれかに記載のタイヤ。
【請求項7】
共役ジエン系重合体(a−2)のビニル結合量が、1.2%以下である請求項1〜6のいずれかに記載のタイヤ。
【請求項8】
共役ジエン系重合体(a−2)が、ポリブタジエンゴムである請求項1〜7のいずれかに記載のタイヤ。
【請求項9】
共役ジエン系重合体(a−2)が、変性ポリブタジエンゴムである請求項1〜8のいずれかに記載のタイヤ。
【請求項10】
変性ポリブタジエンゴムが、窒素原子を含む変性ポリブタジエンゴムである請求項9に記載のタイヤ。
【請求項11】
変性ポリブタジエンゴムが、プロトン性アミノ基及び/又は保護されたアミノ基を含む変性ポリブタジエンゴムである請求項10に記載のタイヤ。
【請求項12】
プロトン性アミノ基が、プロトン性第一アミノ基である請求項11に記載のタイヤ。
【請求項13】
保護されたアミノ基が、保護された第一アミノ基である請求項11に記載のタイヤ。
【請求項14】
ゴム組成物が、ゴム成分(A)100質量部に対し、シリカ(B)を20〜120質量部の割合で含む請求項1〜13のいずれかに記載のタイヤ。
【請求項15】
ゴム組成物が、ゴム成分(A)100質量部に対し、さらにカーボンブラック(C)を5〜50質量部の割合で含む請求項1〜14のいずれかに記載のタイヤ。
【請求項16】
ゴム成分(A)が、芳香族ビニル化合物−共役ジエン化合物共重合体(a−1)と共役ジエン系重合体(a−2)との合計50質量%以上と、天然ゴム及び/又は他の共役ジエン系合成ゴム50質量%以下を含む請求項1〜15のいずれかに記載のタイヤ。
【請求項17】
タイヤ部材がトレッドである請求項1〜16のいずれかに記載のタイヤ。

【公開番号】特開2011−111497(P2011−111497A)
【公開日】平成23年6月9日(2011.6.9)
【国際特許分類】
【出願番号】特願2009−267706(P2009−267706)
【出願日】平成21年11月25日(2009.11.25)
【出願人】(000005278)株式会社ブリヂストン (11,469)
【Fターム(参考)】