説明

デジタルホストコンテンツに埋め込まれた透かしの検出に対するシステム反応

【課題】デジタルホストコンテンツから埋め込まれた電子透かしを検出する装置の動作を行わせる方法を提供する。
【解決手段】デジタルホストコンテンツを受け取り、透かしの存在を調べる。埋め込まれた透かしの検出に応答し、埋め込まれた透かしの値、タイプ、密度または間隔に従って、1つ以上のシステムの応答が実施される。これらの応答により、条件付きでシステムが通常の動作に復旧ができ、システムが通常の動作に復旧することが禁止され、デジタルホストコンテンツの品質の劣化が禁止され、またはデジタルホストコンテンツのセキュリティ状態が変化し、希望するシステムの条件を満たさない弱い透かしの抽出に応答し、抽出動作は強い透かしの検出ができるように修正され、拡張される。

【発明の詳細な説明】
【技術分野】
【0001】
本願は、2005年4月26日に出願された米国仮出願第60/675,231号の利益を請求し、2005年4月26日に出願された本願と同一出願人による同時係属米国特許出願第11/115,990号の一部継続出願であり且つ2005年4月26日に出願された本願と同一出願人による同時係属米国特許出願第11/116,137号の一部継続出願である。
【0002】
本発明は、一般に、マルチメディアコンテンツに電子透かしを挿入しその後で抽出するシステムおよび方法に関する。より具体的には、本発明は、音声コンテンツ、音声映像コンテンツ、画像コンテンツなどのマルチメディアコンテンツ内の埋め込まれた透かし(embedded watermark)のセキュリティ強化に関する。
【背景技術】
【0003】
電子透かし(digital watermark)は、ホスト信号に埋め込まれた実質的に知覚できないほどの信号である。ホスト信号は、音声信号、静止画像信号、ビデオ信号または他の信号のいずれでもよく、これらの信号は、物理媒体に記憶されたり、ある地点から別の地点に送信または放送されたり、モニタ、映画スクリーン、音声スピーカ、印刷媒体などの種々の表示手段に受け取られ表現されることがある。電子透かしは、ホスト信号の忠実度に実質的に影響を及ぼすことなく、またホスト信号の通常使用を妨げることなく、補助的な情報を保持するように設計されている。このため、電子透かしは、隠蔽信号の存在そのものを隠すことが重要な、隠し通信を実行するために使用されることがある。電子透かしの主な用途には、著作権のあるマルチメディアコンテンツの無許可の使用(即ち、複製、再生、および配布)の防止、所有権証明、認証、改竄検出、放送監視、トランザクション追跡、視聴率測定、およびソフトウェアプログラムまたはハードウェア構成要素との対話などの二次的なアクティビティの起動がある。
【0004】
主情報と補助情報を同一チャネルで伝送することによって他の多くの現在および将来のシステムが利益を得ることができるので、前述の用途のリストは網羅的なものではない。そのようなシステムの例には、補助的な情報信号を伝えるために電子透かしを利用するものがある。そのような信号は、装置の空間座標(例えば、GPS座標)、あるいは合成したホスト信号と透かし信号またはホスト信号と関連しまたは関連しない他の情報を生成し及び/または伝送する正確な時間を示すタイムスタンプを伝えることができる。替わりに、電子透かしは、説明文、フルタイトル、アーティスト名、コンテンツの購入方法の指示など、コンテンツに関する情報を伝えることができる。他の透かしの用途には、印刷物の文書セキュリティと偽造防止がある。そのような用途では、透かしの再現し難さ(例えば、複製し難い)によって、印刷物の信憑性が確立される。
【0005】
様々な電子透かし方法、システムおよび応用例を示す多くの先行技術がある。論文に述べられている透かし入れ技術には、時間または周波数領域内のホスト信号の最下位ビットを操作する方法、スペクトル拡散、位相、振幅または周波数変調技術を使用して個別のキャリア信号を含む透かしを挿入する方法、およびフィーチャ変調やインフォームド埋め込み方法などのホストに依存するキャリア信号を使用して透かしを挿入する方法がある。ほとんどの埋め込み方法は、電子透かしを挿入する最適な位置と振幅を決定するためにホスト信号の心理視覚的または心理聴覚的解析(または両方)を利用する。この解析により、一般に、人間が知覚し得る埋め込まれた透かしをホスト信号がどの程度隠すかまたはマスクすることができるかが分かる。
【0006】
ほとんどの電子透かし用途では、埋め込まれた透かしは、マルチメディアコンテンツに影響を及ぼす可能性のある様々なノイズおよび歪みがある状態で、その完全性を維持できなければならない。そのような欠陥は、一般に不可逆的圧縮、スケーリング、回転、アナログ−デジタル変換などのマルチメディアコンテンツに行われる様々な信号処理操作によるものであることもあり、またはマルチメディアコンテンツの伝送および/または記憶チャネル内に本来的にあるノイズおよび歪みソースによるものであることもある。このタイプのノイズの例には、光学媒体上のデータを破損させる引っ掻き傷や指紋、音声映像コンテンツの無線放送でのノイズ、VHSテープのテープノイズ、カレンシーノートの日常操作などによるエラーがある。一般に、埋め込まれた透かしの高いロバスト性は、透かしのトランスペアレンシの低下を犠牲にして得ることができる。
【0007】
透かし入れシステムの別の側面は、電子透かしのセキュリティである。所有権証明、ソース認証、著作権侵害追跡、著作権のあるコンテンツのアクセス管理などのいくつかの用途において、埋め込まれた透かしは、透かしの存在の検出、透かしによって伝えられるデータの解読、不当な値(偽造)の修正または挿入、および/または埋め込まれた透かしの除去を目的とした意図的な操作に耐えることが重要である。このために、多くの透かし入れシステムは、透かしの埋め込みとその後の抽出を可能にするために秘密キーを使用する。そのようなシステムは、秘密キーを使って情報の無許可のアクセスおよび/または修正を防ぐが、暗号化した情報の存在の検出または除去を防ぐようには設計されていない暗号システムと区別されるべできである。そのような暗号システムは、キーの長さと、キーの破壊に伴う複雑さとに依存しており、理論的には、ほとんどの実際的な状況で暗号化されたデジタルデータのセキュリティを保証することができる。実際には、暗号化技術を使用して、透かしデータの無許可の読み出しまたは偽造を防ぐことができるが、正当なユーザが埋め込まれた透かしを検出または抽出するのを妨げるのを目的とする他のタイプの攻撃からは保護することができない。限定ではなく例として、そのような攻撃には、合成されたホスト信号と透かし信号を、埋め込まれた透かしを認識できないほど不明瞭にするか破損させるように修正する同期攻撃、置換攻撃およびノイズ攻撃がある。起こり得る攻撃の詳細は後で説明する。
【0008】
透かし入れシステムの設計で、システムのトランスペアレンシ要件(非知覚性)、ロバスト性要件、及びセキュリティ要件のバランスを適切にとる必要がある。4つ目の要件は、透かしペイロード性能である。この要件は、透かし入れシステムの特定の応用例に依存する。典型的な応用例は、透かしの存在(即ち、単一状態の透かし)だけの検出を必要とするものから、毎秒数十ビットの補助情報を必要とするものまである。後者の場合、埋め込まれたビットは、通し番号やタイムスタンプなどの識別およびタイミング情報と、説明文、アーティスト名、購入情報などのメタデータを伝えるために使用されることがある。
【0009】
実際の透かし入れシステムの設計における5番目の要素は、埋め込みおよび/または抽出ユニットでの計算コストである。この要素は、シリコンチップスペースまたは計算性能が制限された民生用電子装置またはソフトウェアユーティリィティではますます重要になっている。この要素は、当面、応用例に大きく関連する。例えば、インターネット上で配布されるコンテンツの各コピーに様々なコードを埋め込むような著作権侵害チャネルの証拠追跡(forensic tracing)用の透かしは、単純なエンベッダ(embedder)しか必要としないが、複雑で高価な証拠エクストラクタ(extractor)を必要とする場合もある。一方、例えば民生用電子装置内のマルチメディアコンテンツに対する無許可のアクセスを防ぐように設計されたコピーコントロールシステムは、高性能なエンベッダを許容することができるが、単純で効率的なエクストラクタを必要とする場合がある。
【0010】
実際的な透かし入れシステムを設計する第6の重要な要件は不正検出(false detection)の確率である。この場合も、この要件は当面応用例により異なる。コピーコントロールなどの特定の応用例では、合法的に購入したコンテンツに限定的操作を実行することが、ユーザに不満を与え、装置メーカーおよび/またはコンテンツ提供者に悪い印象を持たせることになるため、不正検出の確率は極めて低くなければならない。一方、印税を支払ったり人気チャートを作成するために放送コンテンツの頻度を計測する放送監視システムでは、わずかな数の不正検出の存在がカウントの最終結果にほとんど影響を及ぼさないので、より高い不正検出率が許容される場合がある。
【0011】
先行技術のシステムは、合致の調査において様々な応用例に割り当てられる特定のいくつかの機能をたまたま備えた透かし入れシステムを設計するためのその場限りの手法を使用しているに過ぎない。これらのシステムは、また、体系的にセキュリティの脅威を解析し様々な脅威のシナリオに対する答えを提供することができない。例えば、米国特許第5,889,868(Moskowitzら)は、コンテンツ信号内の透かしの挿入位置のランダム化と、コンテンツ全体にわたる埋め込みアルゴリズムの変更について述べている。しかし、このランダム化を行うことができる方法と、これが透かし入れシステムの設計パラメータに及ぼす影響を説明できる実施形態がない。また、この参考文献は、コンテンツの任意の位置でどれかの埋め込み方法を使用できることだけを述べており、埋め込み方法の同時利用については述べていない。また、ロバスト性/セキュリティ/トランスペアレンシ/コストレベルを変更するためのエンベッダとエクストラクタの接続構成について述べていない。D. Kirovskiらによって開示されている別の先行技術のシステムでは、「Multimedia Content Screening Using a Dual Watermarking and Fingerprinting System」Tech. Rep. MSR-TR-2001-57, Microsoft Research (June 2001)において、秘密の透かし入れキー(SWK)を使用する従来の方法(例えば、スペクトル拡散法を使用して)でホストコンテンツを埋め込む技術が採用されている。しかしながら、各検出器の検出キーはSWKとは異なる。個別化された検出キーは、SWKにノイズを加えることによって生成される。検出が相関関係によって行われるので、他の大きな(付加的な)欠陥がない場合は、ノイズで汚染された検出キーが相変わらず、所望の相関値を作成するはずである。付加的な欠陥とより積極的な攻撃に対する免疫を構築するために、拡散シーケンスの長さを大きくして、不適切な検出キーよって生じるロバスト性の低下を補正することができる。しかしながら、この先行技術で述べられている技術は、多くの点で本発明と異なる。第1に、埋め込みは従来通りの方法で行われ、従って、埋め込み空間の変化と検出空間に対する埋め込み空間の相対的サイズが考慮されていない。第2に、検出キーは、エンベッダキーを劣化させ、これにより、検出プロセスで劣化した相関値が生成される。しかしながら、本発明では、エンベッダキーにノイズを加えることによって個々の検出キーは生成されず、検出プロセスで相関値は劣化しない。更にまた、この参考文献は、多くの応用例と必要性に適した系統的な設計手法を使用して透かし入れシステムのロバスト性/セキュリティ/トランスペアレンシの必要性に応えることができる方法を述べていない。
【0012】
本発明の方法および装置は、上記先行技術の欠点に鑑みて為されたものである。
【先行技術文献】
【特許文献】
【0013】
【特許文献1】米国特許第5,889,868号明細書
【発明の開示】
【発明が解決しようとする課題】
【0014】
本発明の目的は、先行技術のシステムの様々な欠点を克服する電子透かしシステムを設計し実施する方法を提供することである。本発明の別の目的は、任意に安全で、頑強で、ユーザにトランスペアレントで、確実で、コスト効果の高い透かし入れシステムを設計する系統的な方法を提供することである。本発明の目的は、開示した透かし入れシステムに対する回避の試みを予想し、そのような試みを無効にすることである。本発明の別の目的は、デジタルホストコンテンツから検出または抽出された透かしに応じてシステムの動作を適応させることである。本発明の別の目的は、複数の透かし状態の検出、透かしの不注意な捕捉、または複数の信用状(credential)を有するコンテンツの存在によって生じる可能性のある、デジタルホストコンテンツに埋め込まれた透かしの検出の不確実性を解決することである。また、本発明の目的は、システムの頑強さ、計算複雑さ、またはセキュリティを犠牲にせずに既存の透かしシステムのペイロード能力(payload capacity )を高めることである。本発明の更に他の目的は、複数チャネルの透かし抽出システムの計算複雑さを減少させることである。
【課題を解決するための手段】
【0015】
本発明の以上その他の目的は、例えば受け取ったデジタルホストコンテンツの透かしの検出および/または抽出を行うことによって達成することができる。検出または抽出されたどの透かしも強い透かし(strong watermark)を含まないが、少なくとも1つの弱い透かし(weak watermark)が検出された場合は、エクストラクタの動作を修正することができる。この修正は、異なる抽出ステゴキーを選択する段階を含むこともでき、あるいは少なくとも1つの追加のピクセル領域、時間セグメント、空間または時間周波数範囲、色成分、音声チャネル、またはデジタルホストコンテンツの圧縮バージョンのうちの1つまたは複数の要素を調べるようにエクストラクタの動作を拡張する段階を含んでもよい。更に、そのような修正は、透かし抽出の細分性(granularity)を高めること、追加の誤り訂正コード技術を使用すること、またはデジタルホストコンテンツの証拠解析を試みることを含んでもよい。
【0016】
デジタルホストコンテンツからの透かしの検出に応じて、システムは、その通常動作の継続を許可されるか、その動作の再開を条件付きで許可されるか、その通常動作を禁止される場合がある。更に、デジタルホストコンテンツの状態が修正されるか、その品質が劣化される場合がある。
【0017】
条件付きの許可は、ユーザ、データベースまたは第三者からの応答を受け取ることを含むことができる。禁止する操作は、デジタルホストコンテンツの音声の消音または映像部分の空白化、あるいはデジタルホストコンテンツの再生、記録または転送の停止を含むことができる。
【0018】
さらに他の反応は、デジタルホストコンテンツと関連した埋め込み透かしまたは信用状の修正を含むことができる。追加または代替として、デジタルホストコンテンツは、完全または部分的に不明瞭化されてもよい。そのような不明瞭化は、可逆的でもよくそうでなくてもよい。
【0019】
いくつかのコンテンツ劣化方法は、デジタルホストコンテンツのダウンサンプリング、不可逆圧縮(lossy compression)、ダイナミックレンジ縮小、部分スクランブル、スペクトル整形、ワウフラッタ(vow and flutter)の追加、ノイズの追加、位相歪み、または断続的な空白化または消音を含むことができる。そのような劣化方法が可逆的な場合は、デジタルホストコンテンツをその元の形に復元することができるが、非可逆的方法は、デジタルホストコンテンツの品質を永久的に劣化させる場合がある。
【0020】
システムの動作は、更に、複数の透かし状態の検出に応じて、それぞれの透かし状態と別個の実施規則を関連付けるように適応されてもよい。抽出された透かしと関連付けられた最も限定的な実施規則が選択されてもよい。これに替えて、抽出した透かしと関連付けられた最も限定的でない実施アクションを選択することもでき、最も限定的な実施アクションと最も限定的でない実施アクションの間のどこかにある限定的な実施アクションを選択することもできる。
【0021】
また、システムの動作は、デジタルホストコンテンツからの少なくとも2つの監視間隔での複数の透かしの検出に応じて、2つ以上の監視間隔から少なくとも第1の透かし状態を検出したときに実施アクションが開始されるように適応されてもよい。更に、実施アクションは、事前に定義された値、タイプ、密度または間隔に従って透かし状態が検出された場合に開始されてもよい。実施アクションは、システムの通常動作の許可、システムの動作の条件付きの許可、システムの通常動作の禁止、デジタルホストコンテンツの状態の修正、またはデジタルホストコンテンツの品質の劣化のうちの少なくとも1つを含むことができる。この実施アクションは、所定の期間続いてもよく、ランダムに変化してもよい。更に、それぞれの追加の透かし状態の検出で、実施アクションを拡張してもよい。
【0022】
受け取ったマルチチャネルデジタルホストコンテンツからの透かし抽出の計算複雑さを減少させるために、受信チャネルのサブセットを選択し組み合わせて、透かしの抽出が行われる合成信号を形成することができる。受信チャネルのサブセットの選択は、確率値に従って行われてもよい。この確率値は、均一な分布でもよく不均一な分布でもよい。更に、この確率値は、マルチチャネルデジタルホストコンテンツのチャネル数に従って計算されてもよい。特定チャネルの組み合わせを選択した後で、透かし抽出は、ある期間持続してもよく、その終わりに、更に他の透かし抽出のための新しいチャネルの組み合わせを選択してもよい。この期間の持続時間はランダムでよい。
【0023】
更に、チャネルのサブセットを組み合わせる段階は、それぞれの選択したチャネルと関連した係数を取得する段階、選択したチャネルを関連した係数に従って合計する段階を含むことができる。これらの係数はすべて等しい値でもよく、特定のチャネルの特徴に従って選択されてもよい。更に、これらの係数は、確率値に従って選択されてもよい。
【0024】
本発明によって提供される他の特徴は、第1組の埋め込み機会を第1組のペイロード値に割り当て、少なくとも第2組の埋め込み機会を第2組のペイロード値に割り当てることによって、既存の透かし入れシステムのペイロードを拡張することを含む。このように、単一層透かし入れシステムが、多層透かし入れシステムに変換され、各層は、特定の組の埋め込み機会を含み、また各層は、最大でも元の単一層(即ち、ベース層)と同じ程度の1組のペイロード値を有する。各透かし入れ層は単独では元のシステムのペイロード能力を超えることができないが、2つ以上の層が組み合わされたときはペイロード能力が増大される。
【図面の簡単な説明】
【0025】
【図1】自己同期調整スクランブラの実施形態を示す図である。
【図2】ステゴキーの実施形態を示す図である。
【図3】埋め込みステゴキーの種々の構成要素の例を説明する表である。
【図4】本発明による埋め込み装置の実施形態を示すブロック図である。
【図5a】歪みがない状態の埋め込みステゴキーセットと抽出されたステゴキーセットを表す図である。
【図5b】歪みがある状態の埋め込みステゴキーセットと抽出されたステゴキーセットを表す図である。
【図6a】複数の埋め込みステゴキーセットを表す図である。
【図6b】複数の抽出ステゴキーセットを表す図である。
【図6c】複数の埋め込みと抽出ステゴキーセットを表す図である。
【図7】システム特性とステゴキーの関係を示す表の例である。
【図8】本発明によるエクストラクタ装置の実施形態を示すブロック図である。
【図9】例1に示した概念を示すために使用される時間と周波数の関係を示す図である。
【図10】例1と関連したエンベッダのステゴキー分布を示す表である。
【図11】例1と関連したエクストラクタのステゴキー分布を示す表である。
【図12】例1と関連したエクストラクタの回避の効果を示す表である。
【図13】様々なシステム特性の間の関係を示す第1のグラフである。
【図14】様々なシステム特性間の関係を示す第2のグラフである。
【図15】様々なシステム特性間の関係を示す第3のグラフである。
【図16】様々なシステム特性間の関係を示す第4のグラフである。
【図17】様々なシステム特性間の関係を示す第5のグラフである。
【図18】軟判定パラメータを示す表である。
【図19】本発明の実施形態に従うマスキング方法を示すフローチャートである。
【図20】本発明の他の実施形態に従うマスキング方法を示すフローチャートである。
【図21】本発明の更に他の実施形態に従うマスキング方法を示すフローチャートである。
【図22】本発明の実施形態による埋め込み防止方法を示すフローチャートである。
【図23】本発明の例示的な実施形態による透かしペイロード拡張を示す表の例である。
【発明を実施するための形態】
【0026】
以下の詳細な説明は、単に例示的な実施形態を提供し、発明の範囲、適用可能性または構成を制限するものではない。より正確に言うと、以下の例示的な実施形態の詳細な説明は、本発明の一実施形態を実現することができる説明を当業者に提供する。添付の特許請求の範囲に示すような本発明の思想及び態様から逸脱することなく要素の機能と構成に様々な変更を行うことができることを理解されたい。更に、本明細書で述べる概念は、電子透かしを埋め込み及び/または抽出する方法および装置を含むすべてのシステムに一般的かつ具体的に適用可能である。
【0027】
本発明の様々な実施形態の説明の全体にわたり、用語「抽出(extraction)」と「検出(detection)」は、デジタルホストコンテンツからの埋め込み透かしの存在および/または値の識別を指すために交換可能に使用される場合がある。しかしながら、本発明の文脈では、透かしを、デジタルホストコンテンツから抽出することなく検出できることを理解されたい。透かしの検出および/または抽出によって、完全で識別可能な透かしが回復される場合があるが、更なる処理および/または解析を必要とする不完全な透かし、弱い透かしまたは他の状況で信頼性できない透かしが回復される場合もある。
【0028】
本明細書で説明する発明は、様々な用途に容易に適応することができる透かし入れシステムを設計するためのガイドラインを提供する。埋め込まれた透かしのトランスペアレンシ(非知覚性、忠実性とも呼ばれる)は、多くのマルチメディア用途にきわめて重要な設計要素である場合がある。これは、特に、多くの創造的および経済的資源を利用して適正な音声映像経験だけを作成してきたいくつかの用途に適用される。そのようなケースでは、透かしを挿入することにより生じる著しいアーティファクトは、音声映像コンテンツの意図された効果を変化させる場合があり、単純に許容できない。しかしながら、他の用途では、トランスペアレンシ要件はあまり厳しくない場合がある。例えば、典型的な民生用電子環境では、マルチメディアコンテンツは、意図された聴衆に届く前に、マルチメディアコンテンツに処理アーティファクトを導入する圧縮、AD変換、DA変換、等化、放送などのいくつかの信号処理操作にかけられる場合がある。そのようなケースでは、透かしによって生じたアーティファクトは、そのような信号処理操作によって生成されたアーティファクトを十分超えることはない。
【0029】
透かしロバスト性は、また、マルチメディア用途に極めて重要な要件である。一般に、透かしロバスト性とは、知覚可能なデータ圧縮、AD変換、DA変換、リサンプリング、標準コンテンツ編集などのホスト信号の標準的な処理に対する耐性を指す。また、ロバスト性は、不正検出確率に課される制限と密接に関連する。不正検出は、2つの違った形で行われることがある。第1に、透かし抽出システムでは、透かし入れしていないコンテンツ内の透かしを間違って検出する可能性が低いがゼロではない。SDMIとDVDの音声要件は、誤検出検出確率が検出期間15秒で10-12未満であることを指定している。すなわち、誤検出の間の平均時間は、透かし入れしていないコンテンツを連続監視した場合47万6000年間である。第2のタイプの不正検出は、透かし入れしたコンテンツを調査し、特定の透かし値が、異なる透かし値として間違って認識されるときに起こる。このタイプの不正検出は、通常、誤検出と呼ばれ、望ましくない結果をもたらすことがある。適切に設計された透かし入れシステムでは、誤検出率は、ほぼ前述の誤検出率の大きさと同じでなければならない。
【0030】
透かし入れシステムを設計する際のもう1つの重要な要素は、透かしエクストラクタの計算複雑さである。この要件は、最大100万単位の命令/秒(MIPS)値、最大ゲートカウント、最大ROMサイズ、最大RAMサイズなどと述べられることがある。原則として、透かしエクストラクタのコストは、装置のコストの数分の1でなければならず、その処理負荷は、ホストソフトウェアモジュールの処理負荷の数分の1でなければならない。
【0031】
適切な透かし入れシステムの設計の最も困難な側面には、セキュリティ要件の達成がある。システムの攻撃者が、透かしエンベッダおよび/またはエクストラクタを容易に使用(または、取得)することができるので、そのようなシステムの設計は、マルチメディアコンテンツ用途には特に難しい場合がある。その場合、攻撃者は、埋め込まれた透かしのすべてまたは一部の変更、使用不能化、または除去を含む回避技術を見つける可能性がある。そのような回避技術は、一般大衆に販売される「ブラックボックス」ハードウェアまたはソフトウェアモジュールとして発行され、配布され、または実装されることがある。更に、既に導入された装置のセキュリティをアップグレードする(例えば、透かし埋め込みアルゴリズムまたは検出アルゴリズムを改善する)ことが極めて難しい場合があるので、この侵害が永久的なものになる可能性がある。これらのシステムの設計を更に妨げる別の制限は、計算能力が限られた環境に合った安価な埋め込みおよび/または抽出設計の実現がしばしば必要になることである。
【0032】
透かし技術
科学界でこれまで最も注目されてきた2種類の透かしアルゴリズムは、量子化インデックス変調(QIM)とスペクトル拡散(SS)を利用した透かしである。スペクトル拡散システムでは、透かしデータ(ビット)は、値+1と−1の疑似ランダム文字列の形の「チップシーケンス」によって変調される。エクストラクタ側で、受け取った信号が、エンベッダ内で使用されたシーケンスと同期して同じ疑似ランダム文字列と掛けられ、次に透かしビットの「集中及びダンプ(integrate-and-dump)」抽出が行われる。一般に、抽出プロセスは2段階から成る。同期捕捉と呼ばれる第1の段階で、エクストラクタは、そのローカルチップシーケンスジェネレータを、埋め込まれたチップシーケンスと合致させようとする。これが首尾よく達成された後で、エクストラクタは、データ収集および同期維持体制に切り替わる。
【0033】
埋め込まれたチップシーケンスとローカル生成チップシーケンス間の同期を達成する必要性が、スペクトル拡散透かしの大きな課題となる。多くの攻撃は、特に、この同期を破壊するように設計される。その攻撃は、例えば、マルチメディア信号の再生速度を変化させたり、写真内の任意に特定の行と列を削除したり繰り返したりすることによって行われる。スペクトル拡散システムの同期問題を克服する代替技術は、疑似ランダム文字列の代わりに、コンテンツ自体から得られる「レプリカ信号(replica signal)」を利用する。レプリカ信号は、埋め込み前に透かしデータを変調するために使用され、受信装置で再び、レプリカ信号は、復調のために生成され使用され、その後で埋め込まれたデータの「集中及びダンプ」抽出が行われる。音声信号の時間シフトと画像内の幾何学的シフトは、レプリカ信号と透かし信号に同時に影響を及ぼし、それらの同期が実質的に維持される。
【0034】
透かしに対する攻撃
透かし入れシステムのセキュリティの目標には、透かしの偽造、盗聴、消去および修正に対する免疫を提供することがある。本発明の実施形態による透かし入れシステムの適切な設計は、前述のすべての回避技術を妨害するように設計されたセキュリティ機能を含む。そのような機能は、検出、解析、偽造、消去または修正が困難なステガノグラフィ的な知覚不能な透かしの埋め込みを実現する。従って、埋め込まれた透かしは、攻撃者によって試みられる可能性のある様々な攻撃に耐える。これらの攻撃のいくつかについて更に後で説明する。更に他の技術(例えば、暗号化、ハッシング、デジタル署名の生成、および他の非透かし入れ技術)を本システムに組み込んで、更に高いレベルの保護を実現することもできる。
【0035】
安全な透かし入れシステムを設計しその有効性を予測するためには、透かし入れシステムに対する様々な攻撃方法を研究し、対策を講じなければならない。各クラスの攻撃の成功度は、特定の透かし入れ技術、特定のマルチメディアコンテンツタイプ、およびマルチメディアコンテンツの用途に依存する。いくつかの透かし入れアルゴリズムが1つのタイプの攻撃に対して本質的に免疫を有する場合があるが、それらのアルゴリズムは、異なるクラスの攻撃に対しては十分に機能しない場合がある。更に、心理視覚的および心理聴覚的原理に基づいて埋め込まれた透かしの回復力は、ホストコンテンツの特性に依存する。従って、同じ透かしをあるコンテンツから除去する方が、別のコンテンツから除去するよりも難しいことが分かる場合がある。最後に、コンテンツの使用法が、攻撃の成功または失敗を分ける場合がある。例えば、空港などの騒音の多い環境での小型の携帯端末では、透かしのない劣化したマルチメディアコンテンツの視聴が許容される場合があるが、同じコンテンツの視聴が、ホームシアターHDTV画面では許容されない場合がある。
【0036】
ブラインド攻撃
ブラインド攻撃の場合、攻撃者は、透かし入れ技術とその秘密パラメータ(別名、ステゴキー)に関する情報を持っておらず、また取得しようともしない。攻撃は、コンテンツに様々な信号歪み(signal distortion)を印加し、ホスト信号の最小限の破損で透かしを除去する信号歪みを見つけることによって実行される。多くのブラインド攻撃は、Stirmark、Certimark、Checkmarkなどの「ベンチマーク」ソフトウェアパッケージの形で登場している。これらのテストベンチマークの詳細な説明は、多くの文献に見つけることができる。
【0037】
いくつかのブラインド攻撃は、様々な歪みを単純に印加するよりも巧妙化されている。例えば、Kirovskiらが述べているブラインドパターンマッチング攻撃は、透かし入れしたコンテンツ内の類似のフラグメントの自動検出とスワッピングに基づくものである。ほとんどのマルチメディアコンテンツが、互いにスワップすることができる繰り返しセグメントからなることが証明されている。この操作は、埋め込まれた透かしの一貫性を破壊するが、スワップされたセグメントの類似性によって受け入れ可能な知覚品質を維持することになる。この基礎となる仮定は、コンテンツ全体にわたって類似のセグメントが存在することを必要とする。このことは、マルチメディアコンテンツの限られたサブセットに当てはまる場合があるが、このタイプの攻撃は、可能なすべてのタイプのコンテンツに有効になるとは思えない。いくつかのタイプのコンテンツでは、適切な音声映像品質を維持しながらスワップし同時にすべての埋め込まれた透かしを除去するのに十分類似したセグメントを見つける可能性は低いと予想される。
【0038】
インフォームド攻撃
一般に、システムを欺くためのより効率的な攻撃を考案する際に、透かし埋め込みおよび抽出方法についての何らかの知識が有効であると仮定される。換言すると、透かし入れアルゴリズムとパラメータの部分的な知識を有する攻撃者は、ブラインド攻撃よりも少ない量の知覚可能な歪みを作成する成功裏の攻撃を考案することができる場合がある。インフォームド攻撃の最も単純な形は、マルチメディアコンテンツの構成要素内の透かしのソースを決定することである。そのような場合、マルチメディアコンテンツを音声部分と映像部分に分離し、各タイプを別々に試験するか、さらなる構成要素に分解して、埋め込まれた透かしのソースを決定することができる。この方法は、すべてのマルチメディア構成要素が透かしを含む場合には有用でない場合があることは明らかである。ほとんどのインフォームド攻撃は、更に巧妙化されている。そのような攻撃については後で述べる。
【0039】
差分解析および攻撃
いくつかの透かし入れシステムでは、透かし入れされていない元のコンテンツ(透かし入れしたバージョンに加えて)を攻撃者が使用可能であると仮定することが適切な場合がある。2つのバージョンを比較することによって、攻撃者は、埋め込み方法に関する特定の事実と埋め込まれた透かしに関する特定の秘密パラメータを見つけることができる。この知識は、透かし入れを取り消すか、その透かしを別のメッセージで上書きするか、または特定のアルゴリズムと今見つけたパラメータを最も破壊している攻撃を単に選択するのに十分な場合がある。
【0040】
差分攻撃を行なう手順は、透かし入れしていない信号から透かし入れしたコンテンツを減算しその結果を解析する段階を含む。「差信号(difference signal)」を生成する他の技術で、透かし入れした信号と透かし入れしていない信号(またはその逆)の比を調べることができることに注意されたい。更に、2つの信号を整合させて、可能性のある信号歪みを補正し、次に前述の方法のうちのいくつかの方法で差信号を生成してもよい。この整合は、目立つポイント(即ち、音声信号の波形ピーク、特定の色成分、映像および画像信号内のシーンおよび/またはフレームなどの独特の特徴を有するマルチメディアコンテンツの一部分)が互いに整合されるようにマルチメディアコンテンツの2つのバージョンが操作されるときに、時間領域内で行うことができる。類似のアライメント手順および/または差信号の生成は、時間または空間周波数領域内で実行することができることは明らかである。このアライメント手順は、線形または非線形振幅、時間領域または周波数領域スケーリング、ならびに回転、クロッピング、他の幾何学的操作を必要とする可能性がある。適切なアライメントが達成された後で、差信号の解析により、埋め込み方法および/またはその秘密パラメータに関する有益な情報を得ることができる。
【0041】
限定ではなく例として、そのような解析は、ホストコンテンツの特定の属性または特徴に対して、差信号の周波数範囲、差信号の振幅、差信号のエネルギー、差信号の位相、差信号の絶対値、差信号の符号、差信号の周期性、および以上の任意の組み合わせの調査を含む。例えば、特定の時間区分にわたるホスト信号の自己相関が特定のしきい値を超えたとき、差信号のいくつかの特徴(例えば、そのエネルギー、符号、平均値など)が特定の形で変化することが分かる場合がある。一般に、差信号のアクティビティと、ホストコンテンツの属性および特徴の関係を使用して、透かし入れ技術の他の態様を見つけることができる。
【0042】
替わりに、元の信号と透かし入れした信号を周波数領域、ウェーブレット変換領域(wavelet domain)、または他の「変換」領域に変換し、次に変換した信号間の差を調べることができる。これは、例えば、透かし入れシステムが一次変換を含み、差信号を周波数領域内で解析することによって、この変換が位相変化または振幅変化あるいはこれらの両方を含むかを識別できる場合に有利である。
【0043】
更に、差信号または修正した差信号から透かしを抽出することによってホスト信号の存在が透かしの抽出に必要かどうかを判断することができる。そのような解析は、異種信号、付加信号、または乗法キャリア信号を使用して透かし情報を伝える場合によい結果を得ることができる。基本的なスペクトル拡散システムでは、例えば、埋め込まれた透かしは、ホストと透かしの合成信号から抽出することもでき単に差信号から抽出することもできる。一方、フィーチャ変調技術では、ホストの存在は、埋め込まれた透かしの復元に必要であり、即ち、差信号だけを使って透かしを抽出することはできない。
【0044】
共謀攻撃(Collusion Attack)
このケースでは、攻撃者は、様々な透かしを含む同じコンテンツのいくつかのコピーを取得することがある。この場合も、攻撃者は、透かし入れアルゴリズムおよび/またはその秘密パラメータの特定の詳細を発見するために、多数の差信号の差分解析を実行しようとすることがある。一方、すべての透かしが同じメッセージ(例えば、同じ識別番号)を伝える場合は、1回の単純な解析が、多数の差信号が同一であるかどうかの判断、あるいは様々な差信号間に時間シフトなどの単純な関係があるかどうかの判断を必要とすることになる。このことは、証拠情報(forensic information)や指紋などの追加情報の存在を示す場合もあり、あるいは個々のコピーの埋め込みが異なるパラメータセットで別々に行われることを示す場合もある。
【0045】
異なる共謀攻撃シナリオでは、攻撃者は、同じ透かしを含むいくつかの全く異なるコンテンツを取得し平均化した信号を作成することができる。ホストコンテンツが互いに独立に変更可能で、多数のサンプルがある場合、平均化の結果はほぼ一定の(直流)信号になるはずである。透かしは、同一で且つ信号に依存しない場合は、この直流成分に重ねられ、更なる解析のための準備ができる。
【0046】
異なる透かし(即ち、異なる識別番号)と同じコンテンツのコピーが入手可能な別のシナリオでは、攻撃者は、埋め込まれた透かしを除去または不明瞭化するために代替の共謀戦略を使用することができる。例えば、攻撃者は、様々な透かしを含むいくつかのコピーを平均化することによってコンテンツの単一コピーを生成する。平均化プロセスは、ホストコンテンツの知覚可能品質をあまり低下させないが、埋め込まれた透かしの確実な検出を妨げるのに十分な「ノイズ」を透かし信号内に生成することができる。この技術のさらなる強化は、重み付けされ及び/または非線形の平均化方式を含む場合がある。共謀攻撃の他の変形は、コンテンツの各コピーを小さい断片に切断し、次に様々な断片を決定論的またはランダム(または偽似ランダム)につなぎ合わせることによって新しいコピーを組み立てることを含むことができる。例えば、攻撃者は、最小、中間または最大エネルギーを有するセグメントを選択し、出力コピーに含めることができる。
【0047】
オラクル攻撃(Oracle Attack)
2つの状態(透かしが検出された状態または検出されなかった状態)しか提供しない透かしエクストラクタがある状態で、埋め込まれた透かしを評価する手順を設計することができる。この評価値は、透かしの除去、上書き、解析などに使用することができる。この手順は、コンテンツに歪みを少しずつ繰り返し加える(例えば、少量のノイズを加える)ことによって、ホストコンテンツを透かし検出領域から少し外す操作から成る。次に、攻撃者は、様々な位置にわずかな変更を加え、それらの変更が透かし検出器のスイッチを再び入れることに注意する。それらの変更の集まりが、透かしの評価を表わす。
【0048】
エンベッダベース攻撃(Embedder Based Attack)
攻撃者が1つまたは複数の透かしエンベッダにアクセスすると予想するのが妥当な場合がある。そのようなケースでは、透かし入れシステムに対する2種類の攻撃(上書き攻撃(Overwriting Attack)と解析攻撃(Analysis attack))を予想することができる。上書き攻撃は、元々埋め込まれている透かしの代わりに異なる(また、恐らくより許容範囲が広い)透かしを埋め込もうとするものである。このタイプの攻撃では、透かし入れ技術とその秘密パラメータを解析する必要はない。このタイプの攻撃の有効性は、特定の透かし埋め込み方法とその実施態様に依存する。例えば、このタイプの攻撃は、すべての透かしを埋め込むために同じキャリア信号を使用するスペクトル拡散透かし入れシステムに対して有効である。しかしながら、いくつかの異なるキャリア信号をランダムに使って埋め込みを達成する場合、上書きしようとする攻撃者は、元の透かしを消去せずに追加の透かしを導入する可能性がある。同じPNシーケンスを使って異なるデータビットを伝える場合でも、上書き攻撃は、元の透かしを完全に削除するために、元の埋め込みと上書きの試みをある程度完全に同期させる必要がある。また、この条件は、2つの透かし入れレイヤのミスアラインメントによって2つの異なる透かしが抽出される(一方のレイヤが他方のレイヤよりも強力であっても)フィーチャ変調法にも適用される。
【0049】
埋め込み装置にアクセスすることによって行われる可能性のある別のタイプの攻撃は、サービス拒否攻撃(denial-of-service attack)の形である。攻撃者は、意図的に別の組の透かしを埋め込んで、透かし抽出ユニットを混乱させ及び/または攪乱させて不自由な状態にし、コンテンツの正当ユーザに不満をもたせることがある。例えば、コピーコントロール用途では、元々「コピー自由」の透かしを含むコンテンツに、「コピー不可」のようなより限定的な条件を挿入することができる。両方の透かし値を検出すると、記録装置は、対になったより限定的な透かしの使用規則に従って働き、コンテンツの記録を使用不可にすることを決定することができる。同様に、放送監視用途では、コンテンツには、最初からコンテンツ所有者名とシリアル番号が埋め込まれていてもよい。攻撃者は、セグメントの放送前に新しい1組の名前とシリアル番号をコンテンツに追加しようとする。このケースでは、矛盾する複数組の透かしがあるので、放送監視情報が間違って報告される場合がある。
【0050】
「解析攻撃」は、エンベッダがある状態で、攻撃者が、特別に設計されたテスト信号を使って透かし入れ方法の秘密パラメータを抽出する選択肢を有すること以外、差分攻撃の文脈で述べた攻撃タイプと似ている。そのようなテスト信号の例には、インパルス信号、正弦波信号、フラット画像信号、エッジ画像信号、段階関数、特定の時間または周波数持性を有する信号、および他の特別に構築された数学関数があるがこれらに限定されない。攻撃者は、例えば、システムのインパルス応答を解析することによって、透かし入れシステムの伝達関数(線形システムにのみ適用可能)を決定することができる。また、有限の時間期間または限られた周波数範囲の埋め込み信号を解析することで、透かしの最小持続時間やその周波数範囲などに関する情報を提供することができる。要するに、特別に設計された任意の複雑さのテスト信号を生成し、それを透かしに埋め込み、テスト信号を解析して透かし入れシステムに関する何らかの知識を取得することができる。
【0051】
プロトコル攻撃
このタイプの攻撃は、透かしを完全に攻撃することを断念して、準拠装置(compliant device)を非準拠装置(noncompliant device)に変換する。例えば、ハードウェアの修正やソフトウェアの修正によって、透かしエクストラクタと装置制御回路の間の通信リンクを使用不能にすることができる。更に、準拠装置をだまして、別の状況では制限されるコンテンツにアクセスさせるダミー信号(即ち、スプーフ信号(spoof signal))を生成することができる。
【0052】
替わりに、透かし入れしたコンテンツを変換する信号モディファイア(signal modifier)を、ホスト信号および/または埋め込まれた透かしが検出装置によって認識できないように設計することができる。修正されたコンテンツは、準拠装置による精密な調査を逃れることができる。その理由は、1)修正されたコンテンツが、認識可能な形態の透かしを含まず及び/または2)装置がコンテンツを音声映像信号として認識しないからである。修正されたコンテンツを準拠装置にロードした後、その元の形態に戻し、更に使用するためにアクセスすることができる。詳細には、入力ビットストリームを元の信号に似ていないようにランダムに並べ換えるデジタルスクランブラを設計すると簡単である。限定ではなく例として、以下の自己同期調整スクランブラは、このタスクを十分に行うことができる。入力ビットストリームb(n),n=1,2,3,...(nは連続ビット数を表わす)から出力ビットストリームc(n)=1,2,3,...へのスクランブリングは、次の演算によって行うことができる。
【0053】
【数1】

【0054】
ここで、演算子[+]は2を法とする加算を表し、n<1の場合にc(n)=0であり、Mは2以上の正の整数である。この演算は完全に可逆的であり、次の式を使って元のビットストリームを復元することができる。
【0055】
【数2】

【0056】
c(n-1)[+]c(n-1)=0且つc(n-M)[+]c(n-M)=0であり、一方b(n)[+]0=b(n)であり、交換および関連付け規則は、2を法とした加算に対して有効である。図1は、式1と図2に従って実行されるスクランブルとデスクランブルを示す。チャネル歪みもない状態で、信号のストリームb’nは、元のビットストリームbnと同一でなければならない。前述のように、前述のスクランブルのためのアルゴリズムは、このタイプの攻撃に使用される可能性がある多くの信号修正方法の単なる例を提供する。一般に、埋め込まれた透かしの存在を不明瞭にするように信号を修正する任意の可逆的アルゴリズムおよび/またはホストコンテンツを使用することができる。更に、1)修正された信号が準拠装置による検出を逃れ、2)信号が、元の形式に戻された後で適切な知覚品質を維持する限り、完全に可逆的な信号修正/変換は必要ない場合がある。
【0057】
また、アナログ領域内でデスクランブルを行うことができるように類似の信号修正を行うこともできる。効率的且つ有効な方法は、異種関数とオリジナルデータの乗算(変調)に基づく。アナログ信号が時間関数s(t)の場合、時間関数s(t)を異種関数f(t)と乗算して信号修正を行って、次のようなスクランブル信号c(t)を得ることができる。
【0058】
【数3】

【0059】
デスクランブルは、スクランブル信号をf(t)と乗算しその後でローパスフィルタ(LPF)に通すことによって行うことができる。
【0060】
【数4】

【0061】
f(t)2が強い直流成分を含むことが予想され、c(t)を掛けてオリジナル信号s(t)を提供することに注意されたい。関数f(t)の選択により、出力信号品質に影響を及ぼす他の成分がある場合がある。例えば、オリジナル信号の評価は、次の式により平均値f(t)2を計算することにより得ることができる。
【0062】
【数5】

【0063】
f(t)の適切な選択により、ノイズn(t)を最小にすることができる。 例えば、上側カットオフ周波数fcを有する音声信号の場合は、例えば、f(t)=cos(2πfct)との乗算により、入力信号のスペクトルが反転され、デスクランブリング(cos(2πfct)との別の乗算)により、元のスペクトルが回復される。ノイズ信号は、ローパスフィルタによってフィルタリングされるfcより高い周波数領域に現れるか、わずかな(実質的に知覚不可能な)ノイズとして残る場合もある。
【0064】
設計原理
往々にして、単一コンテンツに多数の透かしを重複して埋め込むことができる。ほとんどの用途では、成功裏の攻撃は、マルチメディアコンテンツからほとんどの埋め込まれた透かしを除去できなければならない。用途によっては、成功裏の攻撃は、1回の透かし抽出によって限定的なアクションが起こる可能性があるので、すべての埋め込まれた透かしを除去しなければならない。埋め込まれた透かしは、様々な領域に埋め込まれている場合がある。例えば、映画が1時間半続き、透かしが1秒間続く場合は、このコンテンツに透かしを挿入した後で抽出する可能性のある時間は5,400倍になる。同様に、周波数スペクトルが16kHzにわたる音声信号と、200Hzにわたる透かしの場合、透かしを挿入した後で抽出するには80の異なる周波数帯を使用する。映像信号の場合、透かしは、画面領域の一部分にしか埋め込むことができない。例えば、画面が1024x768画素を含み、透かしが8x8画素領域を必要とする場合は、透かしを隠すことができる異なる位置は、(1024x768)/(8x8)=12,288個あることになる。更に、複数の領域(例えば、周波数領域、空間領域、時間領域の透かし埋め込み)が使用される場合、攻撃者は、極めて多数の可能性のある隠れ位置から透かしを除去するやっかいな作業をすることになる。
【0065】
暗号システムのエミュレーション
安全な透かし入れシステムの設計原理を説明する前に、暗号システムと関連した概念のいくつかを復習する必要がある。一般に、暗号システム上の成功裏の攻撃は、2つのエンティティ(暗号アルゴリズムと暗号キー)に関する知識を必要とする。このアルゴリズムが完全に安全である(即ち、バックドアがない)と仮定すると、システムを攻撃する問題は、正しい暗号キー値を見つける問題になる。様々なタイプのステゴシステム(stego-system)の説明は、多くの科学文書や論文に十分に記載されている。暗号アルゴリズムは、一般に、対称システムと非対称システムの2つのグループに分けることができる。2つのカテゴリの違いは、暗号化操作と解読操作の使用と複雑さにある。対称システムでは、同じ暗号キーが暗号化(符号化)と解読(復号)の両方に使用され、2つの操作は一般に互いによく似ている。非対称システムでは、符号化操作と復号操作に異なる長さの暗号キーが使用され、一般に、2つの操作は複雑さが異なる。暗号システムの種類に関係なく、暗号システムに成功裏の攻撃を開始するには、次の4つの段階を含む。
段階1:平文(即ち、オリジナルコンテンツ)を取得する。
段階2:暗号文(即ち、平文の暗号化バージョン)を取得する。
段階3:暗号キー値を選択する。
段階4:暗号文を解読してそれを平文と比較する。
【0066】
これは、既知平文攻撃(known-plaintext attack)と呼ばれる。暗号解析方法には、暗号文単独攻撃、選択平文攻撃、適応選択平文攻撃、選択暗号文攻撃、選択キー攻撃など、他のいくつかのタイプがある。これらのすべての攻撃の目的は、同じキーで暗号化された他のすべてのメッセージを解読するための適正な暗号キー値(または、暗号キー値を復元する方法論)を復元することである。文献には暗号キーを取得する他の方法が挙げられており、そのいくつかには、暗号化システムの秘密を暴露するように個人を賄賂で誘惑したり強制したりすることが含まれる。このようなタイプの攻撃は、極めて有効であり、暗号システムのセキュリティに対して深刻な脅威となる。本発明の更に他の目的は、システムに関する個人の知識の依存する攻撃の成功を大幅に少なくする透かし入れシステムを設計することである。
【0067】
暗号キー空間に対する最も基本的な攻撃は、暗号アルゴリズムの知識に基づく総当たり法(brute force approach)であり、この方法で、攻撃者は、nビット暗号キーを回復させるために段階1〜4を2n回以上の繰り返す(平均(2n)/2回の繰り返しで十分である)。従って、成功裏の総当たり攻撃の難しさは、キーの長さと共に指数関数的に高くなる。暗号キー空間を攻撃するにはもっと効率的なアルゴリズムがあることは確かだが、それらのアルゴリズムは、通常、暗号システムに関する高度な知識を必要とする。また、将来の量子計算技術は、現在の暗号システムをすべて旧式にする可能性がある。現在、バックドアのない対称暗号化システムの場合、異なるタイプの攻撃に耐えるには少なくとも128ビットのキー長が十分であると考えられている。
【0068】
暗号システムのセキュリティを更に高めるために、保護するコンテンツをいくつかのセグメントに分割し、各セグメントごとに異なる暗号キーおよび/またはアルゴリズムを使用することがある。この手法と関連した代償は、キー生成と管理の複雑さの増大である。即ち、いくつかの解読キーを補助通信チャネルを介して受信側に通信しなければならず、また、転送されたキーとコンテンツの適切なセグメントの間の同期が、受信側で維持または再生されなければならない。
【0069】
透かしを含むシステム上の攻撃解析は、前述の暗号システム解析といくつかの類似点を共有する。例えば、攻撃者が、透かし入れシステムの秘密の埋め込みまたは抽出パラメータ(即ち、ステゴキー)を回復させることができる場合、その攻撃者は、新しい透かしを挿入するか、既存の透かしを除去したり妨害したりすることができる。透かし入れシステムの状況におけるステゴキーと前述の暗号キーには大きな違いがある。ステゴキーの詳細な説明は、後述するが、現在では、ステゴキーは、ホストコンテンツに透かしを埋め込み及び/または抽出するのに必要な全ての情報を含むと仮定することができる。
【0070】
透かし入れシステムにおけるセキュリティの概念は、また、一般に暗号化システムによって想起される概念とは異なる意味を持つ。暗号化の主な目的は、暗号キーの存在なしにメッセージの解読を防ぐことである。本発明の文脈において、透かし入れシステムの主な設計目標は、埋め込まれた透かしの無許可の除去または妨害を防ぐことである。これらのタイプの攻撃は、一般に、透かし入れアルゴリズムとそのパラメータに関する情報を取得し(即ち、ステゴキーを決定し)、次にホストコンテンツの知覚品質を低下させることなく埋め込まれている透かしを除去または妨害することを含む。
【0071】
ステゴキー−透かし埋め込み
ステガノグラフィという語は「隠された記述」を意味し、屋根またはカバーを意味するギリシア語「stego」と記述を意味する「graphy」に由来する。即ち、ステガノグラフィは、ホストコンテンツ内にメッセージまたは信号を隠す技術である。隠蔽位置は、一般に、埋め込み手順と抽出手順の両方に使用される「ステゴキー」によって記述される。一般に、隠蔽アルゴリズムは公開されるが、特定の隠蔽プロセスに使用されるパラメータは秘密でありステゴキーを含むと仮定される。また、これはKerckhoffの原理として知られており、この原理は、暗号システムのセキュリティが、アルゴリズムを秘密にすることに基づくのではなく、キーを秘密にすることだけに基づく。これは、アルゴリズムが最終的に暴露され、アルゴリズムのピアレビュー(peer review)は、アルゴリズムのセキュリティ、設計および受け入れにしか役立たないという概念に基づく。
【0072】
本発明の文脈では、ステゴキーは、マルチメディアコンテンツに特定の透かしを埋め込み及び/または抽出するために使用されるすべての関連情報を含む。この一般的な定義によれば、透かし入れアルゴリズムもステゴキーの一部と見なされるべきである。Kerckhoffの原理は、技術の選択が固定されており且つ一般大衆に配布された抽出装置で1つの方法だけが実施される場合のみ成り立つ。本発明の実施形態によれば、複数の異なる方法が抽出装置で実施され、特定の通信の試みでそのような方法の選択が秘密にされたままになる。すなわちこの選択が、ステゴキーの一部である。例えば、エンベッダとエクストラクタは、スペクトル拡散、量子化インデックス変調、ピーク振幅変調、エコー隠蔽(echo hiding)またはこれらの技術の組み合わせの少なくとも1つを備える。
【0073】
しかしながら、すべてのエンベッダおよび/またはエクストラクタがすべての透かし入れ技術を含まなくてもよい。目的は、攻撃の結果を、攻撃者と海賊版コンテンツのユーザの両方にとって、一貫せず、予測不能で、困惑するようにすることである。例えば、攻撃者に、攻撃が成功したと信じこませ、その結果を配布させ、次にそれが本物でないことが発見され、その結果攻撃者の信用が失われることが望ましい。同様に、著作権侵害者に、海賊行為が特別の場合しか有効でないことを発見する手順または「ブラックボックス」を見つけるために時間と労力を注ぎ込ませることが望ましい場合がある。
【0074】
エンベッダの場合は、既に導入されている透かしに対する攻撃がより巧妙に適切になる将来に使用するために、埋め込み方法のいくつかを取っておくことが有利な場合がある。一般に、エンベッダ内の透かし入れ方法の選択は、できるだけ柔軟且つ動的でなければならない。これは、既に公開されているコンテンツに対する著作権侵害攻撃の成功や失敗の程度により特定の埋め込み方法を選択できることを意味する。
【0075】
同様に、各エクストラクタで必ずしもすべての透かし入れ方法を実施しなくてもよい。これにより、民生用装置へのエクストラクタの実装が単純化され、シリコン面積と処理負荷が減少する。また、抽出結果が装置によって異なるのでエクストラクタの性能が予測不能になり、攻撃が一貫しなくなり、気軽な著作権侵害者を挫折させる。
【0076】
様々な透かし入れ方法がそれぞれ異なるロバスト性プロファイルを有することがあり、例えばある方法は、ノイズによる不可逆的圧縮と破損に対して優れた免疫を発揮することができるが、別の方法は、同期攻撃に対して優れた免疫を発揮することができることに注意されたい。従って、複数のアルゴリズムと方法を使用して透かしを埋め込み抽出することによって、許容できる歪みと攻撃の全体範囲を大きくすることができる(即ち、透かし検出を不能にするために複数の同時の歪みが必要な場合がある)。複数の方法が弱点の多次元的調査を必要とする場合もあり、1つの方法が一次元的調査探策を必要とする場合もある。一緒に使用すべき方法の正確な選択は、各方法の個々の機能に依存する。一般に、異なる方法を重複していないセキュリティ弱点と組み合わせることが望ましい。例えば、時間領域のスペクトル拡散技術を使用して埋め込まれた透かしは、同期攻撃を受けやすく、この弱点を軽減するためにレプリカ変調透かしと並行して使用されることがある。また、複数の方法による透かしの同時埋め込みは、差分解析を複雑にし、攻撃者を錯乱させ混乱させることができることに注意されたい。この目的のため、様々なアルゴリズムによって生成された透かしが、時間領域、空間領域および周波数領域内で重ねられることが望ましい。
【0077】
先行技術の多くの透かし入れ用途では、複数の透かしが、同じステゴキーを使用して異なる時間間隔で埋め込まれる。この重複する透かしの埋め込みは、透かしの正しい検出の可能性を高めるために行われる。例えば、スペクトル拡散透かし用のステゴキーは、乱数発生器のシードを含むことができる。そのようなシステムでは、コンテンツ全体に同じ透かしを繰り返し埋め込むために同じシードが使用される場合がある。本発明のシステムでは、様々な透かし入れ方法が異なる時間間隔で使用され、それにより特定の埋め込みの時間間隔もステゴキーの一部であると見なされる。
【0078】
更に、先行技術の代表的な透かし入れ用途では、透かし強度は、ロバスト性とトランスペアレンシのトレードオフに基づいてのみ決定される。本発明のシステムでは、透かし強度は、システムのセキュリティ機能として実現される場合もある。その理由は、多くのブラインド攻撃、妨害攻撃および上書き攻撃の成功が、透かし強度に大きく依存するからである。従って、本発明の文脈では、透かし強度は、エンベッダのステゴキーの一部でもある。スペクトル拡散やレプリカ変調などの多くの透かし入れ方法の場合は、透かし強度がエクストラクタ操作に影響を及ぼさないが(チャネル障害がある状態で検出のロバスト性が変化すること以外)、ピーク振幅変調や分散機能量子化などの他の透かし入れ方法の場合は、抽出パラメータが、埋め込まれた透かしの強さに従って変化する。後者の場合、埋め込み強度の変更は、エクストラクタキーセットの一部としてエクストラクタに送られなければならない。
【0079】
透かし強度の選択は、トランスペアレンシ要件に確実に影響を及ぼし、即ち透かしが強力になるほど、その存在が知覚可能になる。しかしながら、透かしの知覚可能性は、コンテンツ自体のマスキング性能にも強く依存する。例えば、ライブのロックコンサートの録音などノイズの多いコンテンツは、弦楽四重奏曲音楽などの、より構造化されたコンテンツよりも高い透かし強度を許容することができる。同様に、静止画と動画の場合、特定の範囲の輝度/クロミナンス値または空間周波数の範囲内に透かしを埋め込むことが望ましい場合がある。従って、透かし強度の変更は、何らかの自動的な方法または人間の選択によって、コンテンツ特性に合わせて行わなければならない。いずれの場合も、透かし強度を変更するアルゴリズムは秘密にされ、従って、攻撃者は、コンテンツを解析することによってそのような変更を決定することができない。
【0080】
また、埋め込みの強度は、保護されているコンテンツの価値とコンテンツの用途に応じて修正することができる。場合によっては、より強力な透かしによってコンテンツに導入される付加的な歪みは、送信チャンネル(例えば、FMまたはAMチャネル放送)によって導入される歪みに比べてごくわずかなことがある。そのような場合は、埋め込みの強度を高めることができる。映画の劇場公開やDVD公開などの他の場合は、忠実度要件が高くなるので、透かし強度をそのように全体的に高めることはできないことがある。替わりに、透かしの強度を、特に関心のあるマルチメディア信号部分だけに局部的に調整することができる。そのような部分は、映画のクライマックスシーンまたは重要な音声部分を含んでもよく、マルチメディアコンテンツ全体に任意に分散されてもよい。
【0081】
透かし強度の変更があるとき、攻撃者には2つの選択肢がある。第1の選択肢は、最も強力な透かしでも除去できるような十分な歪みおよび/またはノイズをコンテンツ全体に加えることである。適切に設計された透かし入れシステムでは、この操作は、コンテンツの品質を許容可能なレベル以下で低下させることが期待される。最も強力な透かしを除去するのに必要な歪みおよび/またはノイズの量がコンテンツによって異なる場合があることに注意されたい。また、埋め込みの強度も、前に公開された素材に対する著作権侵害攻撃の成功または失敗の程度に応じて動的に調整することができる。例えば、将来公開されるマルチメディアコンテンツに、前に開発された攻撃を無効にするためにさらに強力な透かしを埋め込むことができる。
【0082】
あるいは、攻撃者は、特定の各コンテンツ内の透かし強度を識別し、それらのコンテンツのそれぞれにちょうど十分な歪みを加えようとすることがある。これは、本明細書に開示した複数の方法や他のセキュリティ機能がある状態では極めて難しい操作である。後で開示するセキュリティ機能の多くは、このタイプの解析を防ぐように設計されている。
【0083】
本システムの透かし入れステゴキーは、多数の要素で構成されており、それぞれの要素は、n次元のステゴキー空間の1つの次元と見なすことができる。n次元空間の要素は、ホストコンテンツの性質とタイプあるいは透かし入れシステムの特定の用途に応じて変化してもよい。例えば、静止画像の透かし入れのためのステゴキー要素の数とタイプは、ビデオ音声の透かし入れに対応するものと異なる。更に、埋め込みと抽出のためのステゴキーは一般に長さが異なり、ステゴキー空間の異なる次元にまたがることがある。一般に、長さLeの埋め込みステゴキーは、次のように表わすことができる。
【0084】
【数6】

【0085】
ここで、図2に示したように、nはステゴキー空間の次元であり、Lieは各要素iの長さを表し、0<i<nである。本発明の例示的な実施形態によれば、各埋め込みセッションごとに、コンテンツを埋め込むためにステゴキーが選択され使用される。埋め込みステゴキーの選択は、ランダムな選択プロセスでもよく、所定の選択方式に従って行われてもよい。
【0086】
音声透かし入れシステムのステゴキー要素は、例えば、6次元キー空間を使用して構成することができる。図3は、音声透かし入れシステムの埋め込みステゴキーの例を示す。ステゴキーの第1の要素(次元1)は、埋め込みのターゲットにされるマルチメディアコンテンツ内の特定のタイムスロットを表わすことができる。この例では、16ビットを使用すると、65536の異なるタイムスロットを選択することができる。第2の要素(次元2)は、1つまたは複数の埋め込みアルゴリズムの選択を可能にする。要素3および4(次元3と4)はそれぞれ、各埋め込みアルゴリズムと関連した周波数偏移とPNシーケンス長を表わす。要素5(次元5)は、埋め込みのターゲットにされるコンテンツ内の別個の周波数セグメントの数に対応する。時間および周波数成分の細分性は、システム性能要件および特定の埋め込みアルゴリズムに従って、所望の透かし能力レベル、セキュリティレベル、トランスペアレンシレベルおよびロバスト性レベルにより変化することがあることに注意されたい。更に、タイムスロットの持続時間および/または周波数帯のスペクトル幅は、コンテンツ全体にわたって一定に維持されなくてもよい。そのような変化は、事前に計算された変化パターン(ランダムな変化パターン)に基づいてもよく、ホストコンテンツの特徴に従ってもよい。また、様々な埋め込みアルゴリズムごとに異なる時間/周波数細分性を有することも全く可能である。そのような追加の機能を組み込むとステゴキーが更に長くなる。
【0087】
図3に示したステゴキーが、5次元ステゴキー空間の例を示しているに過ぎないことに注意されたい。実際には、所望のシステム性能を達成するためにいくつかの次元を追加(または除去)することができる。図示した構成は、1つまたは複数の透かし入れアルゴリズムによってコンテンツの同時/周波数/空間セグメントの埋め込みを可能にする。当然ながら、重なっている透かしレイヤ/バンドの数と強度は、システムのトランスペアレンシ要件によって規定されるように、知覚可能なアーティファクトを作成してはならない。システム性能要件は、用途によって大きく異なる。テキスト、静止画像、ビデオストリームなどの他の形態のマルチメディアコンテンツの類似の表を作成することができる。例えば、長編映画用の透かし入れステゴキーは、映画のビデオ部分に対応する追加の空間および時間周波数の次元と映画の個々のフレームに対応する透かしの空間的範囲を含むことができる。
【0088】
また、特に放送直前のコンテンツの埋め込み、テープ間転送中の埋め込み、データからフィルムへの移行、またはリップ埋め込み送信(rip-embed-transmit)の手順などの実時間用途で埋め込みステゴキーの範囲を選択する際に、計算効率がある役割を果たすことがある。そのようなケースでは、埋め込み用途のコスト/期間制限に従ってステゴキーの範囲を選択することが必要な場合がある。例えば、限られた組の埋め込み機会(embedding opportunity)だけを利用することもでき、限られた数の埋め込みアルゴリズムを選択することもできる。しかしながら、現在の技術的制約による制限は、計算資源の速度/コストの改善が行われるにつれて今後小さくなると予想される。
【0089】
一般に、透かしに基づくマルチメディアコンテンツ管理システムが、暗号による安全システムを作成するとは予想されないが、この透かし入れシステムのステゴキー解析を前述の暗号キー解析と比較することは有益である。ほとんどの暗号キー空間の攻撃は、暗号キー値が暴露されるまで2進シーケンスの様々な並べ換えを試みることを必要とする。この透かし入れシステムのステゴキー空間に対する類似の総当たり攻撃は、2進シーケンスの余裕の操作を含む。実際に、透かし入れステゴキーの攻撃は、異なるn次元で複数の2進シーケンスを攻撃することを必要とし、各攻撃は、フィルタリング、畳み込み(convolution)、相関などの異なる組の計算コストのかかる操作を必要とする場合がある。攻撃の複雑さは、透かし入れされたコンテンツの無許可の使用を妨害しやめさせるのに十分であると考えられる。
【0090】
図4は、本発明の例示的な実施形態による埋め込み装置500のブロック図を示す。デジタルホストコンテンツを含む入力ホスト信号501は、受信装置または受信装置を含む他の装置(例えば、埋め込み装置500のエンベッダ受信装置510)によって受信される。入力ホストコンテンツ信号501は、様々な形式でよく、またいくつかの音声信号、ビデオ信号、マルチメディア信号またはデータ信号を含むことができるので、エンベッダ受信装置510は、入力ホスト信号501を埋め込み装置500の他の要素によって認識可能な適切な形に調整する必要がある。この調整は、例えば、復調、復元(decompression)、デインターリーブ(de-interleaving)、解読、デスクランブリング(descrambling)、リサンプリング、アナログデジタル変換、リフォーマット、フィルタリングなどの信号処理段階を含むことができる。また、必要な信号調整段階のいくつかが、透かし埋め込み装置550などの埋め込み装置の他の部分で実行されてもよいことを理解されたい。次に、調整された(または部分的に調整された)信号は、識別装置520によって処理され、ホスト信号内の複数の埋め込み機会または位置が識別される。すべての可能な埋め込み機会を識別することができる。替わりに、埋め込み機会の識別は、埋め込まれた透かしに使用できる埋め込み方法のすべてまたはいくつかに従って実行されてもよい。次に、選択装置530は、識別された埋め込み機会のサブセットを選択する。
【0091】
使用可能な埋め込み方法を記憶するために、オプションの埋め込み方法記憶装置540が提供されてもよい。記憶装置540は、最新バージョンの埋め込み方法パラメータ、アルゴリズムまたは設定を含むように定期的にアップグレードされてもよい。選択装置540や透かし埋め込み装置550などの埋め込み装置の他の構成要素が、使用可能な埋め込み方法に関係する適切な情報を含み及び/またはこの目的に利用できるアップグレード可能なメモリモジュールを含むことができるときは、個々の記憶装置はなくてもよいことを理解されたい。選択装置540は、また、記憶装置530(または他の記憶位置)から1つまたは複数の透かし埋め込み方法を選択することができる。適切な埋め込み機会と1つまたは複数の透かし埋め込み方法を選択した後で、透かし埋め込み装置550は、選択した透かし埋め込み方法に従って、透かしを、ホストコンテンツ内の選択された埋め込み機会のサブセットに対応する位置に埋め込んで埋め込みホスト信号560を作成する。次に、埋め込みホスト信号560は、更に、処理され、記憶され、送信されてもよい。
【0092】
入力ホスト信号501に含まれるデジタルホストコンテンツは、マルチメディアコンテンツ、音声コンテンツ、ビデオコンテンツ、音声映像コンテンツ、画像コンテンツなどのうちの1つを含むことができる。
【0093】
選択装置540は、透かしの最適なロバスト性、最適なセキュリティおよび最適なトランスペアレンシのうちの少なくとも1つを提供するように埋め込み機会のサブセットを選択することができる。更に、選択装置540は、透かしのロバスト性レベル、セキュリティレベルおよびトランスペアレンシレベル間の所望のトレードオフを提供するように埋め込み機会のサブセットを選択することができる。
【0094】
複数の透かし埋め込み方法を、選択装置540が記憶装置530から選択し、透かし埋め込み装置550が使用することができる。例えば、透かし埋め込み装置550は、少なくとも2つの異なる透かし埋め込み方法を選択し使用することができる。
【0095】
埋め込み機会は、ホストコンテンツの特徴に応じて識別装置520によって識別することができる。そのような特徴は、コンテンツの時間周波数、空間周波数、持続時間、ピーク振幅、輝度、クロミナンス、マスキング性能などのうちの少なくとも1つを含むことができる。埋め込み機会は、透かし埋め込み方法のパラメータに応じて識別することもできる。そのようなパラメータは、自己相関遅延、周波数偏移、PNシーケンス、量子化インデックス、埋め込み強度、チップレート、埋め込みビットレートなどの少なくとも1つを含むことができる。埋め込み機会は、ホストコンテンツの特徴と透かし埋め込み方法のパラメータの両方に従って識別することができる。
【0096】
埋め込み機会は、多次元空間を含むことができる。空間の次元は、時間周波数帯、空間周波数帯域、時間セグメント、空間範囲、時間遅延、周波数偏移、PNシーケンス、または埋め込みアルゴリズムのタイプのうちの少なくとも2つからなることができる。
【0097】
透かし埋め込み装置550は、同じ選択した透かし埋め込み方法を使用するが異なる埋め込みパラメータによって多数の透かしを埋め込むことができる。選択された埋め込み機会の範囲は、システムの所望のトランスペアレンシ、ロバスト性またはセキュリティの少なくとも1つに従って決定することができる。選択装置540は、各ホストコンテンツを埋め込むために、識別した埋め込み機会の異なるサブセットを選択することができる。様々なサブセットには共通要素がなくてもよい。替わりに、様々なサブセットに少なくとも1つの共通要素があってもよい。
【0098】
更に、同じホストコンテンツの様々なコピーを埋め込むために、選択装置540は、埋め込み機会の様々なサブセットを選択することができる(図10と関連して後で詳しく説明するように)。ホストコンテンツの様々なコピーに使用される異なるサブセットには共通要素がなくてもよい。替わりに、様々なサブセットに少なくとも1つの共通要素があってもよい。
【0099】
選択装置540は、埋め込み機会のサブセットをランダムまたは疑似ランダムに選択することができる。
【0100】
埋め込み装置500の様々な実施態様にそれぞれ異なる数の埋め込み機会を作成することができる。選択された埋め込み機会のパターンは、それぞれの埋め込み装置を一意に識別することができる。更に、選択された埋め込み機会のパターンは、それぞれの埋め込みを一意に識別することができる。
【0101】
識別された埋め込み機会のサブセットは、確認された攻撃または予想される攻撃に応じて適応可能である。例えば、識別された埋め込み機会のサブセットを選択する段階は、(例えば、埋め込み装置500の選択装置540や他の構成要素によって)選択された透かし埋め込み方法に使用できる少なくとも1つのタイプの攻撃を選択する段階と、第1組の埋め込み機会を作成し、攻撃がある状態で第2組の埋め込み機会に変換するように適応させる段階を含むことができる。
【0102】
図4に示したような埋め込み装置500が、種々のデジタル構成要素、アナログ構成要素、光学構成要素、または音響構成要素を含むことができることを理解されたい。例えば、エンベッダは、デジタル信号処理(DSP)ユニット、FPGAおよびASIC装置を使用して実現されてもよく、コンピュータまたは携帯端末装置で実現されてもよい。また、図4の埋め込み装置500は、単一の埋め込みユニットとして実現されてもよいが、その構成要素を分解して分散型埋め込み装置を構成することもできることを理解されたい。例えば、透かし埋め込み装置550をある物理位置に配置し、埋め込み装置の残りの部分を別の物理位置または複数の物理位置に配置することは全く可能である。埋め込み構成要素の分散は、各構成要素の計算要件と各位置における計算資源の可用性に従って行うことができる。そのような分散された装置の種々の構成要素は、例えば、インターネット、専用電話線、種々の有線または無線コンピュータネットワーク、更には携帯型記憶装置のような物理媒体などの種々の接続手段を使用して相互接続することができる。
【0103】
ステゴキー−透かし抽出
埋め込まれた透かしを適切に抽出するには、エクストラクタに抽出ステゴキーセットがなければならない。抽出キーセットの通信は、通常、受信装置に永久的に抽出キーセットを記憶させるか、追加の通信チャネル(例えば、スマートカード、インターネット接続、電話線など)を介して抽出ステゴキーセットを通信するか、同じ通信チャネル(例えば、ファイルヘッダの一部、CDとDVDの非データ伝送部分、埋め込まれた透かしの一部などにより)を介して抽出ステゴキーセットを伝送することによって達成される。キーセットが受信装置に永久的に記憶されるシステムの欠点は、キー空間攻撃に対する脆弱性である。即ち、抽出キーセットが盗まれるかまたは暴露された場合に、システム全体が破壊される可能性がある。これは、特に、同じ抽出キーセットを有する多数のエクストラクタを分散し、セキュリティ更新が実現でない場合に当てはまる(例えば、CDプレーヤやDVDプレーヤなどの民生用電子装置で)。補助チャネルを使用するキー配布は、セットトップボックス用途などの特定のケースで有効であることが証明されているが、追加の通信チャネルに依存するという欠点を有する。そのような補助チャネルは、コスト効果が高くなく、遮断と妨害に弱く、また特定の用途(例えば、アナログ記録装置)で使用できない場合がある。
【0104】
この透かし入れシステムのキー交換とキー管理の詳細を説明する前に、抽出方法のいくつかの特徴を説明しなければならない。本システムは、最も一般的なケースにおいて、透かしを抽出するために非対称的なステゴキー手法を使用する。チャネル歪みがないとき、コンテンツが元の状態でその宛先に送られる場合は、受信したコンテンツから透かしを抽出するには正確な埋め込みアルゴリズムと特定の埋め込みパラメータが分かれば十分である(即ち、対称的なステゴキー手法を使用する)。しかしながら、意図的または意図的でない処理または攻撃によるチャネル歪みがあるとき、埋め込まれたステゴキーの正確なバージョンでは歪んだ透かしを抽出できない場合がある。これは、埋め込まれた透かしが異なる組のパラメータで埋め込まれているように見える場合があるという事実による。例えば、周波数帯4,000Hz〜4,200Hzの音声信号に隠された透かしの場合、ピッチを5%高めるピッチシフト処理によって、埋め込み領域が4,200Hz帯から4,410Hz帯に移動する。適切に設計されたエクストラクタは、起こり得るチャネル障害を予想して、本来の4,000〜4,200Hz帯だけでなく4,200〜4,410Hz帯(あるいは、約4,200〜4,400Hz帯)で透かしの存在を探さなければならない。同様に、8x8透かし入れピクセル領域を有する画像では、画面サイズがアスペクト比16:9から4:3に変換された場合、8x8透かし入れしピクセル領域は8x6ピクセル領域になる。ピクセル領域8x8と8x6の両方に構成された抽出ステゴキーセットは、このタイプの歪みがある状態(または、ない状態)で透かしを首尾良く抽出することになる。
【0105】
本発明のシステムでは、エンベッダキー空間は、すべての可能な変換を考慮するためにできるだけ多数のキーを含むことができる。しかしながら、ステゴキーのすべての可能な変換をエンベッダキー空間に組み込む必要はない。更に、エクストラクタキー空間は、必ずしもエンベッダキー空間に限定されない。それぞれの埋め込まれた透かしが、クリアチャネル内で検出される可能性を持つようにエンベッダキー空間全体を含むだけでなく、エンベッダキー空間外の変換によって生成される多数のステゴキーを含んでもよい。
【0106】
この非対称的な埋め込みおよび抽出キーセットの概念は、図5aと図5bに絵で示されている。図5aにおいて、小さな円は、埋め込みステゴキーセットを表わし、大きな楕円形は、1組の抽出キー値を表わす。埋め込みキーセットが完全により大きな抽出キーセット内にあることは、すべての埋め込まれた透かし(チャネル歪みがない場合)をコンテンツから抽出することができることを示す。これは、また、いくつかの抽出の試み(埋め込み領域外にある埋め込まれた透かしを探す試み)が必ずしも役立たないが、この付加的な操作が、高いセキュリティと改善されたロバスト性性能を達成するのに支払う小さな代償であることを示す。図5bでは、同じ組の抽出キーが、埋め込みキーセットの外観を変化させたチャネル歪みがある状態での抽出に使用される。図5bに示したように、歪んだエンベッダキーセットは、部分的に特定のエクストラクタ内で利用されるエクストラクタキーセットの外にある場合があり、これは、必ずしもすべての透かしを捕捉する必要がないことを示す。一般に、チャネル歪みがある状態では、エンベッダキーセットのいくつかの部分は、変化しないままかあるいは元の埋め込みキー空間(即ち、図5bの元のキーセットと歪んだキーセットの間の重なり部分)内に留まる場合があり、一方エンベッダキーセットの他の部分は、エクストラクタキー空間内の元の埋め込みキー空間外の領域に出る場合がある。さらに、エンベッダキーセットの他の部分は、エクストラクタキー空間外に完全に出る場合がある。これは、エンベッダキーセットを、多数の「変換された」ステゴキー(即ち、通常の信号処理または攻撃によってある状態から他の状態に変換することができるステゴキー)を含むように選択することが可能であり且つ有利であるという事実を示す。更に、この図は、エクストラクタキー空間を大きくすると、歪みがある状態で透かし検出を成功させる可能性が高まることを示している。最後に、この図は、エクストラクタキー空間を、変換されたすべてのエンベッダキーをカバーするのに十分な大きさにする必要がないことを示す。信号処理および/または攻撃によっていくつかの透かしが失われることは全く許容可能である。エクストラクタキー空間の選択は、特定の領域内に変換されるステゴキーの可能性と、システムのセキュリティ要件に従ってそのような領域内で探すために受けるエクストラクタの負担(処理能力と不正検出確率の点)の間のトレードオフによって決まる。
【0107】
ステゴキー設計
この透かし入れシステムの目標の1つは、エクストラクタに特定の埋め込みキーセットを通信するのではなく、各マルチメディアコンテンツに異なるステゴキーセットを埋め込むことであり、更に潜在的なチャネル障害がある状態で埋め込まれた透かしを許容可能な信頼性で抽出できるようにすることである。そのようなシステムの設計は2つの要素によって容易になる。第1に、一般に、ほとんどのマルチメディアコンテンツで透かしを挿入する可能性は多い(例えば、典型的な映画は長さ2時間であるが、典型的な音声透かしは持続時間がわずか数秒である)。第2に、透かし入れシステムの多くの用途では、すべての埋め込まれた透かしを抽出する必要はなく、コンテンツ管理用途などの多くのケースでは、ごく少数の埋め込まれた透かしを抽出するだけで望みの結果が得られる。一方、攻撃者がシステムを攻略するためには、すべてまたはほとんどの埋め込まれた透かしをコンテンツから除去しなければならない。更に、技術的に高度でないユーザに配布することができる成功裏の攻撃を開発するために、攻撃は、現在使用可能なコンテンツと将来のリリースを含む、透かし入れシステムを利用する実質的にすべてのタイプのコンテンツで成功しなければならない。これらの要素の組み合わせは、透かし入れ抽出キーの交換を不要にしまた暗号システムに近いセキュリティレベルを達成するために本システムで有利に使用される。
【0108】
この目標を達成する1つの方法は、可能なすべての埋め込みキーセットからランダムにまたは所定のアルゴリズムで少なくとも1つの埋め込みキーセットをコンテンツに埋め込み、受信装置で、エクストラクタキー空間全体の網羅的な調査を実行することである。エクストラクタキー空間の設計が適切な場合、成功確率を任意に高めることができる。この作業は、エクストラクタステゴキーの長さが短い場合、またはエクストラクタ内ですべてのステゴキーのうちの小さなサブセットだけが利用される場合に実現可能なことがある。しかしながら、図3に示した例示的なステゴキーのような長いステゴキーの場合、このタスクは、計算コストがかかり過ぎて実際に実施することができない。更に、網羅的に探すと、間違った透かし検出の割合が許容限度より高くなる場合がある。
【0109】
この目標を達成する代替の方法は、コンテンツに埋め込むために可能なすべての埋め込みステゴキーを使用し、エクストラクタ側で、エンベッダキー空間からランダムに選択された少なくとも1つの抽出の試みを実行することである。この手法は、実際に、透かしエクストラクタのタスクを単純化するが、コンテンツの品質低下と埋め込みの複雑さを生むマイナスがある。従って埋め込まれた複数の透かしとエクストラクタで実行される複数の調査との間のどこかに適切な設計があることは明らかであるが、すべての埋め込み機会とすべての抽出可能性が最後まで検討されることはない。セキュリティの視点からは、できるだけ多くの埋め込まれた透かしを含め、できるだけ多くの抽出試みを実行することが望ましい。しかしながら、埋め込みと抽出の試みの数は、システムのトランスペアレンシおよび処理要件によって限定される。従って、選択した数の埋め込みおよび抽出キーセットと成功裏の検出の確率との関係を知ることが望ましく、これは、後の解析の目的になる。更に、セキュリティの視点から、これらのキーをいくつ選択するかだけでなく、どのように選択するかも極めて重要である。
【0110】
図6に、ステゴキー選択の概念図を示す。図6aでは、4つの異なる埋め込み装置に属する4つの異なる埋め込みステゴキーが、セットA、B、CおよびDとして表わされている。図6aは、4つのすべてのキーの間の0でない交差領域を示す。これは、システムの要件ではなく、開示した概念を理解しやすくするためにのみ図6に示されている。重なっておらず及び/または共通交差領域がない埋め込みキーセットを有することは全く可能である。実際には、重なっていないか部分的に重なっている埋め込みキーセットがあると、1つのキーセットが危険にさらされた場合でも他のキーセットを使用できるので、システムのセキュリティが改善される。
【0111】
また、図6aを使用して、同じ埋め込み装置によって使用されるが4つの異なるコンテンツのためのキーセットを示すことができる。各エンベッダに割り当てられた特定のステゴキーセット、または各埋め込みセッション用に選択されたそのようなキーの特定のサブセットは、ランダムに選択されてもよく非ランダムに選択されてもよい。例えば、埋め込みステゴキーの割り当て/選択は、導入されたシステムの耐用年数を最大にするように様々な段階で行われる。例えば、初期のエンベッダとエンベッダの動作は、限られた組の透かし入れ方法と限られた透かし入れ強度しか使用できないが、後のバージョンは、攻撃者によって既に導入された可能性のある回避の試みを妨害するように調整されたより高度な方法および/またはより強力な透かしを導入することができる。同様に、比較的低い価値のコンテンツ(例えば、テレビコマーシャル)に埋め込むためにある組のステゴキーを使用し、高い価値のコンテンツ(例えば、長編映画)に埋め込むために別の組のステゴキーを使用することができる。
【0112】
前述の方法の更に別の変形例では、埋め込みステゴキー空間全体を様々なセクションに区分し、各セクションを、様々な地理的地域、様々な顧客グループ、または特定のタイプのマルチメディアに割り当てることができる。埋め込みキー空間のこのタイプの区分は、埋め込みコンテンツの証拠追跡を可能にする。例えば、疑わしいコンテンツを受け取り透かしがあるか調べた後で、コンテンツの出所を、埋め込まれた透かしの成功抽出を可能にしたステゴキー(または区分)まで遡ることができる。以上の考察が、埋め込みステゴキー空間の区分の重なり区分(または、セクション)の存在を排除しないことに注意されたい。そのようなケースでは、最良の検出結果を生成する(例えば、最も数の多い検出または最も確実な検出を生成する)特定のステゴキーを決定することによって、埋め込みコンテンツの出所に遡ることができる。この結果、埋め込みコンテンツの出所が最大の確率で分かる。
【0113】
図6bは、3つの異なるエクストラクタ装置X、YおよびZの抽出キーセットを表わす。これらのキーは、対応するエクストラクタにランダムに割り当てることができるだけでなく、エクストラクタの特性を考慮して割り当てることができる。例えば、エクストラクタが、劇場の著作権侵害に使用される可能性のあるカムコーダ内にある場合、エクストラクタのキーセットは、コンテンツの速度の増減によって得られる変換キーを含む必要はない。同様に、エクストラクタが、有効期限のあるソフトウェアモジュール内にあり、そこに新しいソフトウェアをダウンロードしなければならない場合は、エンベッダ用に提案されたエクストラクタキーと類似のエクストラクタキーの段階的配布を行なうのが有利である。
【0114】
図6bに示した最も重要な特徴は、様々なエクストラクタがそれぞれ異なる組のエクストラクタキーを有し、その結果、単一(または、少数)のキーセットが危険にさらされた場合でも他のキーセットを使用できることである。更に、図6bを使用して、様々な実行で単一のエクストラクタによって使用されるキーセットを示すことができる。このケースにおける重要な特性は、エクストラクタの挙動が決定論的でなく、即ち、様々な実行の結果が同じではない場合があることである。また、図6で、すべての埋め込みステゴキーセット(およびすべての抽出キーセット)が、同じサイズであるように見えることに注意されたい。これは、必ずしも当てはまらず、単に概念の理解を容易にするために行われる。実際に、本発明によれば、様々な埋め込みキーセットと抽出キーセットが異なるサイズであることが望ましい場合がある。埋め込みステゴキーと同じように、すべての抽出キーセットが重なり領域を有するべきであるという厳密な要件はないが、そのような重なり領域は、所望の性能信頼性を生成するのに必要な場合がある。更に、各エクストラクタが、新しい組の抽出キーに定期的に切り替えるか特定の組の抽出キーを永久的に廃止することを可能にするために、何組かの重っていない(かつ恐らく使用されていない)抽出キーセットを含むことが望ましい場合がある。
【0115】
図6cは、埋め込みキーセットA〜Dのいずれかを使って埋め込まれた透かしを抽出できる抽出キーセットZを示す。セットAとBの一部分はエクストラクタZの検出領域外にあり、コンテンツAまたはB内のすべての埋め込まれた透かしを抽出することができないことがある。一方、透かしが、コンテンツ全体にわたって重複して埋め込まれるので、そのような抽出の失敗は重要でない場合がある。図6に示したステゴキーシステムアーキテクチャでは、それぞれの埋め込みが異なるステゴキーで行われ、それぞれのエクストラクタが異なる組の抽出キーを含む。埋め込みキーセットと抽出キーセットの間に重なりがある限り、透かしの回復は可能である。更に、ある埋め込みコンテンツまたはある特定のエクストラクタへの攻撃が成功しても、他のエクストラクタを使用する他の埋め込みコンテンツから透かしを除去することはできない。異なる埋め込みステゴキーサイズを使用して、様々なレベルのトランスペアレンシ、セキュリティおよびロバスト性を作成することができる。例えば、3つの異なる埋め込みアルゴリズムで重複して埋め込まれたコンテンツは、1つの埋め込みアルゴリズムを使用して埋め込まれたコンテンツよりも高いセキュリティを生成するが、低いトランスペアレンシを生成する。同様に、より小さいキーセットを含むエクストラクタセットは、低いロバスト性能を提供するが、より高い計算効率を提供することができる。このアーキテクチャの枠組は、セキュリティ、ロバスト性、トランスペアレンシおよび計算コストのトレードオフを行うことができきるフレキシブルなシステム設計構造を提供する。図7の表に、ステゴキーの長さが様々な要件にどのような影響を及ぼす可能性があるかの例を示す。この表は、システム要件とシステムパラメータの間の複雑な相互関係を示すために示されている。例えば、図7の表によれば、ペイロード能力が固定されていると仮定すると、埋め込みステゴキーの長さを長くするほど、トランスペアレンシが低下するのを犠牲にしてより安全なシステムを作成することができる。
【0116】
埋め込みステゴキーと抽出ステゴキーの長さ、異なる抽出キーセットの数、ならびに異なる抽出キーセット間の重なりの程度を使用して、この透かし入れシステムが、最適な安全、トランスペアレント、高信頼性、低計算コストを有するようにすることができる。これらのパラメータは、保護しているコンテンツの価値とタイプ、および使用されているエクストラクタのタイプに従って調整することができる。例えば、携帯型カムコーダ(劇場内の映画著作権侵害を防ぐために)には、携帯型MP3プレーヤよりも安全なエクストラクタの実施態様を選択することができる。
【0117】
図8は、本発明の例示的な実施形態によるエクストラクタ装置600のブロック図を示す。入ってきた埋め込みホスト信号560(例えば、図4の埋め込み装置500によって作成された)は、受信装置または受信装置を含む他の装置(例えば、エクストラクタ装置600内のエクストラクタ受信装置610)で受信される。図4のエンベッダ受信装置510と関連して述べた条件付け処理と同じように、エクストラクタ受信装置610は、入力埋め込みホスト信号560を適切に条件付けることができる。次に、ステゴキー選択装置620は、ステゴキー記憶装置630に記憶されたステゴキーの集まりから少なくとも1つのステゴキーを選択する。選択されたステゴキーは、次に、透かしエクストラクタ640によって使用されて、埋め込みホスト信号560から埋め込み透かしが回復され、回復された透かし650が提供される。
【0118】
ステゴキー選択装置620は、少なくとも1つのステゴキーを選択して、ホストコンテンツに埋め込まれた透かしを抽出するための最適なロバスト性、セキュリティおよび計算効率のうちの少なくとも1つを生成することができる。更に、ステゴキー選択装置620は、少なくとも1つのステゴキーを選択して、ホストコンテンツに埋め込まれた透かしを抽出するロバスト性レベル、セキュリティレベルおよび計算効率レベル間の所望のトレードオフを行うことができる。
【0119】
ステゴキー選択装置620は、少なくとも1つのステゴキーをランダムまたは疑似ランダムに選択することができる。
【0120】
ステゴキー記憶装置630に記憶されたステゴキーの集まりは、1つのステゴキー、少なくとも2つのステゴキー、または複数対のステゴキーを含むことができる。ステゴキーの集まりは、更に、共通要素のない少なくとも1対のステゴキー、または少なくとも1つの共通要素を有する少なくとも1対のステゴキーを含むことができる。
【0121】
抽出された透かし650の存在と値は、(例えば、特定のユーザまたは装置に)所定の時間間隔で報告されてもよい。
【0122】
選択装置620による1つまたは複数のステゴキーの選択は、所望の誤検出率に従って適応されてもよい。1つまたは複数のステゴキーの選択は、所望の抽出確率を作成するように適応されてもよい。更に、1つまたは複数のステゴキーの選択は、透かしの抽出に所望の計算の複雑さを作成するように適応されてもよい。更に、1つまたは複数のステゴキーの選択は、ホストコンテンツの変換を予想するように適応されてもよい。ホストコンテンツのそのような変換は、埋め込まれた透かしの特徴を修正することができる。例えば、この変換により、第1の埋め込みステゴキーが埋め込まれた少なくとも1つの透かしの外観が変更され、その結果、少なくとも1つの埋め込まれた透かしに第2の埋め込みステゴキーが埋め込まれたことが分かる。
【0123】
選択されたステゴキーのサイズは、ホストコンテンツによって異なってもよい。ステゴキーの集まりの大きさは、ホストコンテンツのタイプまたは値に従って異なってもよい。更に、選択されたステゴキーの大きさは、ホストコンテンツのタイプまたは値により異なってもよい。
【0124】
記憶装置630内のステゴキーの集まりは、すべての可能な抽出ステゴキーのサブセットを含んでもよい。ステゴキーの集まりは、確認された攻撃または予想される攻撃により適応されてもよい。更に、ステゴキーの集まりは、有効期限により適応されてもよい。
【0125】
すべての最初に埋め込まれた透かしのサブセットの抽出は、少なくとも1つのステゴキーに従って、透かしエクストラクタ640によってイネーブルにされてもよい。替わりに、すべての可能な埋め込まれた透かしの抽出が、少なくとも1つのステゴキーに従ってイネーブルにされてもよい。
【0126】
エクストラクタ装置600は、前述の埋め込み装置500と同じまたは類似の方法を使用して実施されてもよい。更に、埋め込み装置500と同じように、エクストラクタ装置600は、単一ユニットとして実現されてもよく、同じ物理位置または異なる物理位置にあるいくつかの個々の構成要素から成る分散型装置として実現されてもよい。
【0127】
また、図4と関連して説明した埋め込み装置500は、電子透かしを埋め込み抽出システムを構成するために図8で説明したエクストラクタ装置600と関連して使用されてもよいことを理解されたい。
【0128】
付加透かしレイヤの存在
開示した埋め込みと抽出の概念は、付加透かしレイヤを必要とする多くの透かし入れ用途に等しく適用可能である。これらの付加レイヤの存在は、例えば、既存の透かしのペイロード能力を拡張して、レイヤ状のセキュリティ(およびアクセス)アーキテクチャを提供したり、証拠/またはトランザクション機能を提供したりすることができる。例えば、マルチメディアコンテンツは、3ビットのペイロードを有するコピーコントロール透かしと、50ビットのペイロードを有する1つまたは複数の証拠透かしまたはトランザクション透かしの両方を含むことができる。第2組の透かしのペイロードは、コンテンツの発生、購入または配布の日時、受信者(例えば、映画劇場、小売店、個人など)の名前または身分証明、またはコンテンツの上演の日時を含むがこれらに限定されない識別、所有権および/または発生情報を伝えるために使用することができる。そのような情報は、マルチメディアコンテンツの出所と配布経路を解明するために後で使用されることがある。
【0129】
更に、第2組の透かしを使用して、ホスト信号の送信チャンネルの識別と信憑性に関する情報を伝えることができる。送信チャンネルは、一般論として、任意の発生、記憶または伝送装置、チャネル、物理記憶媒体などの媒体、マルチメディアコンテンツを送信、放送または中継するために使用される装置などを含むことができる。送信チャンネルの識別情報の例には、今日のほとんどの光学および磁気記憶装置上にあるIDまたはシリアル番号、IPアドレス、URL、電子メールアドレス、または送信チャンネル構成要素のすべてまたは一部分を一意に識別する他の情報がある。そのような識別情報の不正な作成を防ぐために、暗号または非暗号手法を使用して埋め込み情報の信憑性を保証することができる。そのような方法の例には、デジタル署名、ハッシュ関数、電子証明書、暗号アルゴリズムなどがあるがこれらに限定されず、これらは、信頼できる第三者の関与を含んでも含まなくてもよい。以上その他の認証技術は当業者に周知である。第2組の透かしに組み込まれた識別情報は、受信装置で抽出し認証することができる。信憑性が首尾よく検証された場合、第1組の透かし内にあるアクセス/コピー管理情報を抽出し利用することができる。これは、ユーザがコンテンツを再生、記録または送信することができることを含む。この方法を使用することにより、適切な信用状のないコンテンツは、アクセスできなくなるか、または異なる組の使用規則を受けることがある。
【0130】
設計ガイドラインと例
例1:
本発明の概念のうちのいくつかを、以下の例を使用して示すことができる。この例は、2時間の映画のモノラル音声トラックの埋め込みを提供する。1つの単純な埋め込み方法は、最初に、サウンドトラックを有限数の時間周波数に分割し、次に透かしビットをランダムに選択された時間周波数部分に埋め込む(先行技術のシステムで述べられているいくつかのアルゴリズムのどれも利用することができるので、実際の透かしビットをどのように埋め込むかの詳細は、この例にはあまり重要ではない)。周波数ホッピングスペクトル拡散技術と似ているこの方法を図9に示す。この図では、透かしビットを含む特定の時間周波数ビンが強調されている。
【0131】
この例を使って本発明の機能のいくつかを更に詳しく示すために、以下のパラメータを仮定することができる。
・埋め込みに使用可能な帯域幅=16kHz
・周波数ビンサイズ=200Hz
・異なる周波数ビン(ホップ)数=16,000/200=80
・音声トラックの全長=120分
・タイムスロットサイズ(即ち、1ビットの持続時間)=20ミリ秒
・別個のタイムスロット数=120(分)x60/20(秒/分)=360,000
・別個の時間周波数セグメント数=360,000×80=28,800,000の数
・各透かしパケット内のビット数=100ビット
・対応できる透かしパケット数=288,000
【0132】
例1:埋め込み
使用可能な288,000位置のうちの1つまたは複数の位置に透かしパケットを埋め込むことができる。理論上は、1つの位置だけに埋め込み、次に埋め込まれた透かしをエクストラクタ装置で検出すれば十分である。しかし、実際のシステムでは、通常、多数の透かしパケットがコンテンツに埋め込まれる。これは、例えば、チャネル障害、意図的な攻撃、あるいは埋め込まれた透かしの検出を妨げる可能性のある標準マルチメディア処理段階があるときの検出の信頼性を高めるために行われる。更に、可能なすべての埋め込み位置が、透かしの配置に適しているとは限らない。例えば、マルチメディアコンテンツと特定の埋め込みアルゴリズムの性質によって、コンテンツ内の特定の位置が、システムのトランスペアレンシ/ロバスト性/セキュリティ要件を満たすことができない場合がある。そのようなケースでは、特定の位置への透かしの埋め込みを、完全にスキップするかまたは低い強度レベルで行わなければならない場合がある。
【0133】
本発明によれば、特定のマルチメディアコンテンツの各コピーは、様々な位置に埋め込まれた異なる数の透かしパケットを含むことができる。この例の文脈では、音声トラック内に、透かしの埋め込みに対応することができる288,000の位置がある。図10は、6つの音声トラック用の埋め込み透かし位置の例を示す。具体的には、例えば、コンテンツ#1は、位置11271,13809,...,268986に埋め込まれた44の透かしを含み、コンテンツ#2は、位置11271,14063,...,278485に埋め込まれた45の透かしを含む。図10を調べると、コンテンツ1〜6に埋め込むために159の固有の透かし位置だけが使用されており、すべての埋め込みの間にわずか20の共通位置しかないことが分かる。図10内の下線を引いた数は、6つすべての音声トラック間で共通の透かし位置に対応する。以上のように、すべての埋め込みコンテンツ間に共通の埋め込み位置がある必要はなく、この例でのこれらの共通の埋め込み位置の存在は、単に基本的概念の理解を容易にするものである。
【0134】
図10にリストした様々なコンテンツは、同じ音声コンテンツの6つの異なる埋め込み(例えば、顧客に映画を配布するために作成された)または6つの異なる音声トラック(例えば、6つの異なる映画)を表わす。図10に示した埋め込み透かしの位置は、乱数発生器を使って疑似ランダムに選択されたが、それぞれの特定のコンテンツの透かし入れシステムのロバスト性/セキュリティ/トランスペアレンシ要件を満たすことができるように一部またはすべての埋め込み位置を決定論的に選択することが望ましい場合がある。
【0135】
例1:検出
1つの検出方法は、埋め込まれた透かしの調査におてすべての159位置(あるいは、すべての可能な288,000位置)を調べることである。別の検出方法は、埋め込まれた透かしの調査で20の共通位置だけを調べることである。しかしながら、好ましい方法は、「共通」位置のすべてまたは一部を含む任意数の透かし位置を調べることである。この手法を図11に示す。図11内の下線を引いた調査位置は、前述の「共通」埋め込み位置のサブセットを含む(6つの埋め込みコンテンツ間に20の共通の透かし位置があり、図11のエクストラクタがこれらの9つ以下の位置を含むことに注意されたい)。従って、透かしの検出を妨げる大きなチャンネル障害がない状態で、図11のエクストラクタ装置は、6つすべてのコンテンツから埋め込まれた透かしを確実に検出することができる。
【0136】
共通検出位置の他に、各エクストラクタセット内には、図11に太字イタリック体フォントで示され少なくとも1つの埋め込みコンテンツから検出を生成する他のいくつかの位置がある。また、各エクストラクタ(エクストラクタ#4以外)内には、埋め込みコンテンツのどれからも検出を生成しない他のいくつかの位置がある。しかしながら、これらの位置は、チャネル歪みまたは意図的な処理がある状態で埋め込みコンテンツの1つまたは複数から検出を生成することができる。これらの特定のエクストラクタは、単に、本発明の例示的な実施形態を提供しており、もちろん他の変形が可能であることに注意されたい。詳細には、図11の5つすべてのエクストラクタは、いくつかの共通要素(即ち下線が引かれた数)を有するように示されている。一般に、各検出器が各埋め込みコンテンツと共通した少なくとも1つの位置があれば十分なので、これは本発明の要件ではない。
【0137】
番号1〜5が付けられたエクストラクタは、5つの異なる検出装置あるいは単一のエクストラクタ装置内に収容された検出ステゴキーを表わす。後者の場合、エクストラクタ装置は、以下のうち1つまたは複数の操作を行うように設定することができる。
1.常に同じ検出位置を調べる(例えば、「エクストラクタ1」と示された位置)。この方法は、エクストラクタの設計を単純化するが、単一のステゴキーが破られるとエクストラクタが役立たなくなるので、十分なセキュリティを提供しない場合がある。
2.ある組の検出位置(例えば、「エクストラクタ1」と示された位置)を調べるが、所定の期間後(例えば、1年後に)に異なる組の検出位置に切り換える。ステゴキーの切り換えは、エクストラクタが使用可能なすべてのステゴキーセット間で、定期的、ランダム及び/または繰り返し行われてもよい。
3.ある組の検出位置(例えば、「エクストラクタ1」と示された位置)を調べるが、システム要求(例えば、「エクストラクタ1」位置が損なわれ、安全でなくなった場合)により異なる組に切り換える。替わりに、新しい組のステゴキーに切り換えるような指示は、埋め込まれた透かしまたは埋め込まれた透かしの異なるレイヤ内に入れられたデータによって伝えられる場合がある。
4.異なる組の調査位置を切り換える(例えば、システム起動時または新しいコンテンツが提示されるごとに1組の位置を任意に選択する)。そのような切り換えは、均一または不均一な確率分布に従って行われてもよい。切り換えは、更に、新しい検出アルゴリズム、新しい周波数帯、新しいタイムスロット、特定のマスキング機能を有する新しい位置、または特定の値を有する新しい位置(例えば、クライマックスシーンなど)に従って検出を生成するために行われることがある。
5.常に複数組の調査位置を使って調べる。
上記リストは、包括的なものではない。当然ながら、他の変形が本発明の範囲内にあり当業者が容易に実施することができる。
【0138】
この例で示した埋め込みおよび検出方法を使用する利点の1つは、1つのコンテンツが攻撃され、すべての埋め込まれた透かしが消去されるように修正された場合に、同じ修正によって、他のコンテンツからすべての埋め込まれた透かしが除去される可能性が低いことである。同様に、1つのエクストラクタ装置の回避によって、他のすべてのエクストラクタの適切な操作が大きな影響を受ける可能性が低い。これは、更に、図12に、エクストラクタ#3に含まれているすべての透かし位置が危険にさらされた(例えば、攻撃者が、エクストラクタ#3の下にリストされているすべての位置からの透かしの検出の回避方法を決定することができた)と仮定して示されている。残りのエクストラクタに対するこの攻撃の影響は、灰色化した数字を使って危険にさらされた位置を強調することによって、図12に示されている。詳細には、エクストラクタ1、2、4および5内のそれぞれの4、7、5および3の位置だけが危険にさらされていることが分かる。これらのエクストラクタは、なおも、ほとんどの調査位置から埋め込まれた透かしを完全に検出することができる。
【0139】
この例を使って本発明の更に別の特徴を示すことができる。詳細には、図11のエクストラクタは、様々な埋め込みコンテンツに対して異なるレベルの検出可能性を提供する。具体的には、エクストラクタ#1内の調査位置を注意深く調べると、この装置が、コンテンツ#1から21の埋め込み透かしを検出するが、コンテンツ#2からは9つの埋め込み透かししか検出しないように構成されていることが分かる。この手法は、コンテンツとエクストラクタの様々な組み合わせによって異なるレベルの検出可能性(即ち、ロバスト性)を生成し、更に埋め込み/抽出装置の厳密な構成に不確実性を追加する。検出可変性の大きさは、コンテンツとエクストラクタのすべての組み合わせにランダムに分散されてもよく、コンテンツとエクストラクタの特定の組み合わせに所望のレベルのロバスト性/セキュリティを生成するように調整されてもよい。一般に、埋め込み位置の数を調査位置の数に合わせることによって、所望のレベルのシステムロバスト性、トランスペアレンシおよびセキュリティを達成することができる。そのような調整を行なうための設計ガイドラインを後で示す。
【0140】
システムに対する将来の攻撃を考慮するために、エクストラクタに追加の組の調査位置を組み込むことができる。この概念は、もし1組の透かし抽出位置が危険にさらされたときに、それらの位置を永久的に廃止し、新しい1組の「代替」埋め込み位置と置き換えることができるものである。代替の位置は、元の位置と全く異なってもよく、あるいは既存のマルチメディアコンテンツとの後方互換性を維持するように、わずかな数の廃止位置を含んでもよい。外部通信機能を備えたエクストラクタを、新しい組の調査位置で容易に更新することができる。しかしながら、ほとんどのエクストラクタは、接続機能なしに動作する可能性が高い。そのような装置は、最初に、元の組と代替の組の両方の調査位置を有し、すべての埋め込み位置を調べ続ける(代替位置に埋め込みがなくなっても)。別の選択肢は、エクストラクタが、所定の期間後に代替の組の位置に自動的に切り換えることである(例えば、6か月ごとに新しい組の位置に切り換える)。
【0141】
上記の例は、単に本発明の機能と特徴の一部分を示す。例えば、上記の例では、単一の透かし入れアルゴリズムだけを考慮した。本発明のより幅広い意図によれば、様々な埋め込みアルゴリズムを使って様々な透かしパケットをホストコンテンツに同時に埋め込むことができる。そのようなパケットは、時間、周波数または空間が互いに重なっていてもよい。更に、この例は、モノラル音声信号だけを考慮しているが、一般的な埋め込み方法を、多チャンネル音声信号、映像信号および静止画像を含むように拡張することができる。
【0142】
設計ガイドライン:
以下のパラメータと規則は、以下の一般化された設計概念の開発に使用されることがある。k番目のエンベッダが、埋め込みキーセットを使って特定のコンテンツにEk透かしを挿入したと仮定する。また、エクストラクタキー空間内にX0のステゴキーがあり、j番目のエクストラクタが、特定の実行中にそれらの中からXjのキーを均一の確率分布で選択すると仮定する。更に、エンベッダキーとエクストラクタキーが合致したとき、成功した抽出の確率が0≦p≦1であると仮定する。nの成功した抽出の確率は、二項分布により計算することができる。
【0143】
【数7】

【0144】
式6は、埋め込まれた透かしの数Ek(透かしのトランスペアレンシに関連する)と、抽出試みの数Xj(抽出の処理負荷に関係する)と、ステゴキーの数X0(システムのセキュリティと検出のロバスト性に関係する)との間のトレードオフを決定する。例えば、10-6の無抽出確率を決定する設計目的では、抽出の試みの必要数は、次のように式6にn=0を設定することによって計算することができる。
【0145】
【数8】

【0146】
また、予想抽出数を次の式で容易に求めることができる。
【0147】
【数9】

【0148】
式7から得られたXjを式(8)に代入することによって、上記の例では、1コンテンツ当たり約13.8の抽出が期待されることが分かる。
【0149】
更に、攻撃者が可能なすべてのステゴキーを知ると仮定すると(例えば、不満を抱いている従業員の暴露によって)、これにより、攻撃者は、すべての透かしを改竄されたメッセージで上書きする「ブラックボックス」を設計することができる。このケースでは、攻撃者は、元の埋め込みのX0/Ek=(pj/13.8)倍の透かしを挿入することになる。これにより、適切に設計された透かし入れシステムでは、許容できないレベルの知覚アーティファクトが生成されるはずである。この効果を示すために、式6から式8を、音声透かしを利用した映画のコピーコントロールシステムの例に適用することができる。映画が90分続き、k番目のエンベッダが、平均でマルチメディアコンテンツの1秒に1つの透かしを挿入する場合は、Ek=5,400になる。エクストラクタの現行評価と音声透かし入れ方法に基づくと、5MIPSのエクストラクタは、1秒に約20の透かし(即ち、Xj=(20×90x60)=108,000)を調べることができると予想される。巧妙な歪み攻撃がある状態で、約p=0.25の成功確率を達成することができる。式8を使って、エクストラクタキーセットのサイズの計算値を、X0pjk/13.6≒107ステゴキーとして得ることができる。攻撃者がすべての埋め込まれた透かしを上書きした場合、彼/彼女は、単一のエンベッダが実行する歪みのX0/Ek=1,800倍のコンテンツ歪みを生成することになる。これは、透かし:信号比(watermark-to-signal ratio)より32dB低い妨害:信号比(jamming-to-signal ratio)を有することと等価であり、信号品質を許容不可能にすると予想される。
【0150】
マルチメディアコンテンツのコピー管理などの多くの用途では、成功基準は、マルチメディアコンテンツ全体で少なくとも1つの透かしが抽出されることとして指定されてもよい。この発生確率を計算するには、P{成功}=1−確率{抽出失敗}を計算するほうが簡単である。成功確率を高くする(即ち、非抽出の確率を下げる)とXjの値がわずかに向上する。この関係は、後で詳細に説明する。
【0151】
参考として、現時点の独立した透かし抽出プロセスを仮定すると、以下の2つの条件が満たされた場合に、ポアソン分布によって二項確率分布を近似させることができることが分かる。
【0152】
1) Xj≫1
2) (pEk/X0)≪1。その結果 E(n)=μ=pXjEk/X0は有限になる。
【0153】
この透かし入れシステムの場合は、両方の条件を満たす。従って、抽出される透かしの確率分布を次の式で近似させることができる。
【0154】
【数10】

【0155】
ポアソン分布に関する計算は、二項分布の計算よりも単純である。二項分布の平均と分散は、互いに等しく、以上説明したパラメータを使用することによって式(pjk/X0)によって与えられることが分かる。
【0156】
次に、更に他のシステム設計ガイドラインを考案するために前述の確率関数のパラメータを含むいくつかの制限を調べることは有益である。
【0157】
確率pは、ステゴキー分布と無関係に透かしを抽出する可能性を表わす。この確率の値は、他の因子の中でも特に、音声コンテンツ、埋め込まれている透かしの強度、埋め込み方法、およびチャネル障害の大きさに依存する。この確率は、障害が全くないか、ほとんどない埋め込まれたコンテンツで1に近くなければならない。適切な品質を有する埋め込み音声コンテンツでは、p=0.1よりかなり小さい値に遭遇することはないと思われる。
【0158】
比rj=(Xj/X0)は、エクストラクタのセキュリティと関連している。即ち、rjが小さいほどより安全なシステムが作成される。Xjは更に大きい組X0のサブセットなので、この比は、常に1以下である。しかしながら、Xjは、任意のエンベッダステゴキー空間と十分に重なるように、できるだけ大きいことが望ましい。前述のように、Xjのサイズの限定要因は、エクストラクタの処理負担である。典型的な映画コンテンツと今日の平均処理性能では、Xj〜105の値が適切な場合がある。X0の値は、十分なセキュリティを提供できるほど十分に大きくなければならない。例えば、X0=108の場合rj=10-3となる。これにより、1,000の別個のエクストラクタキーセットを分散させることができる。Xj〜X0の極限の場合でも、Xjの大きな値の場合に抽出システムを任意に安全にすることができることに注意されたい。
【0159】
kは、k番目コンテンツに埋め込まれた異なる透かしの数を表わす。Ekは、可能な埋め込みキーセットの総数であるE0のサブセットである。Ek〜E0の極限の場合、各コンテンツには、すべて(または、ほとんどすべて)の可能な透かしの組み合わせが埋め込まれ、比rjに関係なく、透かしは高い確率で抽出されるはずである。前述のように、可能なチャネル歪みとキーセット変換に対応するために、X0≧E0である。
【0160】
式7の解析に戻り、任意の成功確率(即ち、望ましいロバスト性レベル)が望ましいと仮定することができる。これは、次のように表わすことができる。
【0161】
【数11】

【0162】
ここで、sは、便宜上、無抽出の目標確率の指数を表すように選択される。式7と式10を使って、以下の表現を得ることができる。
【0163】
【数12】

【0164】
この式を使って、埋め込まれた透かしの数Ek(システムのトランスペアレンシ要件に直接影響を及ぼす)と、エクストラクタ設計に必要とされる比rj=(Xj/X0)と、成功確率(即ち、1−確率{無抽出})とのトレードオフを調べることができる。図13と図14はこの関係を図で示す。図13において、指数sは、p=0.1と1の2つの極限値と、rj=10-3の場合に、1,000〜40,000のEkに対してプロットされる。無抽出の目標確率が10-6(または、それ以上)(即ち、s=6)の場合、このシステムは、所望の性能を保証するためにEkが約140,000(プロット上に示されていない)でなければならない。図14では、比rjが10-2の場合に、約Ek=14,000の別個の透かしだけが埋め込まれたときにこの目標確率に達する。上記の例は、エンベッダキーサイズを所望のセキュリティとエクストラクタ複雑さとどのようにトレードオフすることができるかを示す。
【0165】
攻撃別のセキュリティ強化
ブラインド攻撃からの保護
前述のいくつかの攻撃に対する本発明の効果は、ある程度の注意が必要である。ブラインド攻撃の場合、透かし入れしたコンテンツに、埋め込まれた透かしを抽出不能にするのに十分な歪みを常に加えることができることは周知の事実である。良い攻撃の目的は、ホスト信号の破壊を最小限にした状態で透かしを使用不能にするように、適切な場所に適正な種類の歪みを加えることである。本発明の透かし入れシステムは、システムに組み込まれたいくつかのセキュリティ機能により、この作業をより困難にする。これらの機能のいくつかには、次のものがある。
a.様々なロバスト性プロファイルを有する複数の透かし入れアルゴリズムを導入することができる。それらのすべてのアルゴリズムを使用不能にするためには、攻撃者は、ホストコンテンツの破壊を大きくする攻撃の組み合わせを使用しなければならない。
b.コンテンツに透かしを埋め込むために、すべての可能な挿入可能性が使用されるわけではない。攻撃者が、透かしの正確な位置を見つけることができない場合、攻撃者はすべての隠し場所を攻撃し、したがって不必要で非効果的な歪みを加えなければならない。
c.透かしを除去する必要最小限の歪みを見つける目的を有するエクストラクタの試みは、以下の理由のために困難である。
i.エクストラクタは、実行ごとにステゴキーを任意に選択し、同じコンテンツのいくつかの検出結果は必ずしも同じ結果を作成しない。
ii.様々なエクストラクタはそれぞれ異なるステゴキーセットを有し、従ってあるエクストラクタの実験結果は、別のエクストラクタでの結果と必ずしも同じではない。
d.攻撃者が、巧妙化された長い手順(例えば、多数回の実行、多数のエクストラクタ)によって特定のコンテンツに成功した攻撃を見つけた場合でも、異なる組の隠し場所が使用されると、他のコンテンツには役に立たない。
e.攻撃者が、巧妙化された長い手順によって多数のコンテンツに対する成功した攻撃を見つけ、攻撃アルゴリズムをそれらのコンテンツに配布した場合でも、コンテンツ所有者は、既存の著作権侵害システムを妨害するために、次のコンテンツリリース用に埋め込みパラメータ(方法選択、透かし強度など)を調整する場合がある。
【0166】
透かし入れシステムのセキュリティとロバスト性は、本発明の追加の機能によって更に強化することができる。これらの機能を本明細書で説明する。前述のように、透かし入れシステムの一態様で追加された利点はどれも、システムの他の望ましい特徴とトレードオフされる場合がある。例えば、追加された透かしロバスト性の利点は、エクストラクタの低い計算複雑さとトレードオフされる。本明細書で開示する概念は、システムのセキュリティとロバスト性の特性を改善する文脈で説明されるが、そのような利点は、用途、顧客要求または回避試みの成功によって決定されるような他の特定のシステム要件を満たすように容易にトレードオフすることができる。
【0167】
報告遅延および/または回避
このセキュリティ機能の主な目的は、透かし検出の報告に一定量の不確実性を導入することである。このために、エクストラクタは、いくつかの検出をランダムに廃棄したり、コンテンツが時間の関数の場合に検出の報告を遅らせたりすることがある。例えば、確率p=0.5の任意の特定の検出を廃棄することができる(即ち、ユーザに報告されない)。これにより、透かし検出数が事実上50%に減少し、この割合は、1コンテンツ当たりの透かし検出数が大きい場合には許容可能である。このように、攻撃者は、エクストラクタの一回の実行で検出が生成されない場合は、自分の透かし除去の試みの成功を確信することができない。実際には、上記の例に関して、消される透かしの目標確率が10-3の場合、攻撃者は、自分の攻撃の結果を正しく評価するためにエクストラクタを少なくとも平均10回実行しなければならない。
【0168】
前述の確率報告技術の代替または追加として、透かし検出が、時間推移に基づいて報告されてもよい。1つの手法は、所定の時間間隔で報告することである。例えば、すべての透かしの検出を別々に報告する代わりに、5分間隔で同時に検出を報告してもよい。替わりに、検出した透かしを、ランダムに割り当てられる遅延で報告してもよい。例えば、検出された透かしを報告する遅延は、0分〜5分の一様の分布でよい。マルチメディアコンテンツが、再生され及び/または記録される前に透かしの存在が選別される特定の用途(例えば、TIVO用途やかなりのバッファがある他の非実時間の用途)では、報告されたどの透かしもマルチメディアコンテンツの過去、現在または将来のセグメントに対応するように透かし報告の時間が進められる(また、遅延される)。
【0169】
重さ累積アルゴリズムによる強化された透かし検出
重さ累積アルゴリズム(Weight Accumulation Algorithm)は、成功裏の透かし抽出を行なうために破壊された複数の透かしの検出を組み合わせるために開発された。このアルゴリズムは、長さNビットの所定のビットパターンを有する透かしを仮定することによって最も理解することができる。更に、1秒当たりk個のビットストリングを結合してテンプレートと比較し、エラー(即ち、組み立てたストリングとテンプレートの不一致)の数がe個以下の場合に透かしが検出されると仮定する。この場合、1秒当たりの不正検出確率は次の通りである。
【0170】
【数13】

【0171】
式(12)は、不正検出確率、透かしパケット長、エクストラクタの試行数(即ち、抽出計算効率)、およびテンプレート照合におけるエラー許容度の間の関係を示す。エラー許容度がゼロに指定された(即ち、不整合が見つからなかった)場合は、最小パケット長を次のように計算することができる。
【0172】
【数14】

【0173】
埋め込まれた透かしを破壊したノイズや他の障害がある状態で透かしパケットを検出できるようにするには、最適な計算効率で所望の誤検出率を維持しながら各透かしパケット内の許容可能なエラー数を増やすことが有利であることが明らかである。式13を使って、これらの特徴と透かしパケット長さの間のトレードオフを調べることができる。例えば、1秒当たりの不正検出の目標確率が10-12で、エクストラクタが1秒当たり20回の抽出試みを実行する場合(エラー許容度ゼロで)、1透かしパケット当たりの最小ビット数は46と求めることができる。パケット長が長くなるほど、エラー許容度、即ち図15に示したようなエクストラクタで許容可能な1パケット当たりのエラー数も大きくなる。替わりに、1パケット当たりのエラー数とパケット長の割合を計算して、図16に示したような、誤りのある可能性のあるビットの割合でエラー許容度を得ることができる。
【0174】
図15と図16から分かるように、パケット長を大きくするることによってエラー許容度を改善することができる。しかしながら、パケット長を大きくすると透かしが大きくなり、それによりコンテンツ内に収めることができる透かしの数が減少する。更に、埋め込むパケットを長くすると、コンテンツに追加のアーティファクトが導入され、エクストラクタ内の処理要件が高くなり、同期攻撃に対する透かしの脆弱性が高まる場合がある。長い透かしパケットを使用する代替の選択肢は、検出された複数の透かしを累積的に解析してより高いエラー回復量を達成することである。本発明で使用されるそのような1つの方法は、後で開示する重さ累積アルゴリズム(WAA)である。
【0175】
WAAの詳細は、e1個のビットエラーで汚染したNビットから成る透かしパケットの検出を検討することにより、よりよく示すことができる。透かしパケット内のエラー数は、検出されたパケットのビットを、エラーのない透かしパケットを表す事前定義されたビットテンプレートと比較することによって決定することができる。替わりに、リードソロモン符号などのエラー訂正コード(ECC)を使って透かしパケットを形成する場合は、透かしパケットのECC復号化により、復号化されたECCパケットのエラーカウントが生成される。そのようなパケットを検出したときは、エラー数(e1)が大きすぎて、成功した透かし抽出を高い信頼度で宣言することができないが、検出された透かしパケットは、更に、透かしの存在に関する重要な情報を伝えることができる。この情報の重要性、即ち重みは、次のように表すことができる。
【0176】
【数15】

【0177】
この式は、1回の試みで最大e1回のエラーのあるNビットから成る透かしの不正検出確率の対数に対応する。検出の重みは、エラー数が減少するほど大きくなることは明らかである。図17は、式14による各検出の重みと100ビット長の透かしパケットのエラー数の関係を示す。図17のプロットは、エラーカウントの少ない検出されたパケットが、エラーカウントの多いパケットよりずっと大きい重みを有することを示す。
【0178】
次に、最初に透かしを検出してからT秒間以内に最大e2回のエラーを含むNビットからなる別の透かしパケットを検出する条件付き確率を計算することができる。T秒間にkT回の抽出試みを行って少なくとも1回成功する確率は、次のように表される。
【0179】
【数16】

【0180】
期間T内にe1回とe2回のエラーのある2つの透かしを検出する結合確率は、第1の事象の確率と式15によって表わされた条件付き確率との積として得られる。この積の対数をとることにより、結合事象の総重みを次のように表すことができる。
【0181】
【数17】

【0182】
この結果を拡張して、エラーカウントe1,e2,...,emでそれぞれ瞬間t1,t2,...,tmに行われる一連の検出を含めると、この一連のイベントの総重みは、次の通りである。
【0183】
【数18】

【0184】
一連の透かしの総累積重みが、しきい値に達するかまたはそれを超えた場合には、透かしが、十分に高い信頼性、即ち十分に低い不正検出確率を有すると結論付けることができる。
【0185】
極めて小さい重みを有する透かしを累積することは、重さ累積にあまり貢献せずにプロセッサに負担をかけるので、望ましくない場合があることに注意されたい。更に、式(15)で使用されている近似は、次の場合だけ有効なので、大きな時間間隔だけ離された透かしを累積することは望ましくない場合がある。
【0186】
【数19】

【0187】
例えば、最大許容エラー数が1パケット当たり26で、検出間の最大時間間隔が5分の場合、k=20でN=100と仮定すると、式18の左辺は0.005になり、これは、式18によって指定された基準を満たす。
【0188】
以上説明したWAAの例において、ビットエラー率が26%もの高さの透かしでも検討の対象となる。従って、いくつかの連続した検出または適切に離された検出による重みの累積によって、個々の透かしパケットが大きい破壊を受けた場合でも、高い信頼度の確実な検出が生成される。WAAアルゴリズムの更なる改善には、重複して埋め込まれた透かしのハートビート即ち周期性を利用して検出の信頼性を改善することがある。コンテンツ全体にわたって同じ透かしパケットを背中合わせに(または、定義済みの間隔で)埋め込むことができるので、累積プロセスに適正な分離距離を有する透かし検出だけを含めることができる。例えば、有効な透かし間の分離距離は、透かしの持続時間の倍数(障害による少しのずれを許容するためにある程度時間を加減する)でなければならないことが予想できる。このように、ランダムに生じる透かしまたははずれた透かしによる不正検出の割合を減少させることができる。
【0189】
以上説明した重さ累積アルゴリズムは、特に、前述のブラインドパターンマッチング攻撃に対して有効である。実際には、カッティングおよびスワッピングアルゴリズムは、どの透かしも個々に認識できないように透かしを破壊する場合がある。しかしながら、重さ累積アルゴリズムが透かしを検出できないようにすべての透かしを十分に破損させることは更に難しい。例えば、スワップされたコンテンツセグメントが、50%のビットエラー生成確率を有し、更にシステムが、26%以内のビットエラー率を許容するように設計されていると仮定すると、個々の透かし検出の可能性を50%以下にするために、コンテンツの52%以上にスワッピングを行わなければならない。コンテンツのそのような大きな割合をスワッピングすると、コンテンツ品質の深刻な低下が生じ、そのようなコンテンツの価値が大幅に低下することが予想される。また、WAAアルゴリズムの以上の説明は、時間領域内で分離された複数の透かしパケットについて説明することによって行ったが、空間領域、空間周波数領域、時間周波数領域またはこれらの組み合わせで分離された透かしパケットにこの方法を実施することが全く可能であることに注意されたい。
【0190】
ブラインドパターンマッチング攻撃の有効性を低下させるために、追加の対抗策を開発することができる。例えば、可変ビットレートの透かしをコンテンツに埋め込むことができる。このように、セグメントのスワッピングは、限られたビットレート範囲内でしか透かしの連続性を妨げない場合がある。例えば、低ビットレートのコンテンツセグメントの場合、スワップされたセグメントは、各ビット間隔よりかなり短くてもよく、従って埋め込まれたビットの値を決定する際に重要な役割を果たさない。一方、高いビットレートのコンテンツセグメントの場合は、スワップされたセグメントは、完全に検出可能な危険にさらされていない透かしパケットを含むことができる。混合されたビットレート値を有するシステムを使用すると、攻撃者は、様々な持続時間の類似のコンテンツセグメントを調べ、試行錯誤して自分の攻撃の成功を評価しなければならない。この作業は、可能でも、極めて時間がかかり、けっして許容可能な品質のコンテンツを作成できない。
【0191】
可変ビットレートによる埋め込みは、パケット間、パケット内またはこの2つの組み合わせのビットレートを使用して達成することができる。これらの方法を説明するには、Nビットで構成された透かしを検討することが役立つ。各透かしパケットは、一般に、ホストコンテンツ全体にわたって独立(かつ重複して)埋め込まれる。固定ビットレートの透かし入れプロトコルでは、Nビットのどの透かしパケットも、ホストコンテンツ内で同じ長さの時間または空間寸法を占める。提案したパケット内ビットレート変更方式により、各パケット内の個々のビットは、コンテンツ全体にわたって一定の透かしパケットレートを維持しながら、異なる時間的または空間的スペースを占めることができる。替わりに、パケット間ビット変更方式では、パケット内のビットレートを一定に維持しながらビットレートをパケットにより変化させることができる(即ち、可変パケットレート)。このように、いくつかのパケットは、全体として、セグメントのスワッピングに耐えて残り、所望の検出結果を生成することができる。これは、パケット内方式と対照的であり、いくつかのビットの存続は、全体としてパケットの検出に十分ではない場合がある。更に、パケット間ビット変更方式では、各透かしパケットは、一定の持続時間(または、範囲)を維持し、これにより、透かし境界の検出が容易になる可能性がある。更に、ビットレート変更パターンは、すべての埋め込まれた透かしに固定されてもよく、疑似ランダム方式で変更されてもよい。以上の概念は、周波数領域または空間領域透かし埋め込み方式にも容易に適用可能である。そのような場合、周波数領域または空間領域に透かしビットを組み込むために使用されるホスト信号のサンプル数は、前記方法のうちの1つまたはすべてに応じて変更されてもよい。
【0192】
時間ダイバーシティ復号化による透かし検出の強化
いくつかの弱い透かし検出の組み合わせを利用するもう1つの方法は、時間ダイバーシティ復号化である。この方法を使用することにより、許容できない数のエラーe1,e2,e3,...,を含む3つ以上の検出透かしパケットを集めビット平均化して単一の透かしパケットが作成される。ビット平均化は、各ビット位置の値0と1つの数を数えて、入力値の大部分に対応する出力ビット値を選択することによって達成される。出力パケットを再びテンプレートと比較し、エラー(不一致)を数える。結果が、エラーの許容可能な範囲内にある場合は、検出の成功が宣言される。この方法の成功は、十分な平均化の後で真のビット値が明らかにされるように、チャネルノイズがゼロ平均の独立ランダム変数であることに基づいて予測される。明白な結果を保証するために、検出されるパケットが奇数でなければその後の平均化を行うことができない(即ち、検出されたパケットが2進シンボル値を含む場合)。しかしながら、偶数のパケットが存在し、所定のビット位置に等しい数の0または1があるときに平均化が実行された場合は、検出されたビット値として0も1もどちらもランダムに選択することができる。
【0193】
前述のWAAと時間ダイバーシティ復号化方法を使用してデジタルホストコンテンツからの透かし抽出のロバスト性を強化する方法および装置は、図8と関連して述べるエクストラクタ装置600に実装することができる。例えば、例示的な実施形態では、デジタルホストコンテンツを含む埋め込みホスト信号560は、例えば、受信装置や受信装置を含む他の装置(エクストラクタ装置600にあるエクストラクタ受信装置610など)に受信される。透かしエクストラクタ610は、ステゴキーに従ってホストコンテンツ(例えば、ステゴキー選択装置)から透かしを抽出する。この実施形態では、透かしエクストラクタ610を次のものに適応させることができる。
(e)第1の透かしを抽出する。
(f)第1の抽出した透かし内のエラー数を評価する。エラー数が第1の所定値より多い場合は、
(g)少なくとも第2の透かしを抽出する。
(h)少なくとも第2の抽出した透かし内のエラー数を評価する。
【0194】
少なくとも第2の抽出した透かし内のエラー数が、第2の所定値より多い場合は、透かしエクストラクタ610は、段階(a)と(c)の抽出結果を組み合わせて、第1の抽出した透かしと少なくとも第2の抽出した透かしの有効性を累積的に評価することができる。第1と第2の透かしのどちらのエラー数も、それぞれ第1と第2の所定値を超えない場合は、抽出結果の組み合わせは行われず、次の抽出と対応するエラー評価が同じように行われてもよいことに注意されたい。更に、第1と第2の所定のしきい値のどちらの値も、コンテンツ検出中変更されないままでもよく、決定論的または蓋然論的(または疑似ランダム)技法に従って動的に変更されてもよい。しきい値のそのような変更は、ロバスト性を変化させたり、システムのセキュリティが強化したりすることがある。
【0195】
組み合わせる段階は、第1と少なくとも第2の抽出した透かしに重みを割り当てる段階を含むことができる。重みの割り当ては、透かしエクストラクタ610あるいはそれと関連した別のプロセッサ(図示せず)によって行うことができる。第1と少なくとも第2の抽出した透かしに割り当てられた重みを加えて、累積重み値を得ることができる。累積重み値を少なくとも第1の事前定義された基準値と比較して、抽出した透かしの有効性を評価することができる。重みの割り当ては、軟判定情報(soft decision information)に従って適応されてもよい。そのような軟判定情報は、確率値を含むことができる。
【0196】
第1と少なくとも第2の抽出した透かしは、所定の間隔だけ離されてもよい。この所定の間隔は、埋め込まれた透かしの持続時間の関数でもよい。この間隔は、埋め込まれた透かしの持続時間の倍数でもよい。
【0197】
透かしエクストラクタ610は、少なくとも第2の抽出した透かし内のエラー数が、第3の所定値を超えない場合だけ段階(a)と(c)の結果を組み合わせてもよい。第3の所定値は、抽出の所望のロバスト性、計算効率または誤検出率のうちの少なくとも1つに従って選択することができる。
【0198】
第1と少なくとも第2の抽出した透かし内のエラー数は、検出した透かしシンボルを事前定義されたテンプレートと比較することにより得ることができる。替わりに、第1と少なくとも第2の抽出した透かし内のエラー数は、誤り訂正コードで符号化された透かしパケットを復号化することによって評価することができる。
【0199】
第1と第2の所定値は、抽出の所望のロバスト性、計算効率または誤検出率の少なくとも1つに従って決定することができる。
【0200】
透かしエクストラクタ610は、少なくとも1つの第3の検出した埋め込み透かしを抽出してその後で組み合わせることができる。少なくとも第3の抽出した透かし内のエラー数を評価することができる。第3の抽出した透かし内のエラー数が、第3の所定値より多い場合は、第1、第2、および少なくとも第3の抽出した透かしのシンボルが、(例えば、透かしエクストラクタ610またはそれと関連した別々のプロセッサで)平均化され、合成透かしパケットが作成されることがある。合成透かしパケット内のエラー数を測定して、埋め込まれた透かしの有効性を評価することができる。平均化は、軟判定情報に従って適応されてもよい。軟判定情報は、第1、第2および少なくとも第3の抽出した透かしの個々のビットと関連付けられた確率値を含んでもよい。
【0201】
軟判定復号化による透かし検出の強化
軟判定復号化により強化された透かし検出を説明する前に、透かしパケットが「ビット」を含むように説明してきたが、本発明で開示するすべての概念は、非2進数データシンボルを有する透かしパケットに等しく適用可能であることに注意されたい。本発明の開示した概念の非2進数領域への拡張は、当業者によって容易に実現されることができる。
【0202】
前の復号化強化方法の説明において、検出されたすべてのビットが、そのようなビットの検出の不確実性を考慮せずに値「0」または「1」を有するように表現した。埋め込みビットを検出する厳密な方法は、透かし入れ方法によって異なる。例えば、米国特許第5,828,325号に示したピーク振幅変調法では、ホスト信号の量子化ピーク値は、2組の事前定義された値(一方の組が埋め込まれたゼロに対応し、他方の組が埋め込まれた1に対応する)と比較され、検出したビットを表わすために、量子化ピークに最も近い事前定義された値が選択される。典型的なスペクトル拡散検出装置などの他の透かし入れ方法では、受信信号とキャリアシーケンスの間の相関値が計算され、相関ピークの符号が事前定義されたしきい値を超える場合は、検出された1または0にマッピングされる。前述の例と他の検出方法では、検出したビット値を指定する他に、検出したビット値の確実さの尺度を提供することもできる。この付加的な情報は、ソフト情報と呼ばれることもあり、正しいビット値を検出した確率を表わす。例えば、検出しきい値が100のスペクトル拡散検出装置では、計算した101と5000の2つの相関値を両方とも、2つの検出を区別することなく同じ2進数値に復号化することができる(これは、硬判定復号(hard decision decoding)として知られる)。即ち、より大きい相関値の重要性が失われる。
【0203】
この情報の軟判定復号化方法では、確率値が検出された各ビットに割り当てられる。前述の例の文脈では、第1のビットは、確率0.55で、例えば0の2進値を有するように検出されることがあり、第2のビットは、確率0.95で、0の2進値を有するように検出されることがある。これにより透かしパケットの復号化がどのように改善されるかを示すために、26のエラーを含む100ビットパケットの例を再び採り上げることができる。軟判定情報がない状態で、26のエラーカウントが作成され、これは、成功検出を検討するには多すぎる。軟判定情報がある状態で、起こり得るエラー数を次のように計算することができる。
【0204】
【数20】

【0205】
ここで、Nは、1透かしパケット当たりのビット数であり、pjは、j番目のビットの軟判定確率値である。f(pj)は、j番目の位置で基準テンプレートと一致する場合にはpjであり、j番目の位置で基準テンプレートと一致とする場合には(1−pj)である。前述の例に戻ると、テンプレート値と一致する74のビット位置があり、テンプレート値と一致する26のビット位置がある。ビットがすべての正確に一致した場合がpj=0.9で、ビットがすべてのエラーを有する場合がpj=0.6であると仮定すると、式19により、23のエラーカウントが生成される。この値は、このパケットの真のエラー数の評価が前の26のカウントよりもよいことを表しており、抽出結果をより高い信頼性で生成することができる。
【0206】
式19は、単に、ビットレベル細分性(bit level granularity)で生成された尤度を使ってソフト情報を採り入れる1つの方法を表わす。尤度をパケットレベル細分性で割り当てるための代替または追加の方法を使用することができる。スペクトル拡散システムでは、例えば、システムの特定の実施詳細に依存する相関値が、検出したビット、ビットグループ、または透かしパケット全体を表わすことがある。一般に、検出プロセスが、計算した何らかの値または機能を1つまたは複数の事前定義された値または関数と比較する段階を伴うときは、尤度を表わすソフト情報を生成し使用して、より高い信頼性を有する検出を生成することができる。そのような方法を利用して、埋め込まれた透かしとして存在する同期ヘッダと較正信号を検出することもできる。そのような信号は、通常、ホストコンテンツに埋め込まれた一定の再発ビットパターンを含む。典型的な検出手順は、抽出したビットのパターンをエラーのない同期パターンと比較し、一致しない数に基づいて同期信号の存在を評価する段階を含む。この手順は、透かしパケット検出の文脈で前に説明した手順と似ており、従って軟判定復号化から利益を得ることができる。
【0207】
前述の重さ累積アルゴリズム方法と時間ダイバーシティ復号化方法は、ソフト情報の介在から利益を得ることができる。これらのケースでは、2つの方法の重さ累積と平均化計算における確率値の合体より、埋め込まれた透かしの真の状態を表す可能性が高い結果が生成される。重さ累積アルゴリズムのケースでは、軟判定確率を使用して、新しいエラーカウント(式19と類似)を生成することができ、このエラーカウントが、次に式16によって計算される新しい累積重み値のもとになる。時間ダイバーシティ復号化のケースでは、各ビットと関連した確率値とビットの値を、いくつかの検出したパケットにわたって平均化して、パケットの各ビットと関連付けられた1組の確率を有する単一のパケットを生成することができる。替わりに、各ビットと関連した確率値を、平均化プロセスの前に調べて、平均化手順から個々のビット(または、パケットを構成するN個すべてのビットの集まり)を除外することができる。このように、高い不確実度(例えば、0.5<p<0.65)で検出されない限界ビットおよび/またはパケットを平均化プロセスから除外することができる。更に、ソフト情報を時間ダイバーシティ復号化に採り入れることにより、奇数と偶数どちらのパケットがある場合でも意思決定を行うことができる。そのようなケースでは相変わらず、あいまいな結果(即ち、pがちょうど0.5のとき)を得る可能性があるが、この結果は、奇数と偶数のどちらのパケットの場合も生じる可能性が極めて小さい。
【0208】
様々な検出に対する確率値の割り当ては、透かし入れ方法とそのパラメータならびに所望のレベルのシステムロバスト性と誤検出率に大きく依存する。図18は、埋め込み透かしビットを検出するために相関係数値の計算に依存する検出方法に使用される1組の確率値を示す。様々なシステム要件を適正に釣り合わせるために、透かし抽出システム内で軟判定尤度と様々なしきい値設定を割り当てるには、しばしば実験による微調整と検証が必要になる。
【0209】
また、前述の方法に従って生成された軟判定情報を使用して、エラー訂正コーディング(ECC)を使用する透かしの抽出を改善することができる。これらのシステムでは、透かしパケットは、一般に、ホストコンテンツに挿入される前にECC符号化される。埋め込まれたビットを検出すると、ECCパケットは、結合され復号化されて、エラー訂正した透かしビットが生成される。ECCコードの改善された復号化に軟判定情報を使用すること(例えば、BCHとリードソロモン符号)は、信号処理分野の業者によく知られている。軟判定復号化は、インターリーブされるか積符号が利用される場合に特に有益である。これらのケースでは、軟判定復号化と共に反復復号化によって、優れたエラー訂正性能が実現される。
【0210】
前述の軟判定復号化方法を使用してデジタルホストコンテンツからの透かし抽出のロバスト性を強化する方法と装置は、図8と関連して述べるエクストラクタ装置600で実現することができる。例えば、例示的実施形態において、デジタルホストコンテンツを含む埋め込みホスト信号560を、例えば受信装置または受信装置を含む他の装置(エクストラクタ装置600のエクストラクタ受信装置610など)で受信する。透かしエクストラクタ610は、ステゴキーに従ってホストコンテンツから(例えば、ステゴキー選択装置から)透かしを抽出する。この実施形態では、透かしエクストラクタ610を次のように適応させることができる。
(a)埋め込まれた透かしの個々のシンボルを少なくとも1つの透かし検出アルゴリズムに従って復号化する。
(b)離散的なシンボル値を復号化されたシンボルに割り当てる。
(c)復号化されたシンボルと関連付けられた尤度を生成する。
(d)抽出した透かしの有効性を離散的なシンボル値と尤度に従って評価する。
【0211】
尤度は、確率値を含むことができる。
【0212】
透かしエクストラクタ610(または、それと関連付けられた別のプロセッサ(図示せず))は、それぞれの離散的なシンボル値に、シンボル値に対応する尤度を掛けて重み付けした透かしシンボルを生成することによって、抽出した透かしの有効性を評価することができる。重み付けした透かしシンボルを事前定義された順序で配列して、重み付けした透かしパケットを形成することができる。重み付けした透かしパケット内のエラー数を所定基準値と比較して、透かしの有効性を評価することができる。
【0213】
尤度は、1組の事前定義されたしきい値に従って得ることができる。更に、尤度は、復号化されたシンボルとしきい値との距離に従って生成することができる。
【0214】
検出アルゴリズムは、スペクトル拡散、自己相関変調、ピーク振幅変調またはレプリカ変調方法の少なくとも1つを含むことができる。検出アルゴリズムは、透かしエクストラクタ610またはそれと関連付けられた別の記憶装置(図示せず)に記憶することができる。
【0215】
ホストコンテンツを受け取った後で、ホストコンテンツに埋め込まれた同期パターンの存在を検出することによって、埋め込まれた透かしの少なくとも1つの境界を評価することができる。同期パターンの検出は、透かしエクストラクタ610で行うことができ、次の段階を含むことがある。
(a)埋め込まれたパターンの個々のビットを少なくとも1つの透かし検出アルゴリズムに従って復号化する。
(b)離散的なビット値を埋め込まれたパターンの復号化ビットに割り当てる。
(c)埋め込まれたパターンの抽出ビットと関連付けられた尤度を生成する。
(d)ビット値および関連した尤度に従って同期パターンの存在を評価する。
【0216】
差分攻撃からの保護と解析
前述の差分攻撃は、単に様々なコンテンツがそれぞれ異なる位置に透かしを隠すので、本発明の透かし埋め込み方式にはあまり有効ではない。従って、1つの元のコンテンツと透かし入れしたコンテンツのペアから伝達関数をコピーし、逆伝達関数を別の透かし入れしたコンテンツに適用すると、透かし自体にほとんど影響を及ぼすことなく間違った位置にアーティファクトが生成される。
【0217】
また、コンテンツに依存するステゴキーセットは、有効な差分解析のための障害であり、即ちある差信号の解析は、別のコンテンツには該当しない場合がある。しかしながら、巧妙な攻撃者は、(多数の異なるコンテンツペアからの)多数の差分解析の試みの結果を組み合わせて、エンベッダステゴキーセットのある程度完全な画像を生成する。従って、本発明の透かし入れシステムでは、新規のマスキング方法を利用して、透かしおよび/または埋め込まれた透かしに対応するステゴキー空間の存在を隠す。
【0218】
差分解析は、ステゴキーを暴露するために、ホストコンテンツの透かし入れしたバージョンと透かし入れしていないバージョンの間の差信号に依存する。従って、本発明の透かし入れシステムの1つの目標は、差信号をできるだけ不明瞭にすることである。これは、透かし信号のマスキングと呼ばれることがある。マスキングは、いくつかの方法で行うことができる。1つの方法は、適切な差信号を回復してもそれが攻撃者に理解できないように透かし信号を処理することである。この方法は、図19のフローチャートで説明される。通常の方法でコンテンツを捕捉し(段階101)、透かしを生成した(段階102)後で、生成した透かしは、マスキング手順にかけられ(段階103)、その後でホストコンテンツに適用される(段階104)。透かしのマスキングは、電子透かしの暗号化、電子透かしのスクランブリング、または透かし信号の線形または非線形処理などを含むことがある。差信号を得た攻撃者は、透かし信号の真の意味を容易に解読し解釈することができない。
【0219】
第2のマスキング方法は、透かしを埋め込む前にホストコンテンツを操作する。この方法を図20のフローチャートに示す。コンテンツの捕捉(段階201)の後で、コンテンツが操作され(段階202)、次に透かしが生成され(段階203)、透かしがホストコンテンツに適用される(段階204)。このケースでは、生成された透かしが、ホストコンテンツの操作されたバージョンに対応しており、ホストコンテンツ自体ではないので、差信号は透かしの真の表現ではない。ここで重要なことは、ホスト信号の知覚品質が維持されるように操作方法を設計することである。別の考察は、操作方法のセキュリティである。即ち、操作の範囲と詳細が、信号の解析と容易に区別されてはならない。後者は、マスキング方法の性質および/またはパラメータを埋め込みによって異ならせることにより達成することができる。限定ではなく例として、そのような操作方法は、コンテンツの位相歪み、線形または非直線歪、または不均一リサンプリングを含むことができる。
【0220】
図21に、第3のマスキング方法を示す。コンテンツを捕捉し(段階301)、透かしを生成し(段階302)、および透かしをホストコンテンツに適用した(段階303)後で、透かしをマスクするためにコンテンツが操作される(段階304)。この方法は、この場合、マスキングが生成された透かしの適用後に実行されること以外、上記の図20で説明した方法と類似している。一般に、透かし自体は、マスキング変換に対して免疫があると想定される。更に、図19から図21で述べたシステムのいずれかを組み合わせて、複数レベルの透かしマスキングを有するシステムを作成することができる。しかしながら、どのマスキング構成でも、2つの基本要件を満たさなければならない。第1に、合成信号の知覚品質が許容限度内になければならず、第2に、透かし信号の詳細は、差信号および/または合成信号の解析と容易に区別されてはならない。
【0221】
本発明の透かし入れシステムは、マスキング方法に加えて、各埋め込みコンテンツごとに異なるステゴキーを組み込むことによって差分解析および/または攻撃を無効にする。従って、攻撃者が、ある埋め込みコンテンツからステゴキーを解読することに成功した場合でも、攻撃者は、回復されたステゴキーを使って他のどのコンテンツにも影響を与えることはない。
【0222】
共謀攻撃からの保護
差分解析による共謀攻撃は、それぞれの埋め込みが別個のマスキングパターンを生成する場合には、前述の同じ理由で本発明に有効でない。更に、前述のマスキング方法は、また、平均化攻撃とカットアンドスプライス共謀攻撃(cut-and-splice collusion attack)に有効である。前述のマスキング方法のいずれかを使用するシステムでは、平均化およびカットアンドスプライス攻撃は、埋め込まれた透かしを弱めることしかできないが、前述のように、複数の透かしの共同抽出により、最終的に、重さ累積アルゴリズム、時間ダイバーシティ復号化および軟判定復号化の文脈で前に述べたような透かし抽出が行われるはずである。
【0223】
オラクル攻撃からの保護
オラクル攻撃は、一般に、複雑で、信号に依存する透かし入れ方法にはあまり有効ではない。この攻撃は、更に、エクストラクタ応答における不確実性によって妨げられ、即ち、実行中に透かしが抽出されなかったことは、コンテンツ内に透かしが検出されなかったことを必ずしも意味しない。埋め込みアルゴリズムの変更、まばらな埋め込み、および複数透かしの共同抽出などの本発明の他の機能も、オラクル攻撃の無効化に役立つはずである。
【0224】
上書き攻撃からの保護
上書き攻撃は、様々なエンベッダがそれぞれ埋め込みセッションによって異なるステゴキーを使用するというだけの理由で、本発明に対して効果がない。従って、エクストラクタは、様々なセッションで埋め込まれた場合でも、すべての透かしを見つけるのに苦労しないはずである。複数の透かし状態の抽出に対する反応は、アプリケーションレイヤの責任であり、コンテンツ所有者によって決定されることがある。例えば、複数の透かし状態が同じコンテンツ内で抽出された場合に、最も限定的な透かしだけに反応するように決定することができる。
【0225】
前述のサービス拒否攻撃を防ぐために、本発明の透かし埋め込み装置は、また、埋め込み前にコンテンツを調べる透かしエクストラクタを含む。既存の透かしがコンテンツ内で検出された場合、この情報は、エンベッダと、多くの場合アプリケーションレイヤに送られる。既存の透かしの値/状態と透かしの現在値/状態により、エンベッダは、埋め込みを続けるか手順全体を中止するかを決定することができる。代替または追加として、埋め込み装置は、ユーザおよび/または(正当な)コンテンツ所有者に、発見した不一致に関する警告を出すことができる。正当なコンテンツ所有者の識別は、導入された埋め込み装置を中央データベースに接続することを必要とすることがある。他の保護手段は、埋め込みセッションを可能にするためのパスワード、アクセスカード、またはバイオメトリック情報の使用を必要とする可能性がある。
【0226】
そのような上書き攻撃によるマルチメディアコンテンツへの不正なアクセスを防ぐ別の方法は、所有権に関連する情報やマルチメディアコンテンツに関する他の追加情報を含む追加の透かしを(独立レイヤとして)埋め込むことである。この付加レイヤは、埋め込みコンテンツに第2のレベルの認証を提供する働きをすることができる。そのようなシステムの典型的な使用シナリオは、次のように説明することができる。コンテンツ所有者は、マルチメディアコンテンツに、あるタイプのコピーコントロール透かしと、所有権情報を伝える透かしの付加レイヤを埋め込む。後者は、遠隔データベースに対するインデックスとして働くことができるシリアル番号の形でよい。コンテンツ所有者は、更に、あるタイプのコピーコントロール状態(即ち、埋め込まれたものと同じコピーコントロール透かし)を有するものとして自分のコンテンツを登録し、これらのすべての情報が安全なデータベースに記憶される。
【0227】
エクストラクタ装置では、3つの操作のうちのどの操作を行うこともできる。第1に、エクストラクタは、コピーコントロール透かしだけを抽出し、そのコピーコントロール状態と関連した1組の規則に従って応答することができる。第2に、エクストラクタは、所有権情報を含む透かしの第2のレイヤだけを抽出し、情報の遠隔データベースにアクセスしてコピーコントロール状態を判定し、そのコピーコントロール状態と関連した1組の規則に従って操作してもよい。第3に、エクストラクタは、両方の透かしレイヤを抽出し、遠隔データベースにアクセスしてコピーコントロール状態情報を確認し、その情報を透かしの抽出によって得られたコピーコントロール状態と照合して検証することができる。不一致がある場合、エクストラクタは、所有者に通知し、最も限定的なコピーコントロール状態を選択し、データベースから得られた情報を信頼することを決定することができる。第2の透かしレイヤの埋め込みには、個々の透かしレイヤとシステム全体のロバスト性、セキュリティ、トランスペアレンシおよび計算の複雑さの再評価が必要であることに注意されたい。更に、透かしに所望の情報を組み込む必要があり遠隔位置へのポインタの役割をする数の追加ビット(例えば、30から40ビット)が必要な場合があるので、新しい透かしのペイロード要件は変化する可能性が高い。
【0228】
前述の方法は、抽出した透かしの有効性を確認する複数の方法を提供し、これらの方法はすべて、2つの異なるタイプの情報を含めることにより可能になる。同様に、この方法を拡張して、保護を高めるために3つ以上の異なる透かしレイヤを含めることができる。この場合、攻撃者は、成功を得るためにはすべての透かしレイヤを上書きしなければならない。そのような試みは、更に、各埋め込み前に識別信用状を提供することをすべてのユーザに要求することによって妨げられる。これらの信用状は、検証または認証され、既存の透かしがある場合は、前の所有者の信用状と照合して検証されることがある。後者の信用状は、既存の透かしのに組み込まれてもよく、透かしから抽出された情報に従って遠隔データベースにアクセスすることによって取得されてもよい。2つの信用状の間に不一致がある場合は、埋め込みを使用不能にしてもよく、両方の所有者に連絡を取って問題を解決してもよい。
【0229】
エンベッダベース解析攻撃からの保護
テスト信号に基づく差分解析は、共通コンテンツに基づく差分解析よりも危険であり、これらの攻撃に対する透かしマスキング方法の信頼性は十分ではない場合がある。しかしながら、これらの攻撃は、後述するテスト信号抽出および埋め込み回避方法を実施することによって防ぐことができる。
【0230】
また、前述のマスキング方法は、エンベッダベースの攻撃に対しても有効である。更に、透かし入れシステムは、埋め込み防止技術を使用して、特定の特性を有する入力信号が抽出されたときに透かし埋め込みを不能にすることができる。図22のフローチャートにこの手順を示す。コンテンツ取得段階(401)の後、コンテンツ解析段階(402)でホストコンテンツを解析する。この解析の結果に基づいて、判定段階(403)で、入力コンテンツが禁止条件を含むかどうかを判定する。禁止条件があった場合は、透かし生成ディスエーブル段階(404)で透かしの埋め込みがディスエーブルされ、そうでない場合は、透かし生成段階(405)で、透かしを生成し適用する通常の手順を実行する。替わりに、そのような禁止条件の存在を検出した場合、エンベッダは、正当な透かし信号の代わりに偽(例えば、ダミー)の信号を生成することができる。この方法は、そのような攻撃がある状態で、判断を誤らせやすくする結果を作成するのに役立つ。
【0231】
透かし生成に影響を及ぼす可能性のある信号の例示的なリストは、インパルス信号、正弦波信号、フラット画像信号、エッジ画像信号、段階関数、特定の時間または周波数持性を有する信号、および他の特別設計の信号である。これらの信号は、コンテンツ認識方法によって実時間で認識することができる。例えば、入力信号またはその属性は、記憶場所内にある記憶信号パターンまたはその属性と比較される。替わりに、入力信号の属性は、その場で計算され、生成された基準パターンの記憶されたものと比較されてもよい。更に詳しく説明すると、音声アプリケーションでは、有限の時間期間にわたって入力信号のピーク対平均値を測定し、その値を1組の基準比率と比較することによってインパルス応答を認識することができる。他の波形は、その波形の固有の特性または計算した特性の1つまたは複数(エネルギーや相関性)を、ルックアップテーブルに記憶された基準関数および/または値と比較することによって認識してもよい。ルックアップテーブルの実施態様の選択により、記憶された波形および/または禁止条件の定期的な更新が可能になる。
【0232】
そのような埋め込み防止技術の実施は、埋め込みの全体的効率を低下させる。即ち、禁止された信号のいくつかが、マルチメディアコンテンツ内に必然的に生じる場合があるので、ホストコンテンツのいくつかの部分が埋め込まれず、従って埋め込まれた透かしのロバスト性が低下することがある。同じ理由で、埋め込みの数が少ないため、埋め込まれた透かしのトランスペアレンシが向上する場合がある。本発明の透かし入れシステムの設計では、埋め込まれた透かしに必要なセキュリティ、ロバスト性およびトランスペアレンシを実現するために、アプリケーションによってあるいは埋め込みによって禁止された信号の数とタイプが調整されてもよい。
【0233】
プロトコル攻撃からの保護
プロトコル攻撃は、透かし自体に影響を及ぼさないが、透かし入れシステムを無効にする可能性がある。前述のように、プロトコル攻撃は、内部攻撃と外部攻撃に分けることができる。内部攻撃は、装置内の情報の流れと関係し、外部攻撃は、装置外の信号処理と関係する。
【0234】
内部攻撃は、情報にアクセスしそれを修正するために、装置内の情報の流れを遮るように設計される。従って、装置内のすべての情報の流れが暗号により安全であると主張することがきわめて重要である。すなわち、情報が「平文」の形で交換されてはならない。エクストラクタやアプリケーションレベルのソフトウェアなどの様々なソフトウェアモジュールは、データの操作を防ぐために暗号認証技術を使用するべきである。それらの方法は、当業者内で十分に確立されており、ここでは開示しない。
【0235】
前に説明したように、外部攻撃は、スクランブル操作とデスクランブル操作を含む場合がある。コンテンツの無許可のスクランブリングを自動的に検出し、コンテンツの記録または再生を中止し、警告信号を生成し、及び/または許可された者に通知することができる。この作業は、コンテンツの特定の特徴または統計的性質を解析して、それらが典型的なコンテンツの真の特徴または統計的基準と一致するかどうかを識別することを必要とする場合がある。例えば、音声信号にスクランブルをかけると、コンテンツの周波数スペクトルが「白色化」する。入力信号のこの状態を検出すると、エクストラクタが警告信号を生成するかまたは限定的なアクションを開始することができる。ある意味で、この方法は、入力信号を解析してそれらが特別の特徴を含むかどうかを判定する前述の埋め込み防止技術と似ている。同じように、エンベッダ装置に基準信号/条件を記憶し解析する実施方法は、エクストラクタ装置にも適用可能である。従って、エクストラクタは、また、特別のテスト信号の存在を調べ、そのようなテスト入力の存在に基づいて抽出プロセスに適応することができる(例えば、抽出防止)。また、信号解析の主な目標は、スクランブリングの可能性を示す信号特徴を認識できることである。
【0236】
替わりに、これらのタイプの攻撃を回避するために、装置の出力で、通常使用には感じ取ることができないがデスクランブル操作を妨げる追加の信号処理段階を実行してもよい。そのような信号処理段階は、悪意のある信号変換がないときに、ごくわずかな信号劣化を生成し、そのような攻撃があるときにホスト信号の知覚品質を大幅に低下させる、ほとんど無損失の信号変換(「ほとんど」がキーワード)と考えることができる。例えば、式1と式2によって表され図1に示された信号変換方法の成功は、デスクランブラが、スクランブラから出る信号と実質的に同じビットストリームを受け取る場合だけ可能である。換言すると、図1に示した「チャネル」の歪みがない状態で、デスクランブル操作は、入力ビットストリームbnと同一の出力ビットストリームb’nを生成する。しかしながら、チャネル歪みがある状態では、出力ビットストリームは、元のビットストリームと大きく異なるように見える場合がある。そのようなチャネル歪みは、抽出プロセスにおけるスクランブラ出力とデスクランブラ入力の間のどこかに、単純なD/Aとその後のA/D変換などの追加の信号変換段階として意図的に導入されてもよい。他の実質的に感知不能な処理段階には、リサンプリング、わずかな非直線歪み、または全通過フィルタリング(音声信号の場合)がある。音声信号の場合、特に有効な方法は、高いカットオフ周波数(例えば、20kHz以上)を有するローパスフィルタリングである。人間の耳の感度が音声周波数が高くなるほど大きく低下し、典型的な音声信号のほとんどのエネルギーが低い周波数に集中しているので、これは、実質的に感知不能な音声信号の修正である。一方、スクランブルがかけられた音声信号は、一般に、平坦なスペクトルを有し、そのようなスクランブルがかけられたコンテンツのローパスフィルタリングは、信号エネルギーのかなり大きい部分を除去し、これは、コンテンツのデスクランブリングの際に、品質が大幅に低下した音声信号を生成する可能性がある。更に、前述の処理段階を断続的(例えば、ランダム)または様々なレベルの可変性で実行することができる。例えば、上の例における音声フィルタのカットオフ周波数は、本来の20kHz±2kHzの範囲で調整することができる。これらの変更は、マルチメディアコンテンツを様々な程度に劣化させる(または場合によっては、全く劣化させない)が、一貫しない結果を生成することによって攻撃者を挫折させるのに役立つ。
【0237】
また、ビットの影響をあまり受けず且つアナログ領域で実行することができるスクランブル技術もある。前述のように、これらの方法のほとんどは、信号変調/復調型の攻撃を基本にしている。それらの攻撃は、デジタルスクランブル攻撃よりも種類の数が限られている。従って、その攻撃のいくつかを予想し、エクストラクタに対応策を準備することができる。1つのタイプの対応策は、透かしの定期的な調査の前に固有のデスクランブラを挿入することである。例えば、サンプルを1つおきに反転させ、(cos(πfst)を掛ける段階と等しい。fsは標本抽出率である)、次に埋め込まれた透かしを調べることができる。従って、入力信号を通常の方法で調べる他に、1つまたは複数のそのようなデスクランブラを利用して、入力信号の修正されたものを調べることができる。替わりに、エクストラクタの計算コストを制限するために、エクストラクタは、入力ストリームを通常の方法で調べ、場合によって1つまたは複数のそのようなデスクランブラを作動させて変換の可能性を確認することができる。
【0238】
そのような攻撃に耐える別の戦略は、典型的なアナログスクランブル技術に対して変化しない透かし入れ方法を導入することである。例えば、いくつかの分散特徴量子化方法は、重なっていない2つの期間の間のエネルギーを比較する。この関係は、一般に、乗数関数(multiplier function)が検討される間隔よりかなり短い期間を有する場合に影響を受けない。他の方法には、エンベッダを使用して変換領域内でのみ検出可能な追加の透かしを挿入することがある。例えば、攻撃者が、音声信号のスペクトル反転に基づくスクランブル/デスクランブル攻撃を開発し配布し、その結果0の周波数成分が24kHzに移され、24kHz周波数成分が0に移された場合、エクストラクタが、周波数帯500〜4000Hzで透かしを探した場合、コンテンツの次のリリース内の埋め込まれる透かしは、周波数範囲20,000〜23,500Hzに挿入される。このように、スクランブラボックスは、音声スペクトルを反転し、透かしを範囲20〜23.5kHzから、エクストラクタがその透かしを見つける範囲0.5〜4kHzにする。既存の攻撃を無効にするためにわずかな数の検出を生成するだけで十分なので、変換された領域内にすべての透かしを隠す必要はない。換言すると、エクストラクタに追加の処理負荷の負担をかけることがなく、その代わりに、著作権侵害者によって導入される実際のスクランブル攻撃を予想する(または、知る)ことによって、特定の変換の下でのみ検出されるように調整された追加の透かしを挿入するように、透かし埋め込みプロセスを修正することができる。
【0239】
また、スクランブラとデスクランブラの間に追加の信号処理操作を導入して、アナログスクランブリング攻撃を防ぐこともできることに注意されたい。例えば、周波数がfh(できるだけ高いアナログ信号周波数)とほぼ等しい音声信号の変調と復調に依存する攻撃は、2つの操作の間にローパスフィルタを挿入することによって無効にすることができる。周波数fhのキャリアを有する音声信号の変調によって実際にスペクトルが反転し、その結果、変調された信号のエネルギーが、音声スペクトルの高い方に集中するが、この反転されたスペクトルがローパスフィルタにかけられると、信号のかなりの部分が除去されることに注意されたい。デスクランブリング(即ち、復調)後に、スペクトルは再び反転されるが、最も重要な低い周波数部分は出力で失われている。
【0240】
証拠追跡
証拠追跡(トランザクションコーディング、フィンガプリンティング、不正利用者追跡(traitor tracing)、コピー追跡などとしても知られる)の主な目的は、マルチメディアコンテンツの各コピーに別個の透かしを埋め込んで、海賊版コンテンツの出所と配布経路を追跡し、かつ著作権侵害チェーンの関与者を識別することである。前に説明したように、証拠追跡情報は、潜在的に高いペイロード能力を有する別の透かしレイヤとして埋め込むことができる。この方法は、識別情報を伝える電子透かしを有するマルチメディアコンテンツの各コピーを埋め込むことを含む。海賊版コンテンツの回復の際、埋め込まれた透かしに含まれる識別情報を抽出することによって、コンテンツの出所が明らかにされる。
【0241】
追加または替わりに、本発明に従って埋め込まれたどの組の透かしも、本質的に証拠情報を伝えることができる。従って、コンテンツの出所の証拠追跡のためだけに追加の透かしレイヤを埋め込まなくてもよい。これは、各エンベッダに固有の組の埋め込みステゴキーを割り当てることにより達成することができる。疑わしいコンテンツを回復させ埋め込まれた透かしを抽出する際に、埋め込み機会のパターンによって犯人装置が識別される。換言すると、各組の埋め込みステゴキーは、1台の埋め込み装置のシリアル番号の役割をすることができる。類似の方法は、マスキングパラメータをシリアル番号として利用することを含む。様々なマスキング方法が、前に図19〜図21に示されている。コンテンツの証拠追跡を可能にするために、特定のマスキングパターン(または、マスキングパラメータ)を各埋め込み装置に割り当てるだけでよい。疑わしいコンテンツを回復させる際、マスキングプロセスのパラメータが、識別され、埋め込み装置に戻されてもよい。疑似ランダム位相発生器によるマスキング方法では、例えば、この「シリアル番号」は、各埋め込み装置に割り当てられた最初のシード値を含むことができる。
【0242】
本発明におけるマルチメディアコンテンツの証拠追跡は、埋め込み装置の識別に限定されていない。実際には、マルチメディアコンテンツの各埋め込みは、固有の埋め込みステゴキーおよび/またはマスキングパラメータによって識別することができる。このケースでは、新しい組の埋め込み/マスキングステゴキーが、新しい埋め込みセッションが始められるたびに発行される。埋め込みコンテンツを追跡するためには、埋め込み/マスキングステゴキーの正確な計算が必要なことは明らかである。これは、例えば、各埋め込みの完了時に安全なデータベースに関連情報を記憶することによって達成することができる。
【0243】
弱い検出
計算複雑さ、検出ロバスト性の改善、および誤検出数の制限のバランスを適切にとるために、通常、埋め込まれた透かしを検出するための1つまたは複数のしきい値が設定される。そのようなしきい値の一例はこれまで、抽出した透かしパケット内の間違ったシンボルの数として表されてきた。別の例は、入力コンテンツの検出した特徴と事前定義されたパターンの間の相関関係を比較するためのしきい値を含む。具体的には、コンテンツサンプルの最下位ビットにデータを隠す透かし入れシステムでは、透かしの抽出は、最下位ビットを既知のパターンと関連付け、その結果をしきい値と比較することにより行うことができる。以上その他の例では、しきい値を緩和するとより多くの検出を生成することができるが、それにより誤検出の可能性も高くなる。
【0244】
システム性能を改善する1つの方法は、2つ(または3つ以上)の異なるしきい値を定義することである。第1組のしきい値は、望みの誤検出要件を満たすいわゆる「強い」透かしを生成する。第2組のしきい値は、所謂「弱い」透かしを生成し、この弱い透かしは、必要な誤検出確率を実現しないが更に別の作用を引き起こす場合がある。この概念は、前述の重み累積アルゴリズムと時間ダイバーシティ復号化の文脈で開示しており、2つ以上の弱い検出を組み合わせて強い透かしを生成できることがある。この場合、1つまたは複数の弱い透かし(および、強くない透かし)の検出は、エクストラクタ構成の適応、エクストラクタ操作の検出間隔の拡張(例えば、時間/空間/周波数領域で)、消去訂正や繰り返し復号化、軟判定復号化などのより強力な誤り訂正技術の実現、または証拠様解析の開始を含む後の操作を引き起こすことがある。
【0245】
エクストラクタ構成の修正:見出し「ステゴキー設計」で前に述べたように、所定のステゴキーセットを操作に通常使用するエクストラクタは、将来使用するために更にいくつかのステゴキーセットを自由に有することができる。更に、抽出ステゴキーは、抽出する試みにより異なってもよく、エクストラクタは、必要に応じてそのステゴキーパラメータを変更し調整することができる。従って、弱い透かしを検出したとき、エクストラクタは、ステゴキーの使い方のフレキシビリティを利用して再び透かしの調査に集中するか、調査位置の範囲を拡張するか、チャネル歪みを見越して埋め込み位置以外の調査を行うことができる。これらのタスクを達成する1つの方法は、特に抽出空間内の弱い透かしを生成した部分の調査全体の細分性を高めることである。例えば、弱い透かしを生成した特定の音声チャネル、周波数範囲または時間倍率を調べる調査に再び集中する。調査の細分性を高めることは、より高速のクロックレートを使用して、ホストコンテンツサンプルを収集または解析し、微細な(粗いと対照的)同期を実行し、あるいは数学演算をより高い細分性と精度で実行することを含んでもよい。別の例には、特定の時間スケーリング空間を、例えば5%の細分性で調べる代わりに、同じ空間を1%の細分性で調べる新しいステゴキーに切り換えることがある。代替または追加として、元の抽出ステゴキーの一部ではない追加の透かし検出アルゴリズムを可能にし、調査を追加のタイムスロット、周波数帯またはピクセル位置を含むように拡張することができる。計算コストを適切な限度内に維持するために、強い透かしが検出された後または所定の時間期間内に透かしが検出されない場合は、上記の操作のすべてまたは一部を中止してもよい。
【0246】
エクストラクタ操作の拡張:エクストラクタ操作の拡張は、連続操作モードと断続操作モードの両方に適用可能である。断続検出モードの詳細は、後で簡単に説明する。しかしながら、断続モードにあるエクストラクタが、ホストコンテンツの特定部分だけを調べ、調べた部分から透かしが検出されない場合に非活動状態になることが分かれば十分である。本発明の実施形態によれば、エクストラクタが、強い透かしを検出できないがホストコンテンツから1つまたは複数の弱い透かしを検出した場合にエクストラクタの活動を拡張することができる。このように、エクストラクタは、ホストコンテンツの追加の領域を調べる機会を有し、これにより強い透かしが検出される可能性がある。そのような拡張の頻度、持続時間または範囲は、所望のシステム頑強さと使用可能な計算資源に従って決定されるシステム設計パラメータである。検出操作の拡張は、ホスト信号のタイプに従って判断されなければならない。例えば、静止画像の場合、検出操作の拡張は、前に検査されなかった静止画像内の追加のピクセル領域の検査を含む。音声信号の場合は、追加の時間間隔、音声チャネルまたはこれらの両方が調べられる場合がある。また、検出操作を、元の検出間隔または領域内で追加の空間または時間周波数範囲を調べるように拡張してもよい。更に、エクストラクタ操作の拡張は、エクストラクタ構成の修正の文脈で説明した技術の任意の技術と組み合わせることができる。
【0247】
より高性能な誤り訂正技術の実現:弱い透かしは、最初の透かしスクリーニング中に休止状態になることがあるより積極的な誤り訂正戦略を開始させる可能性がある。そのような技術の例には、透かしパケットの時間ダイバーシティ復号化(time diversity decoding)、消去訂正(erasure correction)、軟判定復号化(soft decision decoding)、または繰り返し復号化(iterative decoding)がある。時間ダイバーシティ復号化と軟判定復号化については前に説明した。消去訂正復号化と繰り返し復号化は、誤り訂正技術の分野で既知の技術用語であり、その用途は、透かし入れシステムに使用される特定の誤り訂正コードに依存する。
【0248】
証拠解析:弱い透かしの存在により、証拠検出プロセスが始まる可能性もある。証拠検出解析を行うときは、通常、元のホスト信号または埋め込まれた透かしに関する何らかの知識が必要とされる。システムによっては、マークされていない元のホスト信号が、エクストラクタに使用可能で、非ブラインド検出を実行するために使用される場合がある。そのようなケースでは、マークされていない元のコンテンツは、埋め込まれたコンテンツにある可能性のある歪みを取り消すために基準として使用される。制限ではなく例として、このプロセスは、強い透かしの検出を妨げる可能性のある受け取ったコンテンツ時間/空間/大きさスケーリングを取り消すために、受け取った元のコンテンツの目立つ箇所(即ち、顕著な特徴)の位置合わせを含む場合がある。
【0249】
他の方法は、埋め込まれた透かし値の範囲に関する予備的知識を利用する。この情報は、エクストラクタを2つの形で支援することができる。まず、この範囲から外れた検出された透かし値を検討から自動的に除外することができる。次に、エクストラクタが、埋め込まれたすべての値のサブセットを調べるだけでよいので、エクストラクタは、誤検出の可能性を犠牲にすることなくエラー許容範囲のしきい値を緩和することができる。この手法の有効性は、透かしパケット内のデータの構造とエクストラクタの外部情報の可用性に大きく依存する。例えば、透かしパケットが「埋め込み日」フィールドを含む場合、エクストラクタは、将来の埋め込み日を示すすべての検出を安全に廃棄することができる。同様に、透かし構造が「媒体タイプ」フィールドを含む例では、エクストラクタは、音声信号を処理するときに、静止画像や映像画像に対応するすべての透かし候補を除去することができる。
【0250】
弱い透かしに対する前述の反応は、分かりやすくするために別々の分類で説明してきたが、前述の分類間にはある程度重なりがあり、「アプリケーション」レイヤは、説明した操作の全てまたはいくつかを利用するように決定できることに注意されたい。更に、そのような操作はすべて、連続検出モードまたは断続検出モードで動作するエクストラクタに適用可能である。
【0251】
断続的検出
適切な計算資源がない場合は、エクストラクタの断続的(連続と対照的)な操作が必要な場合がある。これは、民生用電子装置、携帯電話、携帯型メディア再生装置などの場合であり、これらの装置は、連続的に動作する透かしエクストラクタの実装によってあまりにも多くの計算資源を消費する。より多くの計算資源を備えた環境でも、余った計算処理能力を他の優先順位の高い用途に割り当てたい場合がある。更に、透かし抽出の前処理段階(および、抽出プロセス自体ではない段階)と関連した処理の負荷は、システム資源に過度の負担をかける場合がある。例えば、マルチメディアコンテンツの音声透かしの存在をスクリーニングする段階は、コンテンツの解読、デインターリーブ、展開(decompression)、再サンプリングなどの段階を追加した後でないと、音声信号をエクストラクタに提供することができない。そのようなシステムでは、そのような複雑な操作を実行すると、コンテンツを単にある装置から別の装置にコピーするか、転送するか、アップロードする場合に、コンテンツの転送またはアップロードが大幅に遅れることになる。更に、透かしを含まない可能性の高い長いマルチメディアコンテンツを連続的に調べることが妥当でない場合がある。
【0252】
これらの理由のために、透かし抽出プロセスを限られた期間だけ活動化することが望ましいことがある。抽出の試みの持続時間と間隔は、計算資源の可用性、特定の透かし埋め込みおよび検出アルゴリズム、マルチメディアコンテンツの価値、マルチメディアコンテンツのタイプ、およびアプリケーションの性質に依存する場合がある。各検出間隔の長さは、埋め込まれた透かしの有無の確実な評価を行うことができるように十分に長くなければならないことは明らかである。典型的なシナリオでは、透かしが検出されないとき、エクストラクタは、別の調査を行なうように促されるまで休止状態になる。各調査の間隔の長さは、使用可能な計算資源とコンテンツの価値によって決定される。ランダムに離された検出間隔は、エクストラクタが実行されるたびに異なる検出結果を作成することにより高いセキュリティを提供するので、ほとんどの用途に有効である。
【0253】
コピー管理透かしに対するシステム反応
コピー管理システムでは、埋め込まれた透かしの検出が、様々なタイプのシステム反応を引き起こす可能性がある。これらの反応の重大さと持続時間は、抽出された透かし値(または状態)、タイプ、間隔または密度を含むがこれらに限定されないいくつかの因子に依存する場合がある。更に、いくつかのシステムでは、単なる透かしの有無によってシステム反応が生じる場合がある。本発明の実施形態によれば、システム反応は、以下の反応のどれかとして分類することができる。
【0254】
1)許可反応(Permissive Reaction):これは、意図されたシステム操作が、検出された透かしと関連した所定の規則に適合するときに生じると予想される。例えば、再生装置での「コピー禁止」透かしの検出は、再生操作にいかなる形でも影響を及ぼさないはずである。より禁止的なアクションが開始される前に特定の透かし状態の検出により猶予期間(grace period)が始まるときに、他の許可反応が生じる場合がある。例えば、禁止的な透かし状態の検出により、近い将来に起こる可能性のある切迫したアクションをユーザに警告する警告信号を出す場合がある。用途によっては、埋め込まれた透かしがない状態でマルチメディアシステムの通常操作を許可しないことが望ましい場合がある。そのようなケースでは、抽出された透かしの存在が、システムの継続的な通常動作に必要な条件になる。従って、抽出された透かしのタイプ、値、密度または間隔を調べて、通常のシステム操作が続くかあるいは限定的な反応の1つまたは複数が行われるかどうかを評価することができる。
【0255】
2)条件付き許可反応:無条件の許可反応と対照的に、特定の透かし状態を検出すると、ユーザが望むコンテンツへのアクセスをユーザに許可するかどうかを判定する中間的な反応を引き起こす場合がある。そのような反応は、ユーザからの応答を必要とする場合がある。例えば、ユーザは、コンテンツへのアクセスが許可される前に、フォームへの記入、広告の閲覧か、パスワードの入力、または料金の支払いを要求される。他の条件付き反応は、実際の第三者からの応答(例えば、認証、検証など)の受け取りを含む第三者の関与、リモートエンティティ(サーバやウェブサイトなど)からの自動応答、またはユーザの敷地内にあるローカルデータベース/ファイルへの照会を含む場合がある。質問の条件が満たされない場合は、この節の残りの部分で述べる反応のいずれかが開始されることがある。
【0256】
3)禁止的反応:これらのタイプの反応は、通常、意図されたシステム操作が、検出された透かしと関連付けられた所定の規則に適合しにないときに生じる。例えば、記録操作中に「コピー禁止」透かしを検出すると、その操作を完全を停止し、必要に応じてそのような禁止的アクションの理由に関する警告を表示することができる。禁止的アクションの他の例には、マルチメディア出力の消音および/または空白化、コンテンツの転送/記録/再生の停止、コンテンツを記憶する媒体の排出があるがこれらに限定されない。
【0257】
4)状態修正反応:状態修正反応は、検出された透かしと関連付けられた規則とコンテンツの使用目的との矛盾により生じる場合がある。そのようなケースでは、マルチメディアコンテンツは、(オプションの警報によって)可逆的に不明瞭化される場合がある。禁止的反応を生成することできないかあるいはマルチメディアコンテンツの無許可使用または著作権侵害を阻止する役割をする高レベルの攪乱を生成したいシステムでは、不明瞭化が好ましい場合がある。そのような不明瞭化技術の例には、コンテンツのスクランブリングと暗号化がある。これらの技術は一般に可逆的なので、料金支払いの際に、マルチメディアコンテンツの継続使用の新しい許可を得るようにユーザに警告することができる。検出された透かしの所定の規則に適合する他の状態修正反応が行われてもよい。例えば、「世代」コピー管理システムでは、透かし状態の存在が、新しい透かし状態を表わすように埋め込み透かしを修正または(上書き)する註釈プロセスを開始する場合がある。この註釈操作は、例えば、新しく修正されたコンテンツの単一コピーの作成をユーザに許可すると同時に「コピー1回許可」透かしを「コピー禁止」透かしで上書きすることを含む。また、透かし入れ以外の手段によってホストコンテンツと関連した信用状を変更することによって状態の修正を行うこともできる。例えば、コンテンツ状態の変更は、コンテンツと関連付けられたメタデータフィールド(例えば、ヘッダ情報)を変更するか、デジタルホストコンテンツの暗号化状態を変更することによって達成することができる。このカテゴリの更に他の方法の例には、独自のアルゴリズムを使用してコンテンツを圧縮する方法や、コンテンツ(または、コンテンツの属性)を、特別なソフトウェアまたはハードウェア装置だけがアクセス可能なように修正する方法がある。一般に、状態の修正は、コンテンツを使用不能にする追加のセキュリティ機能の適用を含む。しかしながら、ユーザは、さらに他のアクションを取ることによってそのような修正を取り消すことができる。
【0258】
5)劣化反応:上記の反応の代わりに、意図された操作を行うことを許可しながらマルチメディアコンテンツの知覚品質を劣化させてもよい。様々な劣化方法のいくつかの例には、コンテンツの再サンプリングまたは解像度低下、知覚可能な(即ち、有損失)圧縮、ダイナミックレンジ縮小、スペクトル整形(例えば、コンテンツの特定のスペクトル範囲の阻止、減衰または補足)、ワウフラッタ(vow and flutter)の追加、位相ひずみ、出力の断続空白化または消音、または劣化されるがまだ認識可能なコンテンツの部分的スクランブリング/暗号化ある(例えば本願譲受人に譲渡された米国特許第6,889,943号を参照)。これらの技術を適用する1つの利点は、検出された透かしの値と周波数やコンテンツの重要性/価値などの因子に基づいて、劣化の程度と持続時間を調整できることである。前述の状態修正技術と同じように、部分的スクランブリングや暗号化などのいくつかの劣化技術は可逆的な場合があり、可逆的圧縮、再サンプリング、ダイナミックレンジ縮小などの他の技術は可逆的ではない場合がある。
【0259】
前述の様々なタイプの反応の持続時間は、用途および検出された透かし状態のタイプにより変化することもある。従って、「家庭使用禁止(no home use) 」透かしを検出すると、記憶媒体の再生と排出が永久的に停止され、「インターネット配布禁止」透かしを検出すると、出力信号が短時間消音/空白化される場合がある。更に他の限定的な透かしを検出した場合は、実施持続時間が拡張される場合がある。実施持続時間(および、その任意の拡張)は、システムを解析攻撃から守るためにランダムに変更されてもよい。
【0260】
以上説明したシステム反応は、再生または記録装置だけのものではなく、コンテンツがある場所から別の場所に記憶される状況で等しく適用可能である。例えば、ピアツービア用途では、クライアントまたはサーバ(あるいは両方)でマルチメディアコンテンツの透かしがスクリーニングされるときに、上記の反応のいずれかが行われることがある。最後に、上記のシステム反応を別々のカテゴリとして紹介したが、カテゴリ間にある程度重なりがあってもよいことを理解されたい。例えば、特定の反応は、禁止的反応と状態修正反応の両方として分類されてもよい。更に、システム応答が上記反応の複数の反応を含んでもよいことを理解されたい。
【0261】
透かし不確実さの解決
前述のシステム反応の1つまたは複数を開始する前に、検出された透かしと関連した不確実さを解決しなければならない。そのような不確実さは、複数の透かし状態の検出、透かしの故意でない捕捉、複数の信用状を有するコンテンツの存在、あるいはコンテンツまたはシステム特性の変化により大きくなる場合がある。
【0262】
複数の透かし状態の検出:誤検出、埋め込み済みコンテンツの故意でない埋め込み、または埋め込み済みコンテンツの意図的な埋め込みなどによるシナリオのいずれかにおいて、単一のコンテンツから複数の透かしが検出される場合がある。適切に設計された透かし入れシステムでは、誤検出が起こる可能性があるがその確率はきわめて低くなければならない。この確率は、更に、同じ透かしが何度も検出されたときだけ実施アクションを引き起こすことによっても低くすることができる。誤検出とは別に、各エンベッダユニット内に直列のエクストラクタを配置して新しい埋め込み前に既存の透かしの存在を検出することによって、意図的と意図的でない再埋め込み試みを先取りすることができる。この手法は、上書き攻撃からの保護の文脈で前に考察した。前に列挙した単純なケース以外に、透かし入れシステムのより大きい課題を生成する他の可能性もある。例えば、エクストラクタを混乱させるため、場合によっては実施ポリシの意図した目標と一致しない反応を生成するために、同じコンテンツの様々なバージョン(即ち、様々な埋め込み透かしを有する)を「混合」することによって意図的な攻撃が実行される場合がある。また、コンテンツ内の複数の透かしを間違って取得する可能性がある。例えば、家庭映像(例えば、ニューヨークの街、結婚式、誕生パーティー)を記録するカムコーダは、周囲環境から様々なタイプの透かし入れされたコンテンツを捕捉する場合がある。再生リストから複数のトラックを選択し、重ねてコンテンツの最終バージョンを合法的に作成するときに、別の例が生じる場合がある。選択されたトラックが、様々なタイプの透かしを含む場合は、合成信号が、実施規則が矛盾する可能性のある複数のタイプの透かしを含むことになる。
【0263】
コンテンツ信号内の複数の透かし状態の存在が確実な場合、エクストラクタは、他の透かしの調査を積極的に続けることが重要である。すなわち、エクストラクタが1つまたは複数の埋め込まれた透かしを既に追跡している(例えば、同期している)場合でも、透かし入れ空間全体が高い細分性で完全に調査される。
【0264】
複数の透かし状態の存在を処理する1つの手法は、検出された透かしと関連した最も限定的な1組の規則を実施することである。例えば、「記録禁止」と「コピー可」の透かし状態がある場合、「記録禁止」状態と関連した規則が実施されることになる。この手法は、例えば、劇場用「家庭使用禁止」透かしが他の透かし状態と共に検出される場合に完全に当てはまる場合がある。これに替えて、特に、特定の期間により限定的な透かしがずっと検出されない場合は、あまり限定的でないアクション(または、他の何らかのアクションと共に)を実施したい場合がある。例えば、音声コンテンツ内の検出された透かしの密度と間隔が、例えば連続した3つの7分間の各音声セグメントに少なくとも10個の透かしが検出されるというしきい値に達した場合だけ、限定的な実施条件が生じることがある。この条件は、14分間の猶予期間を提供し、積極的過ぎる実施ポリシに関する問題を軽減する。更に、特定の実施アクションと持続時間(見出し「コピー管理透かしに対するシステム反応」で述べたように)は、検出された透かし状態、そのような検出の密度と分布、検出装置のタイプ、および保護するコンテンツの価値に従って選択することができる。アクションを開始する前に(同じ状態の)いくつかの検出を蓄積するロジックは、重み累積アルゴリズムと時間ダイバーシティバッファの文脈で前に紹介した。従って、実施アクションの選択と持続時間に関する前の説明は、1つのタイプの透かし状態しかない状況に等しく適用可能であることを理解されたい。そのようなシナリオでは、猶予期間を有することが有益なのには2つの理由がある。第1に、解析するコンテンツが多いほど抽出される透かしの信頼性が改善され、第2に、厳しい実施ポリシが回避される。
【0265】
透かしの故意でない捕捉:このシナリオは、カムコーダや携帯電話などの携帯型記録装置による透かし入れコンテンツの故意でない捕捉として前に説明した(「誕生パーティー」シナリオとも呼ばれる)。そのようなケースでは、捕捉されたコンテンツが、違法な意図的操作によるものか、あるいは透かし入れしたコンテンツの意図的でない一時的な捕捉によるものかに関する不確実さが生じる。当然ながら、この不確実さを解決するために、複数の検出期間内の検出された透かしの密度と間隔を調べる前述の方法が適用可能である。別の手法は、検出した透かしの「品質」を、透かしおよび/または猶予期間の更に他の評価が必要かどうかを設定する際の因子として含めることである。換言すると、コンテンツの音響/映像捕捉は、必然的に、埋め込まれた透かしをある程度劣化させるので、高品質検出(例えば、透かしが、シンボルの誤りや成分の損失をほとんどなしに検出される)の存在は、そのような音響/映像捕捉の可能性を排除する可能性が高い。更に、透かし入れシステムを、抽出した透かしの脆弱性プロファイルを調べることによって信号修正の程度とタイプを識別するように設計することができる。例えば、埋め込まれた透かしは、音響/映像捕捉の結果として完全に破壊されるかまたはわずかに劣化する特定の要素を含むことができる。起こり得る信号修正を評価するためのこれらおよび他の技術は、本譲受人に譲渡された許可済みの米国特許出願番号09/535,154「Method and Apparatus for Detecting Processing Stages Applied to a Signal」に記載されている。
【0266】
複数の信用状を有するコンテンツの存在:デジタル権管理(DRM)方式を含む特定の用途では、デジタルコンテンツは、コンテンツの「信用状」または信用性に基づく様々なレベルの透かしスクリーニング(および、その後の反応的制限)を受ける場合がある。例えば、「アルゴリズムA」で暗号化されたコンテンツは、透かしスクリーニングなしに自由に転送または記録することができるが、解読されたコンテンツは、透かしスクリーニングと場合によっては限定的反応とを受ける場合がある。そのようなシステムでは、様々な信用状が組み合わされて最終版のデジタルコンテンツが形成されたときに不確実さが生じる。例えば、マルチメディアプレーヤは、いくつかの入力トラックを受け入れ、様々な信用状と組み合わせて最終的なコンテンツを作成するように構成可能である。「ミキサ」の出力に配置された透かしエクストラクタは、複数の透かし状態を検出し、不適切(寛大すぎるか限定的すぎる)または一貫性のない実施アクションを実行する場合がある。この状況は、各トラック(または、類似の信用状を有するトラック群)を別々にスクリーニングし、ミキサの入力で適切な実施アクションを実行することによって補正することができる。このように、各トラックまたはトラック群は、その信用状に従ってスクリーニングされ反応する。従って、例えば、「アルゴリズムA」で暗号化された入力トラック群は、透かしスクリーニングなしに通過することができるが、「アルゴリズムB」で暗号化された第2のトラック群は、透かしでスクリーニングされ、抽出された透かしの実施規則に従う限定的反応のどれかを受ける場合がある。計算資源を節約するために、ミキサの出力で複数の透かし状態が検出されときだけ、ミキサの入力でそのようなスクリーニングと実施を開始したい場合がある。
【0267】
コンテンツまたはシステム特性の変更:透かしエクストラクタは、エクストラクタ内部モジュールの再構成の原因となる可能性のあるコンテンツおよびシステム特性の意図的または意図的でない変更に遭遇することがある。コンテンツとその特性の変更の例には、信号サンプリングレート、圧縮方法、コンテンツのソースなどの変更がある。システムレベルの変更は、コンテンツの高速転送や、コンテンツを再生している間に記録ボタンを押すことなどがある。これらの変更は、エクストラクタの追加(または、別の)構成要素を活動化する場合がある。例えば、入力信号サンプリングレートが変更された場合は、エクストラクタ内の新しい再サンプリング要素を活動化しなければならない場合がある。このケースでは、透かし検出は、できるだけ小さい妨害で(例えば、実時間クロックをできるだけ近くに維持する)、中断なしに継続されなければならない。この規則の例外には、ディスクトレーの開閉(コンテンツのソースがディスク上の物理媒体である)や電源オンオフなど、ユーザ経験に対して深刻な破壊的なアクションがある。
【0268】
透かしペイロード拡張
ペイロード能力の程度は、透かし入れシステムの設計の際に決定されることが多く、前に開示したように、通常、検出プロセスの複雑さ、システム全体のセキュリティ、検出のロバスト性/信頼性などの他の因子に対するトレードオフを伴う。よくあるように、ペイロード能力は、システム設計の完了時に最終決定され、それ以上変更することができない。この手法は、必要なペイロードの大きさが既知のシステムに適する。例えば、透かしが、国際規格記録コード(ISRC)を載せるために使用される場合は、ちょうど128ビットのペイロード能力を必要とする。しかしながら、多くの用途では、透かし入れシステムの長期的な使用要件は不確かであり、将来のニーズに新しい透かし状態が必要な場合がある。これらの環境下の典型的な手法は、透かし入れシステムの将来のニーズに対応するようにいくつかの「予約」または「未使用」フィールドを含めることである。また、そのような将来の応用が決して実現しないことも多い。従って、将来のニーズに対するこの適応は、現在のシステムのシステムセキュリティ、頑強さおよび抽出複雑さを犠牲にして行われる。
【0269】
従って、本発明の目的は、このシステムの頑強さ、計算複雑さまたはセキュリティを犠牲にせずに、透かし入れシステムの将来のニーズに対応するように透かし入れシステムを設計することである。これは、多層(multi-tier)透かし入れ技術を使用することによって達成することができる。第1(またはベース)層は、システムリソースの制限の範囲内で最高の頑強さとセキュリティを生成するように設計される。ベース層は、また、現在の透かし入れ用途の必要性に従う一定ペイロードを保持する。例えば、ベース層は、4つの異なる透かし状態を(即ち、2ビットペイロード)を保持する能力を有する。同様に、エクストラクタは、4つの埋め込まれた透かし値/状態のどれでも検出することができる。
【0270】
本発明の例示的な実施形態で前に説明したように、埋め込みプロセスにおいて、複数の埋め込みアルゴリズム、埋め込み周波数範囲、埋め込みタイムスロット、PNシーケンス、またはステゴキーを含む他のパラメータにより、ホストコンテンツ内の様々な埋め込み可能性が識別される(例えば、図3を参照)。ベース透かし層を設計する際に、これらの埋め込み可能性はすべて、同じ透かしペイロード情報を伝えることができる。しかしながら、これは、将来、第1組の埋め込み機会を第1組のペイロード値に割り当て、第2組への埋め込み機会を第2組のペイロード値に割り当て、第3組の埋め込み機会を第3組のペイロード値に割り当てることなどによって、ペイロード能力を高めることができる。このように、単一層透かし入れシステムが多層透かし入れシステムに変換され、各層は、特定の組の埋め込み機会を含み、各層は、最大でも元の単一層(即ち、ベース層)と同じ程度の大きさの1組のペイロード値を含む。各透かし入れ層は単独では元のシステムのペイロード能力を超えることがないが、2つ以上の層が組み合わされたときはペイロード能力の増大が実現される。この概念は、本明細書に開示した例によって更に詳しく示される。
【0271】
最も単純な例では、この技術は、2つの隣り合う時間間隔に埋め込まれたペイロード値を一緒に処理して大きなペイロードセットを形成する時分割多重化の形に変わる。換言すると、第1のペイロード値は、1番目、3番目、5番目、...N番目のタイムスロットに埋め込まれ、第2のペイロード値は、2番目、4番目、6番目,...N+1番目のタイムスロットに埋め込まれる。次に、一緒に取得された1対のタイムスロットが、拡張ペイロードコード空間を表わす。この概念は、図23に示されており、この図で、対のオリジナルコードを一緒に検討することによって、4状態(即ち、2ビット)ペイロード空間が10状態ペイロード空間に拡張される。以上の例は、また、3個、4個、5個、...のコードを一緒に処理することによって更に大きなペイロード空間を実現するように修正することができる。図23の例示的な実施形態において、2ビットコードの現れる順序は問題ではない(例えば、コードワード(00,10)と(10,00)は互いと区別されない)ことに注意されたい。これらのコードワードは、図23に「繰り返しコードワード」として示されている。このことは、ほとんどの透かし入れシステムにおける透かしの検出を容易にするために重要であり、埋め込まれたコードワードの順序を常に把握することは実際的ではない。しかしながら、埋め込み順序が分かっており(かつエクストラクタに伝えることができる)システムでは、これらの対のコードを使用して、ペイロード空間を更に拡張することができる。応用例によっては、特定のオリジナルコードがペイロード拡張機構に関係しないようにすることが有利な場合がある。例えば、図23の例示的な実施形態では、コード「11」をそれ以外のコードと組み合わせることを禁止し、すなわち状態(00,11)、(11,00)、(01,11)、(11,01)および(10,11)の埋め込みが行われるのを禁止するように決定することができる。この排他性により、コード「11」の検出と関連したあいまいさが除去され、即ち、「11」を検出すると、1つ(および1つだけ)の透かし状態の存在がはっきりと信号で伝えられる。更に、複数の埋め込みアルゴリズム、周波数帯域またはステゴキーの他の要素を使ってコード空間を拡張することにより、この概念を一般化することができる。換言すると、埋め込みステゴキーの各要素を追加の次元として使用してペイロード空間を拡張することができる。
【0272】
ペイロード能力の増大と関連した代償がある。まず、新しいコード空間の解釈を可能にするためにエクストラクタを更新しなければならない。この更新は、更新能力のないカテゴリの装置の場合は実行できない場合がある。一方、この修正は、計算資源の大きな設計変更または増大を必要としない。その計算資源は、検出されたペイロードの新しい解釈をエクストラクタに(例えば、ルックアップテーブルの形で)送るのに十分である。この目的のため、元のエクストラクタは、新しいペイロードテーブルのシームレスな統合を可能にする既存の「フック」を備えてもよい。ペイロードの拡張と関連した別の不利益は、検出時間の増大または検出頑強さの低下である。より具体的には、この場合、1組のすべての埋め込み機会が、複数のコードセットの間に(必ずしも等しくなく)分割されるので、所定の透かし状態を確実に検出するのにかかる時間が長くなる場合がある。あるいは、一定の時間間隔からの透かしが、単にその間隔内で数が少ないために、検出される信頼性が低くなる場合がある。後者は、違う視点からも考えることができ、埋め込まれたすべての透かしの半分(またはサブセット)を除去すれば十分なので、攻撃者が抽出した透かしの適切な解釈を妨害する努力が少なくなる場合がある。例えば、図23の時分割多重化の例では、これは、1番目、3番目、5番目,...N番目の時間間隔から埋め込まれた透かしを除去することにより達成することができる。この除去/妨害(jamming)技術は、より複雑なシステムでは実行できない場合があるが、やはり透かしの頑強さを低下させる。
【0273】
この「脆弱性」は、新しい機能をシステムに組み込むために有利に使用することができる。例えば、頑強さが等しくない層を有する多層透かし入れシステムを意図的に設計することができる。これらのシステムでは、すべての層の検出が特定の透かし状態を示す場合があるが、単一層(または、単一層の欠如)の検出が、異なる透かし状態として解釈される場合がある。この特定のタイプの多層システムは、改竄検出分野とコピープロテクト分野の両方に応用することができる。例えば、あまり頑強でない1組の透かしの欠如は、元のコンテンツが改竄されたことを示す場合がある。コピープロテクト環境では、これは、元の多層状態と関連した実施アクションと異なる(恐らくより限定的な)1組の実施アクションを開始する場合がある。各透かし層のロバスト性/脆弱性の程度は、埋め込み機会のこれより小さいか大きな割合をその透かし層に割り当てることによって調整することもできる。埋め込み機会の数の割り当ての他に、特定のタイプの埋め込み機会を特定の透かし層に割り当てることによって脆弱性の特徴をより適切に設計することができる。例えば、音声透かし入れ用途では、1つの透かし層が、高域フィルタによる影響を受けやすい周波数範囲8〜20kHzを占有するように設計され、受け取ったコンテンツ内のこの透かし層の欠如は、高域フィルタ動作の可能性を示す。同様に、特定の埋め込みアルゴリズムは、ホストコンテンツへのあるタイプの攻撃に対して優れた保護を提供するが、他のタイプの攻撃に対してごくわずかな保護しか提供しない場合がある。そのようなケースでは、その特定の検出アルゴリズムが十分な数の透かしを抽出できない場合は、特定のタイプの攻撃または改竄の存在を示すことがある。一般に、各層が全体レベルの頑強さ/脆弱性と特定の程度の頑強さ/脆弱性を有するように調整された2つ以上の透かし層に透かし入れ機会を分割することができる。
【0274】
以上開示した拡張ペイロードシステムが、本来のペイロード構成が埋め込まれたコンテンツと完全な後方互換性を維持することに注意されたい。従って、特に望まない限り、そのようなシステムは、ベース層だけが埋め込まれたコンテンツに本来のレベルの頑強さとセキュリティを提供する。更に、検出時間/頑強さの不利益は、埋め込み強度を高めることによって完全または部分的に補うことができる。しかしながら、このオプションは、透かし埋め込みのトランスペアレンシが最も重要な多くの応用には望ましくない場合がある。
【0275】
マルチチャネル選択および混合攻撃
計算資源が制限されたシステムでは、すべての入力マルチメディアチャネルの透かしの存在を調べることができない場合がある。これは、特に、16以上の音声チャネルが常に存在する音声トラックに当てはまる場合がある。本発明によれば、すべての入力音声チャネルをスクリーニングする際の計算を実現する1つの方法は、使用可能なすべての入力チャネルのサブセットを単一のモノラル音声信号に混合し、その後で埋め込まれた透かしの存在をスクリーニングすることである。式20は、数学的用語でチャネル混合を示し、この場合、「n」個のチャネルが混合されて単一のチャネルCが形成される。
【0276】
C=a1.c1+a2.c2+a3.c3+...+an.cn 式(20)
【0277】
係数a1、a2、a3、...an(0≦an≦1)は、個々のチャネルに掛ける重みであり、これらの係数は、一定値でもよく、あるいは時間、周波数、振幅、エネルギー、または付随するcn個のチャネルに依存するかまたは依存しない他の変量の関数として変化してもよい。例えば5.1音声形式において、これらの係数は、左チャネルと右チャネルで、残りの音声チャネルと対照的に違ったように選択されてもよい。係数は、また、関連チャネルの固有の特徴に基づいて選択されてもよい。例えば、音声チャネルの事前定義された振幅変化、周波数分布、エネルギープロファイルなどの特別な特性の存在を調べた後で適切な係数値を選択することができる。心理的音響または心理的視覚解析と似たこの検査によって、特定チャネルが透かしを伝えるのに本質的に適切かどうかが、対応する重み係数を選択する前に明らかになる(例えば、埋め込まれた透かしが、音声周波数の低い範囲を占有するが、選択されたチャネルがその周波数の小さな範囲だけを含む場合に、小さな重み係数を選択することができる)。更に、そのような解析によって、特定のチャネルがダミー情報またはテスト信号を含み、従って小さい重みを割り当てる(あるいは、検討から全て除外する)べきかどうかが明らかになる。例えば、純粋なホワイトノイズまたは純粋な沈黙で構成されたチャネルは、そのような検討に適している。
【0278】
意図的な攻撃がある状態でエクストラクタの頑強さを更に高めるために、(a)すべての使用可能な入力チャネルのサブセットが選択されてもよく、(b)そのような選択が時間で変化してもよく、(c)そのような選択が確率的に行われてもよい。これらの集合的な段階は、抽出プロセスに追加の不確実さと変動を導入し、従って攻撃者が一貫した有効な攻撃を策定するのを防ぐのに役立つ。 例えば、16チャネル音声ファイル(n=16)では、次に示す数の異なるチャネル組み合わせを選択することができる。
【0279】
【数21】

(または65,535)

【0280】
更に、各選択はt秒間(T1≦t≦T2)続いてもよく、また各チャネルの組み合わせは、確率p(0≦p≦1)で選択されてもよい。選択期間の下限(T1)の特定の値は、埋め込まれた透かしを確実に抽出するのに必要な最小期間の基づいて選択 されるが、他の方法も自由に使用することができる。選択期間の上限(T2)の選択は、所望の頑強さレベルと使用可能な計算資源とのバランスをとることを伴う。更に、tは、システム設計者によってすべてのエクストラクタ用に選択された固定値でもよく、個々のエクストラクタごとの固定値でもよく、あるいは各チャネル選択間隔とすべてのエクストラクタ用にT1とT2の間で任意に変化してもよい。チャネル選択の確率pは、均一な確率分布に従うように選択されてもよく、使用可能なチャネル数、特定のチャネル組み合わせの履歴(即ち、特定チャネルの組み合わせが、以前に意味のある透かし検出を作成したかどうか)、ある組のチャネル組み合わせの選択を他の組のチャネル組み合わせよりも優先する他の因子など、他の因子に基づいて修正されてもよい。また、これらの検討事項は、チャネル重み係数aを選択するときにも適用可能である。
【0281】
本発明を様々な好ましい実施形態の文脈で説明してきたが、本発明の範囲を逸脱するとなく本発明の様々な適応を行なうことができることを理解されたい。例えば、本発明で述べた方法を、アナログ、デジタル、光学または音響領域に容易に適応させることができる。これは、本発明の信号を処理するための光学および音響技術の利用を含むがこれに限定されない。更に、本発明の文脈で述べた「信号」は、電気信号、電磁気信号または音響信号から、表面の機械的成形によって作成される信号まで、本発明の様々な実施形態を実現するために操作することができる任意のエンティティを指す。表面の機械的成形は、例えば、光記憶媒体を覆うプラスチック層や運転免許証を覆うラミネートでよい。更に、本発明の信号は、送信、表示または放送されてもよく、光学磁気ディスク、電子媒体、磁気テープ、光学テープもしくはフィルムなどの記憶媒体に記憶されてもよい。

【特許請求の範囲】
【請求項1】
デジタルホストコンテンツ内で検出された透かしに応じてシステムの動作を適応させる方法であって、
前記デジタルホストコンテンツを受け取る段階と、
前記デジタルホストコンテンツに埋め込まれた透かしを検出する段階と、
検出した透かしを解析する段階と、
前記解析する段階に従ってシステムの動作を適応させる段階であって、
前記システムの通常動作を許可する段階と、
前記システムの動作を条件付きで許可する段階と、
前記システムの通常動作を禁止する段階と、
前記デジタルホストコンテンツの状態を修正する段階と、
前記デジタルホストコンテンツの品質を劣化させる段階とのうちの少なくとも1つの段階と、
を含む方法。
【請求項2】
前記条件付きで許可する段階は、前記システムからの要求に応じてユーザ、データベースまたは第三者からの応答を受け取った場合に、前記システムの動作を許可する段階を含む、請求項1に記載の方法。
【請求項3】
前記禁止する段階は、
前記デジタルホストコンテンツの音声部分を消音する段階と、
前記デジタルホストコンテンツの映像部分を空白化する段階と、
前記デジタルホストコンテンツの再生、記録または転送を停止する段階とのうちの少なくとも1つ含む、請求項1に記載の方法。
【請求項4】
前記状態を修正する段階は、前記デジタルホストコンテンツの透かしを変更する段階を含む、請求項1に記載の方法。
【請求項5】
前記状態を修正する段階は、前記デジタルホストコンテンツと関連付けられた信用状を変更する段階を含む、請求項1に記載の方法。
【請求項6】
前記状態を修正する段階は、前記デジタルホストコンテンツを可逆的に不明瞭化する段階を含む、請求項1に記載の方法。
【請求項7】
前記劣化させる段階は、前記デジタルホストコンテンツのダウンサンプリング、不可逆圧縮、ダイナミックレンジ縮小、部分スクランブリング、スペクトル整形、ワウフラッタの追加、ノイズの追加、位相歪み、断続的空白化、消音のうちの少なくとも1つを含む、請求項1に記載の方法。
【請求項8】
前記劣化させる段階は可逆的である、請求項1に記載の方法。
【請求項9】
前記劣化させる段階は可逆的でない、請求項1に記載の方法。
【請求項10】
デジタルホストコンテンツからの複数の透かし状態の検出に応じてシステムの動作を適応させる方法であって、
前記デジタルホストコンテンツを受け取る段階と、
前記デジタルホストコンテンツに埋め込まれた透かしを検出する段階と、
検出した透かしを解析して、それぞれの前記検出した透かしの、別々の実施規則が関連付けられた透かし状態を決定する段階と、
システムの操作に使用するために前記検出された透かしと関連付けられた前記実施規則のうちの1つを選択する段階とを含む方法。
【請求項11】
前記検出した透かしと関連付けられた最も限定的な実施規則が選択される、請求項10に記載の方法。
【請求項12】
前記検出した透かしと関連付けられた最も限定的でない実施規則が選択される、請求項10による方法。
【請求項13】
透かしは、少なくとも2つの監視間隔から検出され、
2つ以上の監視間隔から少なくとも第1の透かし状態が検出された場合に実施アクションが開始され、前記実施アクションは、第1の透かし状態と関連付けられた前記実施規則に対応する、請求項10に記載の方法。
【請求項14】
前記実施アクションは、
前記システムの通常動作を許可する段階と、
前記システムの動作を条件付きで許可する段階と、
前記システムの通常動作を禁止する段階と、
前記デジタルホストコンテンツの状態を修正する段階と、
前記デジタルホストコンテンツの品質を低下させる段階とのうちの少なくとも1つを含む、請求項13に記載の方法。
【請求項15】
前記第1の透かし状態は、事前定義された値、タイプ、密度または間隔に従って検出される、請求項13に記載の方法。
【請求項16】
前記実施アクションは、各追加の透かし状態の検出に応じて拡張される、請求項13に記載の方法。
【請求項17】
前記実施アクションの持続時間はランダムに選択される、請求項13に記載の方法。
【請求項18】
前記監視間隔の持続時間はランダムに選択される、請求項13に記載の方法。
【請求項19】
マルチチャネルデジタルホストコンテンツからの透かし抽出の計算複雑さを低下させる方法であって、
マルチチャネルデジタルホストコンテンツを受け取る段階と、
前記マルチチャネルデジタルホストコンテンツの受信チャネルのサブセットを選択する段階と、
受信チャネルの選択されたサブセットを組み合わせて合成信号を形成する段階と、
前記合成信号から埋め込み透かしを抽出する段階と、
を含む方法。
【請求項20】
前記選択する段階は確率値に従って行われる、請求項19に記載の方法。
【請求項21】
前記確率値は均一な分布を有する、請求項20に記載の方法。
【請求項22】
前記確率値は不均一な分布有する、請求項20に記載の方法。
【請求項23】
前記確率値は、前記マルチチャネルデジタルホストコンテンツ内のチャネルの数に従って計算される、請求項20に記載の方法。
【請求項24】
受信チャネルの新しいサブセットが、ある時間間隔の後で選択され、
選択した新しいサブセットからのチャネルが組み合わされて新しい合成信号が得られ、
新しい合成信号から透かしが抽出される、請求項19に記載の方法。
【請求項25】
前記時間間隔の持続時間はランダムである、請求項24に記載の方法。
【請求項26】
前記組み合わせる段階は、
前記サブセット内の各選択したチャネルと関連した係数を取得する段階と、
関連した係数に従って前記サブセット内の選択したチャネルを合算する段階とを含む、請求項19に記載の方法。
【請求項27】
前記係数は等しく評価される、請求項26に記載の方法。
【請求項28】
前記係数は、前記サブセット内の選択したチャネルの特徴に従って選択される、請求項26に記載の方法。
【請求項29】
前記係数は、確率値に従って選択される、請求項26に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5a】
image rotate

【図5b】
image rotate

【図6a】
image rotate

【図6b】
image rotate

【図6c】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate


【公開番号】特開2011−244460(P2011−244460A)
【公開日】平成23年12月1日(2011.12.1)
【国際特許分類】
【出願番号】特願2011−114667(P2011−114667)
【出願日】平成23年5月23日(2011.5.23)
【分割の表示】特願2008−509042(P2008−509042)の分割
【原出願日】平成18年4月25日(2006.4.25)
【出願人】(500304822)ベランス・コーポレイション (6)
【Fターム(参考)】