説明

フィルタ素子及びそれを用いた光モジュール、及びその製造方法

【課題】3波長を制御することが出来る光モジュールを製造コストの大幅な増加を伴うことなく、実現する。
【解決手段】シリコン単結晶基板4の主面41、42は、(111)結晶面に対して所定の角度θを持つように形成されている。シリコン単結晶基板4の主面41、42をエッチングすることによって傾斜面7,8が形成される。シリコン単結晶基板の第1の傾斜面7には第1のフィルタ膜9と第2のフィルタ膜10が形成され、第2の傾斜面8には反射膜11が形成されてフィルタ素子18を構成している。実装基板17には発光素子14と第1の受光素子15と第2の受光素子16が形成されている。このような構成によれば、フィルタ素子18と実装基板17を接着した3波長を制御することが出来る光モジュールを安価に製造することが出来る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、通信光モジュールに係り、特にWDM(Wavelength Division Multiplexing, 波長分割多重)方式の光通信システムに好適なフィルタ及びこれを用いた光モジュールに関する。
【背景技術】
【0002】
近年、インターネットの高速化に伴い、各家庭からのアクセス網にも高速の光通信への適合が求められるようになっている。このようなアクセス用の光通信モジュールには、平面導波路型光モジュールや、CAN型モジュールを組み合わせた送受信モジュールが使用されてきた。平面導波路型光モジュールでは、光ファイバと光学結合されるその一端には一本の導波路が設けられ、これが途中で少なくとも2本に分離する。分離された一方の導波路の他端には発光素子が実装される。もう一方の導波路の他端には受光素子が実装される。これらの導波路の途中には必要に応じてバンドパスフィルタが挿入される。このような構造とすることで、発光素子により信号を送り、基地局からの光信号を受光素子で受光する送受信機を作ることができる。
【0003】
CAN型のモジュールを組み合わせる場合には、ファイバを金属などの筺体に固定し、ファイバからの光信号を光路変換素子により受信側に送り、送信部の発光素子からの光信号を、光路変換素子を介してファイバへ送る。受信側には、受光素子が実装されたCANモジュールを配置して、基地局からの光信号を受光する。送信部には、発光素子が実装されたCANモジュールを配置する。いずれも必要に応じて光路の途中にバンドパスフィルタが配置される。以上のようにして、光通信における送受信モジュールを作ることができる。
【0004】
また近年では、プリズムなど一つの光学部品の表面にハンドパスフィルタを形成し、このバンドパスフィルタにより送信する光信号と、基地局からの受信のための光信号を分離するWDMフィルタを用いて、単一のCANモジュール内に送受信の機能を集積したモジュールも開発されている。
【0005】
WDMフィルタ及びこれを用いた光通信モジュールは、たとえば、次の8件の文献に論じられている。まず、「特許文献1」には、平面導波路型光モジュールの一例として、平面導波路の端部に受光素子が実装される構造と、増幅素子の実装構造とが開示されている。「特許文献2」には、平面導波路の途中に配置されたフィルタで、レーザーダイオード(以下、LD)及びフォトダイオード(以下、PD)の入出力信号を分離する構造が開示されている。「特許文献3」には、WDMフィルタを用いて光信号を多重化するモジュール構造が開示されている。
【0006】
「特許文献4」には、LDからの光を送信し、かつ基地局からの光を光路変換素子に通して受光する送受信モジュールが開示され、この送受信モジュールにはCAN実装された受光素子モジュール(CAN-packaged Light Receiving Module)が組み合わされている。「特許文献5」には、LD、PDが光学フィルタとともに単一のCAN実装モジュール(CAN-packaged Module)中に実装され、当該LD及びPDとがモジュール外部の光ファイバに光学フィルタを介して結合された送受信モジュールが開示されている。
【0007】
「特許文献6」には、プリズムの表面にバンドパスフィルタを形成して、WDMフィルタを形成する構造が開示されている。「特許文献7」には、誘電体多層膜のフィルタを組み合わせることで、アイソレーションの高いWDMフィルタを形成する構造が開示されている。「特許文献8」には、バンドパスフィルタが設けられたガラス基板の表面に、傾斜面が形成された一対の単結晶基板(Siウェハ)を接合して作製するフィルタ素子と、複数の光素子が単一のCAN実装モジュール(CAN-packaged Module)中に実装され、当該光素子が該フィルタ素子を介してモジュール外部の光ファイバに結合された送受信光モジュールが開示されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2003−232965号公報
【特許文献2】特開2006−71739号公報
【特許文献3】特開2005−316291号公報
【特許文献4】特開2007−17903号公報
【特許文献5】特開2004−294513号公報
【特許文献6】特開2005−157136号公報
【特許文献7】特開2005−249966号公報
【特許文献8】特開2010−14831号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
近年、アナログ信号、デジタル信号の受信、送信など、光モジュールが光信号の送受信で扱う波長が、従来の二波長から三波長又はそれ以上に増えている。光モジュールは、例えば、これに備えられた発光素子は波長=1.3μmの光信号を送信しながら、他の基地局から送信された波長=1.48μmと波長=1.55μmの2種類の光信号をこれに備えられた受光素子で受けなければならない。
【0010】
従って、一つの光モジュールで、波長が互いに異なる三つ又はそれ以上の光信号の送受信を行わなければならなくなる。背景技術で述べたような平面導波路型光モジュールに斯様な機能を与えるには、バンドパスフィルタをそれぞれの波長に応じて導波路途中に挿入するなどの必要があり、バンドパスフィルタの接着固定部での損失、接着固定作業の煩雑さによるコスト増などの問題が懸念される。またCANモジュールを組み合わせて送受信機を作る場合には、CANモジュールを取り付ける筺体、光路の途中に挿入する光路変換素子、バンドパスフィルタなどの部品点数が多くなり、やはりコスト増が懸念される。
【0011】
このため、プリズム上にバンドパスフィルタを形成して、単一のCANモジュール内にLD、PDを実装して送受信モジュールを形成するのが、コスト増を招かず、好適であるが、「特許文献5」に示す構造では、二つの波長までは対応可能であるが、三つ以上の波長を用いる光モジュールには適用することができない。
【0012】
さらに、CANモジュール内に実装される光素子の数が増大すると、それに応じてバンドパスフィルタを実装する必要が生まれるが、光学部品の実装では角度、位置精度等が重要であり、このような調整をできるだけ少なくすることが求められる。この要求を満たすために、「特許文献8」に示す構造では、以下に示すプロセスを用いている。
【0013】
「特許文献8」に示す構造を図6に示す。まず、光素子14〜16を基板17に実装し、その上に平面状のフィルタ素子(バンドパスフィルタ部品18)を実装する。これにより少なくとも傾きに関しては、調整が必要なくなり、実装工程が大幅に簡略化される。また光モジュールを安価に作製するために、ウェハ状の光素子実装基板の上にウェハ状のフィルタ素子を接合し、これをダイシングすることで多数の光モジュールを一括で作製する、所謂ウェハレベルのプロセスを用いている。このように「特許文献8」に示す構造は、安価な送受信光モジュールを作製するのに好適な構造である。
【0014】
しかしながら、この構造では、フィルタ素子(バンドパスフィルタ部品18)の構造が複雑であるため、フィルタ素子(バンドパスフィルタ部品18)を作製するための工数が多いという欠点がある。このフィルタ素子(バンドパスフィルタ部品18)は、1枚のガラス基板1を2枚の単結晶基板2,3で挟む構造となっている。そのため、フィルタ素子(バンドパスフィルタ部品18)を作製する際には、まず一方の単結晶基板2とガラス基板1とのウェハ接合が必要となる。次に、このようにして作製したフィルタ素子(バンドパスフィルタ部品18)の一部ともう一方の単結晶基板3とのウェハ接合が必要となる。さらに光素子実装基板17とフィルタ素子(バンドパスフィルタ部品18)のウェハ接合も必要となる。従って、送受信光モジュールを作製するために、計3回のウェハ接合が必要となる。これによりフィルタ素子(バンドパスフィルタ部品18)作製のためのコストが増大する。
【0015】
本発明の課題は、3波長以上に対応可能な光モジュールを製作コストの大幅な増大を伴うことなく実現することである。
【課題を解決するための手段】
【0016】
以上のような課題を解決するための本発明における主な手段は次のとおりである。
【0017】
(1)第1の主面に第1の傾斜面が形成され、第2の主面に第2の傾斜面が形成されたシリコン単結晶基板を有するフィルタ素子であって、前記第1の傾斜面には、第1のフィルタ膜と第2のフィルタ膜が並んで形成され、前記第2の傾斜面には反射膜が形成され、前記第1の傾斜面と前記第2の傾斜面は平行であることを特徴とするフィルタ素子。
【0018】
(2)第1の主面に第1の傾斜面が形成され、他方の主面は平面である第1のシリコン単結晶基板と、第2の主面に第2の傾斜面が形成され、他方の主面は平面である第2のシリコン単結晶基板とが、前記第1のシリコン単結晶基板の前記他方の主面と、前記第2のシリコン単結晶基板の前記他方の主面とにおいて接着して構成されており、前記第1の傾斜面には、第1のフィルタ膜と第2のフィルタ膜が並んで形成され、前記第2の傾斜面には反射膜が形成され、前記第1の傾斜面と前記第2の傾斜面は平行であることを特徴とするフィルタ素子。
【0019】
(3)前記シリコン単結晶基板に形成された前記第1の傾斜面および第2の傾斜面は、前記シリコン基板の(111)結晶面であることを特徴とする(1)または(2)のフィルタ素子。
【0020】
(4)フィルタ素子と発光素子と第1の受光素子と第2の受光素子を有する光モジュールであって、前記フィルタ素子は、第1の主面の凹部に第1の傾斜面が形成され、第2の主面の凹部に第2の傾斜面が形成されたシリコン単結晶基板を有し、前記第1の傾斜面には、第1のフィルタ膜と第2のフィルタ膜が並んで形成され、前記第2の傾斜面には反射膜が形成され、前記第1の傾斜面と前記第2の傾斜面は平行であり、前記フィルタ素子の前記第1の傾斜面に対向して、発光素子と第1の受光素子と第2の受光素子が配置された実装基板が配置され、前記発光素子から出射する光は前記第1のフィルタを通過し、前記第1の受光素子に入射する光は、前記第1のフィルタ膜と前記反射膜を反射して前記第2の反射膜を通過したものであり、前記第2の受光素子に入射する光は、前記第1のフィルタ膜と前記反射膜と前記第2のフィルタ膜を反射したものであることを特徴とする光モジュール。
【0021】
(5)フィルタ素子が多数形成されたマザーフィルタ素子基板と、発光素子と第1の受光素子と第2の受光素子を有する光素子ユニットが複数形成されたマザー実装基板とを貼り合わせてマザー光モジュール基板を作成し、その後、マザー光モジュール基板から各光モジュールを分離する製造方法である。
【発明の効果】
【0022】
本発明により、3波長以上に対応可能な光モジュールを大幅なコストの増加を伴うことなく製作することが出来る。また、バンドパスフィルタを形成するフィルタの傾斜面は、結晶の特定の面を利用するので、精度の良い光モジュールを実現することが出来る。また、本発明の他の面によれば、光モジュールをウェハの状態で多数形成することが出来るので、安価な光モジュールを実現することが出来る。
【図面の簡単な説明】
【0023】
【図1】本発明の実施例1の断面図である。
【図2】本発明の実施例1の平面図である。
【図3】本発明の実施例1による光モジュールの断面図である。
【図4】本発明の実施例2による光モジュールの断面図である。
【図5】本発明の実施例3による光モジュールの断面図である。
【図6】従来例による光モジュール構造の断面図である。
【発明を実施するための形態】
【0024】
以下、本発明を実施例を用いて詳細に説明する。
【実施例1】
【0025】
本発明によるフィルタ素子及び光モジュールの第1の実施例について図1および図2を用いて説明する。図1は本発明のフィルタ素子を示す断面図である。図2は本発明のフィルタ素子の平面図であり、図1は図2のA−A断面に相当する。図2に示すように、フィルタ素子の外形は長方形であり、大きさは例えば、長径Xが6mm、短径Yが3mmである。
【0026】
図1において、単結晶基板4(例えばSiウェハ)の対向し合う一対の主面(互いに平行な一対の表面)には、エッチングにより凹部(エッチピット(etch pit)とも記される)5,6が形成されている。ここで、第1の主面41は下側の主面であり、第2の主面42は上側の主面である。ただし、第1の主面の大部分はエッチングによって第1の傾斜面7を有する凹部5が形成され、第2の主面の大部分はエッチングによって第2の傾斜面8を有する凹部6が形成されている。
【0027】
図1に示すような傾斜面7,8を備えた凹部5,6は、これが形成される単結晶基板の主面を特定の結晶面と所定の角度を持たせることで形成される。例えばシリコン単結晶基板では、その(111)結晶面と角度θとして11°を成す面を主面として選ぶことができる。なお、シリコン単結晶では、(111)面が最密構造面となっている。
【0028】
単結晶基板4の下側に形成された第1の傾斜面7と上側に形成された第2の傾斜面8は互いに平行である。さらに、第1の傾斜面7には、波長λ1の光のみを選択的に透過させることのできる光学フィルタ9と波長λ2のみを透過させることのできる光学フィルタ10とが、形成されている。
【0029】
本実施例で論じる「光学フィルタ9,10」は、特定の波長を有し又は特定の波長帯域にある光に対する透過率が、当該特定波長とは異なり又は当該特定波長帯域外の波長の光に対する透過率よりも高くなる部材であり、当該特定波長又は特定波長帯域の光を選択的に透過させる部材とも記される。本実施例のフィルタ素子の後述される動作原理に照らせば、光学フィルタ9,10のいずれも、その特定波長又は特定波長帯域の光に対する反射率が上記透過率より低く抑えられると良く、当該反射率が実質的に無視できることが望ましい。
【0030】
このような光学特性を有する光学フィルタの代表例としては「バンドパスフィルタ」が知られているため、本実施例並びにこれに続く実施例において、光学フィルタ9,10の各々は、「バンドパスフィルタ」と便器的に記される。しかし、本発明によるフィルタ素子や光モジュールを具現化するに際し、光学フィルタ9,10のいずれもバンドパスフィルタに限定される必然性はなく、例えば、これをハイパスフィルタやロウパスフィルタに置き換えてもよい。
【0031】
単結晶基板4の第1の傾斜面7に並列して透過波長帯域(range of transmissive wavelengths )の異なる複数のバンドパスフィルタ(本実施例では2種のバンドパスフィルタ9,10)が形成されている。本実施例では、バンドパスフィルタ9の透過波長λ1が1.3μmに、バンドパスフィルタ10が1.48μmに夫々設定されている。一方、単結晶基板4の第2の傾斜面8には全反射膜11が形成されている。しかしこの全反射膜11は、全反射膜11に入射する光を反射できるものであれば良く、バンドパスフィルタ9を全反射膜11の代わりに用いても良いし、他の反射膜でもよい。
【0032】
図1に示されたフィルタ素子は、その単結晶基板4の第1の傾斜面において、図示されていない発光素子のからの波長λ1(=1.3μm)の光を受け、その単結晶基板1の第2主面でレンズ12を介して光ファイバ(導波路)13と光学的に結合される。本実施例のフィルタ素子を形成する単結晶基板はSiの単結晶であり、1.3〜1.4μmと赤外領域に広く渡る波長帯域の光を透過させる。
【0033】
図示しない発光素子からの波長λ1の光は単結晶基板1の第1の傾斜面7に入射し、傾斜面7で屈折し、バンドパスフィルタ9の端部を透過し、単結晶基板4の第2の傾斜面8からレンズ12を介して光ファイバ13に入射される。
【0034】
図1において、バンドパスフィルタ9は、全反射面11よりも傾斜面の端部側に延在して形成されている必要がある。つまり、図1におけるdがゼロよりも大きいということである。
【0035】
一方、光ファイバ13は、外部からの波長が互いに異なる複数の信号を伝搬し、レンズ12を介してフィルタ素子(単結晶基板4の第2の傾斜面8)に入射させる。本実施例では、波長λ2=1.48μmの光信号と、波長λ3=1.55μmの光信号が光ファイバ13で送信されてくる。
【0036】
これらの光信号は、光ファイバ13からレンズ12を介してSiの単結晶基板4に入射する。フィルタ素子から光ファイバ13へ送信される光信号(λ1)及び光ファイバ13を通してフィルタ素子で受信される光信号(λ2,λ3)は、その波長に関係なく同じ光路を辿る。従って、これらの光信号の光路は互いに一致しているが、送信光(λ1)と受信光(λ2及びλ3)との挙動を見比べ易くするため、夫々の光路は少し横にずらして表示してある。
【0037】
本実施例のフィルタ素子に設けられたバンドパスフィルタ9は、λ1=1.3μmの波長の光のみ透過させ、それ以外の波長の光は反射させる。従って、λ2とλ3の光信号はバンドパスフィルタ9で反射され、続いて全反射膜11とバンドパスフィルタ9の間で多重反射される。このように多重反射された光信号がλ2=1.48μmのみの光を透過させるバンドパスフィルタ10に入射すると、波長λ2の光は、バンドパスフィルタ10を透過する。一方、波長λ3=1.55μmの光は、バンドパスフィルタ10に反射されて、再び全反射膜11とバンドパスフィルタ10との間で多重反射されて、単結晶基板4の第1主面に形成された傾斜面7のバンドパスフィルタ10が形成されていない領域で当該単結晶基板4の第1主面から出射される。
【0038】
図3は、上述したフィルタ素子を備えた光モジュールの断面図である。図3において、Siの単結晶基板4の第1の傾斜面7における波長λ1の光の透過(入射)位置に対向させてLD14が、波長λ2の光の透過(出射)位置に対向させてPD15が、波長λ3の光の透過(出射)位置に対向させてPD16が、夫々配置される。なお、LD14はレーザーダイオードであるが、ここでは、発光素子として機能する。また、PDはフォトダイオードであるが、ここでは受光素子として機能する。
【0039】
斯様に構成される本実施例の光モジュールは、送信信号に合わせたLD14のレーザー発振により波長λ1の光信号を送信し、光ファイバ13から送られてきた波長λ2,λ3の光の強度変化を夫々検出することで、2種類の光信号を受信する。図3において、LD、PDは基板17に薄膜はんだによるダイボンディング、または、フリップチップ接続により接続される。
【0040】
図3において、LDあるいはPDを配置する基板17の材料としては、例えば、AlあるいはAlN等で形成することが出来る。図3において、基板17には凹部が形成され、この凹部にLDおよびPDを配置している。基板17の凹部は、基板17の材料によってエッチングで形成することもできるし、サンドブラストで形成することも出来る。一方、基板17は平板で形成し、基板の周辺にスペーサを形成して、LDおよびPDを配置するスペースを確保することも出来る。
【0041】
図1に示される本実施例のフィルタ素子(バンドパスフィルタ部品)の製造プロセスを以下に説明する。まず、単結晶基板4の加工を行う。単結晶基板4がSi基板であるとき、第1主面が例えば、(111)面に対して所定の角度を持つように、また、第2主面が(111)面に対して所定の角度を持つように単結晶基板4の加工を行う。単結晶基板4の第1主面及び第2主面をKOH(水酸化カリウム)などの溶液でウェットエッチングすることで、第1主面に対して(111)面で形成される傾斜面7を、第2主面に対して(111)面で形成される傾斜面8を形成することが出来る。
【0042】
図1において、第1の傾斜面7の第1の主面に対する所定の角度θは11度であり、第2の傾斜面の第2の主面に対する所定の角度θは11度である。単結晶をこのような構成とした場合、図1に示すSi単結晶基板4の上側の凹部6の一方の側面には(100)面が現れ、この場合、傾斜面8と側壁との角度は54.7度となる。Si単結晶基板4の下側の凹部5の一方の側面には(100)面が現れ、この場合、傾斜面7と側壁との角度φは54.7度となる。
【0043】
ところで、図1に示す第1の主面と第1の傾斜面のなす角度θ、あるいは、第2の主面と第2の傾斜面のなす角θが小さすぎると、第1の傾斜面及び第2の傾斜面において、光は十分に曲がらない。そうすると、単結晶基板4の傾斜面7,8に形成されるバンドパスフィルタは、当該傾斜面の反対側から入射する光の透過させたくない波長成分をも反射しきれなくなり、近赤外領域(波長=0.7〜2.5μm)や可視領域(波長=0.36〜0.83μm、JIS Z8120に拠る)で異なる波長が割り当てられた複数の光信号のフィルタ素子による弁別が難しくなる。
【0044】
したがって、本実施例のフィルタ素子を成す単結晶基板(Si基板)のウェハを、その主面が(111)面と11°の角度を成すように形成している。ただし、θの適正な角度は、単結晶基板の厚さ、LDあるいはPDの配置、多重反射の許容回数等によって決まり、11度に限る必要は無い。
【0045】
単結晶基板(Siウェハ)1のエッチングは、その主面にSiO酸化膜のマスクが形成された状態で当該ウェハをKOH溶液に浸して行われる。SiO酸化膜には、Siウェハの主面の予めエッチングしたい部分(単結晶基板(Si)1の上記凹部5,6)に対応した開口部が形成され、この開口部で露出した主面のみが選択的にKOH溶液でエッチングされる。これによって第1の主面に第1の傾斜面7が、第2の主面に第2の傾斜面8が形成される。なお、エッチングのためのマスクは、SiO酸化膜にかぎらず、エッチャーに対するレジスト効果があれば何でも良い。
【0046】
次に、第1の傾斜面7および第2の傾斜面8にレジスト膜のパターンを、フォトリソグラフィー技術により形成する。第1の傾斜面7および第2の傾斜面8に形成されたレジスト膜の各々には、上述したバンドパスフィルタや全反射膜の形成予定位置に当該傾斜面を露出する「開口」が形成されている。
【0047】
次にレジスト膜が形成された第1の傾斜面7および第2の傾斜面8に、バンドパスフィルタ9,10となる誘電体多層膜又は全反射膜11となる金属膜を、スパッタ、あるいは蒸着などの方法を用いて形成する。これは、リフトオフ法によるパターニングである。もちろん、リフトオフ法以外のフォトリソグラフィ法によってもバンドパスフィルタ、あるいは全反射膜の形成は可能である。
【0048】
バンドパスフィルタ9,10を成す誘電体多層膜は、所望の透過特性(例えば、特定波長帯域に対する高い透過率とこの波長帯域以外の波長の光に対する高い反射率)が得られるように選ばれた組成の異なる複数の誘電体層を順次積層して形成される。誘電体多層膜は、例えばSiOとTaの多層膜などを用いることができる。全反射膜は、反射率の高い金属によるメタライズなどでも作製可能である。
【実施例2】
【0049】
本発明によるフィルタ素子の第2の実施例と、これを備えた光モジュール構造について図4を用いて説明する。図4は、第2の実施例のフィルタ素子を備えた光モジュールの断面構造を模式的に示した図である。第1の実施例ではフィルタ素子(バンドパスフィルタ部品18)を構成する単結晶基板は単結晶基板4の1枚のみであるが、図4に示すように互いに平行な主面の片方に第1の実施例で説明した傾斜面を有する一対の単結晶基板2,3を上記単結晶基板4の代わりとして置き換えることもできる。その場合、一対の単結晶基板2,3の傾斜面が形成されていない主面を向かい合わせ、バンドパスフィルタ9,10と全反射膜11の位置が所望の位置になるよう位置を合わせ、透明な接着剤を用いて接合する。
【0050】
本実施例は、単結晶基板4において、傾斜面を形成するためのエッチングは、基板の片側だけ行えばよいので、実施例1に比較してプロセスの制御が容易だということである。ただし、一対の基板を接合するための接着材はSi基板に近い屈折率を選ぶ必要がある。また、実施例1に比較して、2つの基板を接合するためのプロセスが追加になる。
【実施例3】
【0051】
本発明によるフィルタ素子の第3の実施例と、これを備えた光モジュール及びその製造方法について、図5を用いて説明する。本実施例では、複数のフィルタ素子がシリコンウェハ上に形成され、複数の実装基板がマザー実装基板に形成される。そして、シリコンウェハとマザー実装基板を接着する。そうすると、複数の光モジュールが同時に形成される。その後、各光モジュールに分離される。これをウェハレベルプロセスという。
【0052】
本実施例にて論じるバンドパスフィルタ部品18には、第1の実施例にて説明されたフィルタ素子及びこれらに等価な構造のいずれも適用することが出来る。但し、バンドパスフィルタ部品18に光素子14〜16が搭載された基板17を所定の間隔を介して接合するために、その光素子14〜16が搭載された基板17(例えばSiウェハ)にはエッチング等により凹部が形成されており、基板17の周縁を単結晶基板1(例えば、Siウェハ)の第1主面(外表面)に接合する。
【0053】
この基板17の周縁の厚さは、光素子14〜16が実装される基板17の内面とこれに対向する単結晶基板4の下側傾斜面である第1の傾斜面との間に、当該光素子であるLDやPDを配置することが出来、かつ、光信号の送受信を可能ならしめる空間が必要である。
【0054】
このように調整された、バンドパスフィルタ部品18、基板17を図5(a)に示すように接合面19でウェハ接合することで、マザー光モジュール基板(複数の光モジュールの集合体)とする。図5(a)にてCLと示されているCutter Lineでマザー光モジュール基板をダイシングにより切断することで、図5(b)に示されるごとき個別の光モジュールが得られる。
【0055】
以上で述べたようなプロセスをまとめると以下のようになる。すなわち、(111)面と所定の角度をなす第1の主面と第2の主面を有するシリコン単結晶基板の前記第1の主面と前記第2の主面にレジストを形成し、前記シリコン基板をエッチングすることによって前記第1の主面に(111)面からなる複数の第1の傾斜面を形成するとともに、前記第2の主面に(111)面からなる複数の第2の傾斜面を形成し、複数の前記第1の傾斜面の各々に第1のフィルタと第2のフィルタを形成し、複数の前記第2の傾斜面の各々に反射膜を形成することによって形成された複数のフィルタ素子を有するマザーフィルタ素子基板を形成し、
発光素子と第1の受光素子と第2の受光素子を有する光素子ユニットを複数形成したマザー実装基板を形成し、前記マザー実装基板の前記光学素子ユニットと前記マザーフィルタ素子の前記第1の傾斜面を対向させるように、前記マザー実装基板と前記マザーフィルタ素子を貼り合わせてマザー光モジュール基板を形成し、前記マザー光モジュール基板から光モジュールを分離することを特徴とする光モジュールの製造方法である。
【0056】
このようなマザーフィルタ素子あるいはマザー実装基板を形成して、貼り合わせることによってマザー光モジュール基板を形成し、その後、各光モジュールを分離する方法は、実施例2で説明したような、シリコン単結晶基板を2枚用いてフィルタ素子を形成する場合についても適用することが出来る。
【0057】
以下は、この場合の光モジュールの製造方法である。すなわち、(111)面と所定の角度をなす第1の主面と、第2の主面を有する第1のシリコン単結晶基板の、前記第1の主面にレジストを形成し、前記第1のシリコン基板をエッチングすることによって前記第1の主面に(111)面からなる複数の第1の傾斜面を形成し、前記複数の前記第1の傾斜面の各々に第1のフィルタと第2のフィルタを形成し、(111)面と所定の角度をなす第3の主面と、第4の主面を有する第2のシリコン単結晶基板の、前記第3の主面にレジストを形成し、前記第2のシリコン基板をエッチングすることによって前記第3の主面に(111)面からなる複数の第2の傾斜面を形成し、前記複数の前記第3の傾斜面の各々に反射膜を形成し、前記第1のシリコン単結晶基板の前記第2の面と前記第2のシリコン単結晶基板の前記第4の面を貼り合わせることによって形成された複数のフィルタ素子を有するマザーフィルタ素子基板を形成し、発光素子と第1の受光素子と第2の受光素子を有する光素子ユニットを複数形成したマザー実装基板を形成し、前記マザー実装基板の前記光学素子ユニットと前記マザーフィルタ素子の前記第1の傾斜面を対向させるように、前記マザー実装基板と前記マザーフィルタ素子を貼り合わせてマザー光モジュール基板を形成し、前記マザー光モジュール基板から光モジュールを分離することを特徴とする光モジュールの製造方法である。
【0058】
以上説明したプロセスにおいて、第1のシリコン単結晶基板に形成される第1のフィルタ膜および第2のフィルタ膜、あるいは第2のシリコン単結晶基板に形成される反射膜は、第1のシリコン単結晶基板と第2のシリコン単結晶基板を貼り合わせる前に形成されるとしたが、第1のシリコン単結晶基板と第2のシリコン単結晶基板を貼り合わせた後、形成しても良い。
【0059】
本実施例で述べた光モジュールの製造方法は、ウェハ状態にある基板17上に光素子14〜16を実装し、さらにその上に、バンドパスフィルタ部品18を一括して接合するため、多数の光モジュールを安価に且つ高い歩留まりで製造することが出来る。
【0060】
以上の説明では、1個のLDと2個のPDを用いて3波長の制御を行う光モジュールについて説明した。しかし、同様な原理を用いることによって、より多くの波長の光を制御する光モジュールを実現することが出来る。例えば、図3におけるフィルタ素子の第1の傾斜面にバンドパスフィルタを3個形成し、基板に1個のLDと3個のPDを配置することによって4波長の光を制御することが出来る。
【符号の説明】
【0061】
1…ガラス基板、2,3,4…Si単結晶基板、5,6…凹部、7,8…傾斜面、9…波長λ1のみを透過させるバンドパスフィルタ、10…波長λ2のみを透過させるバンドパスフィルタ、11…全反射膜、12…レンズ、13…光ファイバ、14…LD,15,16…PD,17…基板、18…バンドパスフィルタ部品(フィルタ素子)、19…接合面。

【特許請求の範囲】
【請求項1】
第1の主面に第1の傾斜面が形成され、第2の主面に第2の傾斜面が形成されたシリコン単結晶基板を有するフィルタ素子であって、
前記第1の傾斜面には、第1のフィルタ膜と第2のフィルタ膜が並んで形成され、
前記第2の傾斜面には反射膜が形成され、
前記第1の傾斜面と前記第2の傾斜面は平行であることを特徴とするフィルタ素子。
【請求項2】
第1の主面に第1の傾斜面が形成され、他方の主面は平面である第1のシリコン単結晶基板と、第2の主面に第2の傾斜面が形成され、他方の主面は平面である第2のシリコン単結晶基板とが、前記第1のシリコン単結晶基板の前記他方の主面と、前記第2のシリコン単結晶基板の前記他方の主面とにおいて接着して構成されており、
前記第1の傾斜面には、第1のフィルタ膜と第2のフィルタ膜が並んで形成され、
前記第2の傾斜面には反射膜が形成され、
前記第1の傾斜面と前記第2の傾斜面は平行であることを特徴とするフィルタ素子。
【請求項3】
前記シリコン単結晶基板に形成された前記第1の傾斜面および第2の傾斜面は、前記シリコン基板の(111)結晶面であることを特徴とする請求項1または2に記載のフィルタ素子。
【請求項4】
前記第1の主面は間に存在する前記傾斜面によって隔てられ、前記第2の主面は間に存在する前記傾斜面によって隔てられていることを特徴とする請求項3に記載のフィルタ素子。
【請求項5】
前記反射膜は金属膜であることを特徴とする請求項1または2に記載のフィルタ素子。
【請求項6】
前記第1のフィルタ膜と前記第2のフィルタ膜は、誘電体多層膜であることを特徴とする請求項1もしくは請求項2に記載のフィルタ素子。
【請求項7】
フィルタ素子と発光素子と第1の受光素子と第2の受光素子を有する光モジュールであって、
前記フィルタ素子は、第1の主面の凹部に第1の傾斜面が形成され、第2の主面の凹部に第2の傾斜面が形成されたシリコン単結晶基板を有し、
前記第1の傾斜面には、第1のフィルタ膜と第2のフィルタ膜が並んで形成され、
前記第2の傾斜面には反射膜が形成され、
前記第1の傾斜面と前記第2の傾斜面は平行であり、
前記フィルタ素子の前記第1の傾斜面に対向して、発光素子と第1の受光素子と第2の受光素子が配置された実装基板が配置され、前記発光素子から出射する光は前記第1のフィルタを通過し、前記第1の受光素子に入射する光は、前記第1のフィルタ膜と前記反射膜を反射して前記第2の反射膜を通過したものであり、前記第2の受光素子に入射する光は、前記第1のフィルタ膜と前記反射膜と前記第2のフィルタ膜を反射したものであることを特徴とする光モジュール。
【請求項8】
前記第1のフィルタ膜の端部は、前記反射膜の端部よりもフィルタ素子の端部側に延在していることを特徴とする請求項7に記載の光モジュール。
【請求項9】
前記実装基板には凹部が形成され、前記凹部の底面に前記発光素子、前記第1の受光素子および前記第2の受光素子が配置されていることを特徴とする請求項7に記載の光モジュール。
【請求項10】
前記実装基板は平板であり、前記平板の周辺にスペーサが形成され、前記スペーサを介して前記フィルタ素子と前記実装基板が接続していることを特徴とする請求項7に記載の光モジュール。
【請求項11】
(111)面と所定の角度をなす第1の主面と第2の主面を有するシリコン単結晶基板の前記第1の主面と前記第2の主面にレジストを形成し、
前記シリコン基板をエッチングすることによって前記第1の主面に(111)面からなる複数の第1の傾斜面を形成するとともに、前記第2の主面に(111)面からなる複数の第2の傾斜面を形成し、
複数の前記第1の傾斜面の各々に第1のフィルタと第2のフィルタを形成し、複数の前記第2の傾斜面の各々に反射膜を形成することによって形成された複数のフィルタ素子を有するマザーフィルタ素子基板を形成し、
発光素子と第1の受光素子と第2の受光素子を有する光素子ユニットを複数形成したマザー実装基板を形成し、
前記マザー実装基板の前記光学素子ユニットと前記マザーフィルタ素子の前記第1の傾斜面を対向させるように、前記マザー実装基板と前記マザーフィルタ素子を貼り合わせてマザー光モジュール基板を形成し、
前記マザー光モジュール基板から光モジュールを分離することを特徴とする光モジュールの製造方法。
【請求項12】
(111)面と所定の角度をなす第1の主面と、第2の主面を有する第1のシリコン単結晶基板の、前記第1の主面にレジストを形成し、前記第1のシリコン基板をエッチングすることによって前記第1の主面に(111)面からなる複数の第1の傾斜面を形成し、
前記複数の前記第1の傾斜面の各々に第1のフィルタと第2のフィルタを形成し、
(111)面と所定の角度をなす第3の主面と、第4の主面を有する第2のシリコン単結晶基板の、前記第3の主面にレジストを形成し、前記第2のシリコン基板をエッチングすることによって前記第3の主面に(111)面からなる複数の第2の傾斜面を形成し、
前記複数の前記第3の傾斜面の各々に反射膜を形成し、
前記第1のシリコン単結晶基板の前記第2の面と前記第2のシリコン単結晶基板の前記第4の面を貼り合わせることによって形成された複数のフィルタ素子を有するマザーフィルタ素子基板を形成し、
発光素子と第1の受光素子と第2の受光素子を有する光素子ユニットを複数形成したマザー実装基板を形成し、
前記マザー実装基板の前記光学素子ユニットと前記マザーフィルタ素子の前記第1の傾斜面を対向させるように、前記マザー実装基板と前記マザーフィルタ素子を貼り合わせてマザー光モジュール基板を形成し、
前記マザー光モジュール基板から光モジュールを分離することを特徴とする光モジュールの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−253064(P2011−253064A)
【公開日】平成23年12月15日(2011.12.15)
【国際特許分類】
【出願番号】特願2010−127162(P2010−127162)
【出願日】平成22年6月2日(2010.6.2)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】