説明

マイクロ流体流れ制御のためのシステムおよび方法

マイクロチャネル内で流体流れを制御するためのシステムおよび方法は、すべてがマイクロチャネルと連通する、流体出口ウェルと1つまたは複数の流体入口ウェルとを備える流体回路を含む。負圧の差が出口ウェルに加えられ、入口ウェルからマイクロチャネルへの流体流れは、入口ウェルを大気圧に開放するまたは閉じることによって制御される。入口ウェルからの流体流れを停止するために、負圧の差を入口ウェルに加えて入口ウェルと出口ウェルの圧力を等しくすることができる。異なる入口ウェルを順次大気に開放して閉じることによって、制御された量の異なる試薬を連続的にマイクロチャネルに導入することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロ流体アッセイを実施するためのシステムおよび方法に関する。より詳細には、本発明は、マイクロチャネルを通る流れを制御するためのシステムおよび方法に関する。
【背景技術】
【0002】
核酸の検出は、医学、法科学、産業加工、動植物の育種、および多くの他の分野において中心的な役割を果たす。病状(たとえば、癌)、感染性微生物(たとえば、HIV)、遺伝系統、遺伝子マーカーなどを検出する能力は、疾患の診断および予後診断、マーカー利用選抜、犯罪現場の特徴の正確な特定、産業微生物を繁殖させる能力、および多くの他の技法に関して広く普及している技術である。目的とする核酸の完全性の判定は、感染症または癌の病理学と関係することがある。少量の核酸を検出するための最も強力かつ基本的な技術の1つが、核酸配列の一部または全部を何回も複製し、次いで増幅産物を分析することである。ポリメラーゼ連鎖反応(「PCR」)は、いくつかのさまざまな増幅技法のうちでおそらく最もよく知られている技法であろう。
【0003】
PCRは、短いDNA断片を増幅するための強力な技法である。PCRを用いると、単一の鋳型DNA分子から開始して何百万ものDNAコピーを迅速に産生することができる。PCRは、DNAを変性させて一本鎖にし、変性した鎖にプライマーをアニーリングして、耐熱性DNAポリメラーゼ酵素によりプライマーを伸長させるという3段階の温度サイクルを含む。このサイクルは、検出および分析に十分なコピーが得られるまで繰り返される。原理上は、PCRの各サイクルごとにコピーの数が2倍になり得る。実際には、各サイクルで達成される増加は常に2倍に満たない。そのうえ、PCRサイクルが続くと、必要な反応物の濃度が減少するので、増幅DNA産物の増加は最終的に止まる。PCRに関する一般的な詳細については、SambrookおよびRussell、Molecular Cloning−−A Laboratory Manual(3rd Ed.)、第1〜3巻、Cold Spring Harbor Laboratory、Cold Spring Harbor,N.Y.(2000年)、Current Protocols in Molecular Biology、F.M.Ausubelら編、Current Protocols、a joint venture between Greene Publishing Associates,Inc.and John Wiley & Sons,Inc.、(2005年までの補遺あり)、およびPCR Protocols A Guide to Methods and Applications、M.A.Innisら編、Academic Press Inc.、San Diego、Calif.(1990年)を参照されたい。
【0004】
リアルタイムPCRは、反応を進行させつつ増幅DNA産物の増加を典型的にはPCRサイクルごとに1回測定するという、開発が進む一連の技法である。産物の蓄積を経時的に監視することによって、DNA鋳型分子の初期濃度を推定するだけでなく、反応の効率を判定することができる。リアルタイムPCRに関する一般的な詳細については、Real−Time PCR: An Essential Guide、K.Edwardsら編、Horizon Bioscience、Norwich、U.K.(2004年)を参照されたい。
【0005】
現在、増幅DNAの存在を示すいくつかの異なるリアルタイム検出化学技法(detection chemistries)がある。これらのほとんどは、PCRプロセスの結果として性質が変化する蛍光指示薬によって決まる。これらの検出化学技法の中には、二本鎖DNAに結合すると蛍光収率を増加させるDNA結合色素(SYBR(登録商標) Greenなど)がある。他のリアルタイム検出化学技法は、フェルスター共鳴エネルギー転移(FRET)を利用する。フェルスター共鳴エネルギー転移は、色素の蛍光収率が別の光吸収部分またはクエンチャーに対する近接度に大きく影響される現象である。これらの色素およびクエンチャーは、典型的にはDNA配列特異的なプローブまたはプライマーに取り付けられる。FRETベースの検出化学技法としては、加水分解プローブおよび立体配座プローブがある。加水分解プローブ(TagMan(登録商標)プローブなど)は、オリゴヌクレオチド・プローブに取り付けられたクエンチャー色素分子からレポーター色素分子を切断するためにポリメラーゼ酵素を使用する。立体配座プローブ(分子標識など)は、オリゴヌクレオチドに取り付けられた色素を利用する。標的DNAにハイブリダイズするオリゴヌクレオチドの立体配座が変化すると、この色素の蛍光発光が変化する。
【0006】
その開示が参照により本明細書に組み込まれ、本願の譲受人に譲渡された「Real−Time PCR in Micro−Channels」という名称の同時係属中の米国特許出願第11/505,358号には、マイクロチャネルを流れつつ緩衝液などの非反応性流体の液滴(フローマーカーとして知られている)により互いに分離されている個々の液滴の中でPCRを実施するプロセスが記載されている。
【0007】
1つまたは複数のマイクロチャネルがその内部に形成されているマイクロ流体チップを含むマイクロチャネル内でPCRなどのインラインアッセイ(in−line assay)を実施するためのデバイスが当技術分野で知られている。これらのチップは、チップ上面にある試料シッパチューブ(sipper tube)および開放ポートを利用して、試薬および試料物質(たとえば、DNA)を受け取ってチップ内のマイクロチャネルに送る。チップのプラットフォームは、チップ上面にある開放ポートにおいて典型的にはピペッタによって分注される試薬を受け取るように設計され、試薬は、典型的には各マイクロチャネルの反対端において適用される真空の影響下で開放ポートからマイクロチャネルに流れ込む。DNA試料は、チップの下に延びるシッパチューブを介してマイクロポートプレートのポートからマイクロチャネルに供給され、マイクロチャネルに適用される真空によりシッパチューブを通して試料物質がポートから吸い出される。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】米国特許出願第11/505,358号
【特許文献2】米国特許出願第11/850,229号
【非特許文献】
【0009】
【非特許文献1】SambrookおよびRussell、Molecular Cloning−−A Laboratory Manual(3rd Ed.)、第1〜3巻、Cold Spring Harbor Laboratory、Cold Spring Harbor,N.Y.(2000年)
【非特許文献2】Current Protocols in Molecular Biology、F.M.Ausubelら編、Current Protocols、a joint venture between Greene Publishing Associates,Inc.and John Wiley & Sons,Inc.、(2005年まで補遺あり)
【非特許文献3】PCR Protocols A Guide to Methods and Applications、M.A.Innisら編、Academic Press Inc.、San Diego、Calif.(1990年)
【非特許文献4】Real−Time PCR: An Essential Guide、K.Edwardsら編、Horizon Bioscience、Norwich、U.K.(2004年)
【発明の概要】
【発明が解決しようとする課題】
【0010】
いくつかの応用例では、上面の開放ポートの全部からの流体がマイクロチャネルに流れ込むことが望ましいが、他の応用例では、流体が上面開放ポートの1つ以上全部未満から流れることが望ましい。同様に、典型的にはマイクロチップの下を延びるシッパチューブを介して異なる試薬をマイクロチャネルに導入するために、試薬をマイクロチャネルに導入するのに所望される順序に対応する順序で、シッパチューブを試薬容器から試薬容器に移動させることが必要である。これには、マイクロチップのマイクロ流体チャネル内でインラインアッセイを実施する処理機器がシッパチューブと異なる試薬容器の間の相対的移動を行う手段を含むことが必要である。加えて、マイクロチャネルから側方に突出するシッパチューブは非常に壊れやすく、そのため特別な扱い、包装、および出荷を必要とする。
【課題を解決するための手段】
【0011】
本発明の態様は、流体が回路に導入される入口ポートと、この入口ポートと流体連通する少なくとも1つの流体流れ用マイクロチャネルと、このマイクロチャネルと流体連通する出口ポートとを含むマイクロ流体回路内の流体流れを制御する方法において実施される。この方法は、第1の圧力を出口ポートに加え、大気圧などの、第1の圧力より高い第2の圧力に入口ポートを開放することによって、入口ポートからマイクロチャネルへの流体流れを発生させるステップと、次いで入口ポートを第2の圧力に対して閉じて第1の圧力を入口ポートに加えることによって入口ポートからの流体流れを停止するステップとを含む。
【0012】
本発明のさらなる態様は、マイクロ流体流れを制御するシステムにおいて実施される。このシステムは、流体が回路に導入される少なくとも1つの入口ポートと、この入口ポートと流体連通する少なくとも1つのマイクロ流体流れ用マイクロチャネルと、このマイクロチャネルと流体連通する出口ポートとを含むマイクロ流体回路を備える。システムは、出口ポートと連通する少なくとも1つの圧力源と、この圧力源と連通し、各入口ポートと機能的に関連付けられた弁機構とをさらに含む。この弁機構は、(1)圧力源によって生成される第1の圧力に、または(2)第1の圧力より高い第2の圧力に、入口ポートを選択的に接続するように適合される。
【0013】
本発明のさらなる態様によれば、システムは、流体を入口ポートからマイクロチャネルに流れ込ませるために、圧力源に第1の圧力を出口ポートに加えさせ、弁機構に入口ポートを第2の圧力に開放させるように適合された制御装置を含む。入口ポートが所定の時間の間第2の圧力に開放された後で、制御装置は、入口ポートからマイクロチャネルへの流れを停止させるために、弁機構に入口ポートを第2の圧力に対して閉じさせ、入口ポートを圧力源に開放させる。
【0014】
本発明のさらなる態様は、所定量の異なる反応流体をマイクロチャネルに順次導入する方法において実施される。この方法は、マイクロチャネルと、このマイクロチャネルと流体連通し、異なる反応流体がマイクロチャネルに導入される複数の入口ポートと、およびマイクロチャネルと流体連通する出口ポートとを含むマイクロ流体回路を提供するステップを含む。負圧の差が出口ポートに加えられ、所定の時間の間、他の入口ポートを閉じながら各入口ポートをより高い圧力に順次開放して、所定量の流体をその入口ポートからマイクロチャネルに流れさせ、さらにその所定の時間の後で、その入口ポートをより高い圧力に対して閉じ、時間の間、負圧の差をその入口ポートに開放して入口ポートとマイクロチャネルの入口の圧力を等しくし、次いで弁を入口ポートに対して閉鎖することによりその入口ポートからの流体流れを停止することによって、所定量の反応流体が入口ポートのそれぞれからマイクロチャネルに順次導入される。
【0015】
本発明の上記および他の態様および実施形態について、下記で添付の図面を参照して説明する。
【0016】
添付の図面は、本明細書に組み込まれて明細書の一部を形成し、本発明の種々の実施形態を示す。図面において、類似する参照番号は同一のまたは機能的に類似する要素を示す。
【図面の簡単な説明】
【0017】
【図1】本発明の態様を実施するマイクロ流体チップおよび流れ制御システムの概略図である。
【図2】本発明の態様を実施するマイクロ流体チップおよび流れ制御システムの一代替実施形態の概略図である。
【図3】本発明の態様を実施するマイクロ流体チップおよび流れ制御システムの第2の代替実施形態の概略図である。
【図4】本発明の態様によりマイクロチャネル内で連続的なマルチプレックスアッセイ(multiplex assay)を実施するステップを示す流れ図である。
【図5】マイクロチャネル内でのDNA、ポリメラーゼ、アッセイプライマー、および結果として生じる試料試験ストリーム(sample test stream)の流れの時間履歴プロファイルを示す。
【図6】流れ計測を達成するための、マイクロ流体チップの流体入口ウェルへの負圧および大気圧の間欠的な適用の時間履歴プロファイルを示す。
【発明を実施するための形態】
【0018】
本明細書では、「a」および「an」という単語は「1つまたは複数」を意味する。そのうえ、特に定義しない限り、本明細書において使用されるすべての技術的および科学的用語は、本発明が関連する当業者によって一般に理解される意味と同じ意味を有する。本発明の実施にあたって本明細書に記載される方法および材料と類似または同等の任意の方法および材料を使用できるが、好ましい材料および方法を本明細書で説明する。
【0019】
本発明の態様を実施するマイクロ流体流れ用のシステムが図1に示されている。このシステムはマイクロ流体回路を含み、図示の実施形態では、マイクロ流体回路はマイクロ流体チップ10上にある。マイクロ流体チップ10は、入口ポート12、14、16と、この入口ポート12、14、16と流体連通するマイクロチャネル20と、同様にマイクロチャネル20と流体連通する出口ポート18とを含む。図1に示される実施形態は例示的なものである。マイクロ流体回路は、3つより多いまたは少ない入口ポートを含むことができるし、入口ポートのいくつかまたはすべてと連通する複数のマイクロチャネルを含むことができる。マイクロ流体回路は、複数の出口ポートを含むこともできる。流体は流体入口ポート12、14、および16を通って回路に導入される。流体は、当技術分野で知られている任意の適切な方法で流体入口ポートに供給することができる。または別法として、流体は、その開示が参照により本明細書に組み込まれ、本願の譲受人に譲渡された米国特許出願第11/850,229号「Chip and cartridge design configuration for performing microfluidic assays」に記載されている流体連通する方法で各ポートに結合された流体含有カートリッジを用いて、流体入口ポートに供給することができる。
【0020】
マイクロ流体チップ10は、ガラス、シリカ、石英、またはプラスチック、または他の任意の適切な材料から形成することができる。
【0021】
流体は流体出口18を通ってマイクロチャネル20から回収され、たとえば本願の譲受人に譲渡された米国特許出願第11/850,229号に記載されているチップなどの任意の適切な廃棄物リザーバに堆積させることができる。
【0022】
回路を通る流体の動きは、出口ポート18に加えられる負圧と入口ポート12、14、16の1つまたは複数に加えられる負圧の差を用いて生成および制御される。出口ポート18と入口ポート12、14、16の1つまたは複数の間に負圧差を加えることによって、流体が入口ポート(複数可)からマイクロチャネル20を通って出口ポート18に流れる。圧力差は、負圧源22などの1つまたは複数の圧力源によって生成することができる。圧力源は、一実施形態では真空ポンプを備えることができる。図示の実施形態では、出口ポート18と入口ポート12、14、16の間の圧力差は、入口ポート12、14、16のそれぞれおよび出口ポート18における圧力を制御する圧力制御弁を用いて制御される。
【0023】
より具体的には、圧力制御弁30は圧力源22および出口ポート18と連通して配置されている。同様に、圧力制御弁24は入口ポート12と連通して配置され、圧力制御弁26は入口ポート14と連通して配置され、圧力制御弁28は入口ポート16と連通して配置されている。3つより多い入口ポートを有する構成では、好ましくは各入口ポートと関連付けられた圧力制御弁を有する。図1の図示の実施形態では、弁24、26、28は、関連付けられた各入口ポート12、14、16をそれぞれ、丸で囲まれた文字「A」で示される大気圧か、または代替圧力源のいずれかに選択的に接続できる三方弁である。代替圧力源は負圧源22であってもよい。すなわち、図示の実施形態では、弁24は、圧力ライン32を介して圧力源22と連通し、圧力ライン34を介して入口ポート12と連通する。弁26は、圧力ライン36を介して圧力源22と連通し、圧力ライン38を介して入口ポート14と連通する。弁28は、圧力ライン40を介して圧力源22と連通し、圧力ライン42を介して入口ポート16と連通する。弁30は、圧力ライン44を介して圧力源22に接続され、圧力ライン46によって出口ポート18に接続される。図示の実施形態では、弁30は、出口ポート18を、丸で囲まれた「A」で示される大気圧または圧力源22のいずれかに選択的に接続する三方弁でもある。
【0024】
圧力源22および弁24、26、28、30は、制御装置50によって制御することができる。制御装置50は、制御ライン52を介して圧力源22に、制御ライン54を介して弁24に、制御ライン56を介して弁26に、制御ライン58を介して弁28に、制御ライン60を介して弁30に接続される。制御装置50は、無線で、または当業者に知られている他の手段によって、種々の構成要素の1つまたは複数に接続することもできる。制御装置50は、プログラムされたコンピュータまたは他のマイクロプロセッサを備えることができる。
【0025】
上述のように、入口ポート12、14、および/または16からマイクロチャネル20を通って出口ポート18に至る流体流れは、出口ポート18と入口ポートの1つまたは複数の間に負圧差を加えることによって生成される。より具体的には、入口ポート12からの流体流れを生成するために、負圧源22を制御弁30ならびに圧力ライン44および46を介して出口ポート18に接続することによって、負圧が出口ポート18に加えられる。入口ポート12は弁24によって大気圧に開放される。これによって、出口ポート18と入口ポート12の間に負圧の差が生じる。流体が入口ポート12から流れている間の他の入口ポートからの流体流れが望ましくないと仮定して、入口ポート14を弁26によって大気圧に対して閉じ、入口ポート16を弁28によって大気圧に対して閉じる。入口ポート12からの流体流れを停止するために、弁24は、入口ポート12を大気圧に対して閉じるように(たとえば、制御装置50により)作動される。入口ポート12からの流体の流れを迅速に停止するために、入口ポート12とマイクロチャネルの入口の圧力を等しくするのに十分な時間の間、入口ポート12を制御弁24により負圧源22に接続し、次いで制御弁24を閉鎖してこの圧力平衡を維持することが望ましい場合がある。
【0026】
出口ポート18と適用可能な入口ポートの間の圧力差によって生成される流量が分かっていると仮定すると、流量を生成するために所望量の流体をマイクロチャネル20に導入する時間の間、圧力差を維持することによって、所定量の流体を入口ポート12、14、および16のいずれかからマイクロチャネル20に導入することができる。圧力差の維持は、入口ポートおよび出口ポートに関連付けられた圧力制御弁を適切に制御することによって行うことができる。
【0027】
制御弁24の作動およびタイミングは制御装置50によって制御することができる。
【0028】
次に入口ポート14からの流体流れを生成するために、弁26が、負圧が出口ポート18に加えられている間に入口ポート14を大気圧に開放するように(たとえば、制御装置50によって)作動され、したがって出口ポート18と入口ポート14の間に負圧の差が生じる。入口ポート14からの流体流れは、入口ポート14を大気圧に対して閉じるように弁26を作動させることによって停止し、さらに、入口ポート14からの流れを迅速に停止するために、弁26は、マイクロチャネルの入口と入口ポート14の圧力を等しくするのに十分な時間の間、入口ポート14を負圧源22に開放し、次に弁26を閉鎖してこの圧力平衡を維持する。
【0029】
同様に、入口ポート16からの流体流れを生成するために、弁28が、負圧が出口ポート18に加えられている間に入口ポート16を大気圧に開放するように(たとえば、制御装置50によって)作動され、したがって出口ポート18と入口ポート16の間に負圧の差が生じる。入口ポート16からの流体流れは、入口ポート16を大気圧に対して閉じるように弁28を作動させることによって停止し、さらに、入口ポート16からの流れを迅速に停止するために、弁28は、マイクロチャネルの入口と入口ポート16の圧力を等しくするのに十分な時間の間、入口ポート16を負圧源22に開放し、次に弁28を閉鎖する。
【0030】
図2および図3は、マイクロ流体回路の出口ポートと入口ポートの1つまたは複数の間の圧力差を制御するための代替構成を示す。図2は、各入口ポート12、14、16が、1つの三方弁ではなく2つの二方弁に結合されている点を除いて、図1に示されるシステムと類似のシステムを示す。より具体的には、入口ポート12は、入口ポート12を圧力ライン32および62を介して圧力源22に選択的に接続する第1の二方弁24aに結合される。入口ポート12はまた、入口ポート12を圧力ライン64を介して大気圧「A」に選択的に接続する第2の二方弁24bにも結合される。
【0031】
同様に、入口ポート14は、ポート14を圧力ライン36および66を介して圧力源22に選択的に接続する第1の二方弁26aに、ならびに入口ポート14を圧力ライン68を介して大気圧に選択的に接続する第2の二方弁26bに結合される。入口ポート16は、入口ポート16を圧力ライン40および70を介して圧力源22に選択的に接続する第1の二方弁28aに、ならびに入口ポート16を圧力ライン72を介して大気圧に選択的に接続する第2の二方弁28bに結合される。
【0032】
図2に示されるシステムでは、出口ポート18は、出口ポート18を圧力ライン44および46を介して圧力源22に選択的に接続する二方弁76に結合される。
【0033】
制御装置50は、制御ライン52を介して負圧源22を制御し、制御ライン60を介して二方弁76を制御し、制御ライン72を介して二方弁24aを制御し、制御ライン74を介して二方弁24bを制御する。制御装置50はまた、これらの弁を制御するために弁26a、26b、28a、および28bにも連結されるが、図が不必要に乱雑になるのを避けるために、制御装置50とそれぞれの弁の間の制御接続は図2に示さない。
【0034】
図3は、本発明の態様を実施するシステムの一代替構成を示す。図3の実施形態では、各入口ポート12、14、16は、圧力源#1 22または圧力源#2 80のいずれかにポートを選択的に接続する三方弁に結合される。より具体的には、入口ポート12は、圧力ライン88、90、および100を介して圧力源#1 22に、または圧力ライン96、98、および100を介して圧力源#2 80に、入口ポート12を選択的に接続するように構成された弁82に結合される。入口ポート14は、圧力ライン90および102を介して圧力源#1 22に、または圧力ライン96および102を介して圧力源#2 80に、入口ポート14を選択的に接続するように構成された弁84に結合される。入口ポート16は、圧力ライン90、92、および104を介して圧力源#1 22に、または圧力ライン96、94、および104を介して圧力源#2 80に、ポート16を選択的に結合するように構成された圧力弁86に結合される。出口ポート18は、圧力ライン106および108を介して圧力源#1 22に出口ポート18を選択的に接続する弁120に結合される。
【0035】
制御装置50は、制御ライン52を介して圧力源#1 22を制御し、制御ライン110を介して圧力源#2 80を制御する。制御装置50はまた、制御ライン118を介して圧力弁120を、制御ライン116を介して圧力弁82を、制御ライン114を介して圧力弁84を、および制御ライン112を介して圧力弁86を制御する。
【0036】
入口ポート12からの流体流れを生成するために、制御弁120は圧力源#1 22に出口ポート18を接続するように(たとえば、制御装置50によって)作動され、制御弁82は圧力源#2 80に入口ポート12を接続するように作動される。圧力源#2 80によって生成される圧力は、好ましくは圧力源#1 22によって生成される圧力より大きい。したがって、出口ポート18と入口ポート12の間に負圧の差が生じる。入口ポート14および16は、入口ポートとマイクロチャネルの入口の圧力を等しくするために、ある時間の間、それぞれ弁84および86によって圧力源#1 22に接続され、次いで確立された圧力を維持するために弁84および86を閉鎖する。このため、入口ポート14および16とマイクロチャネルの入口の間に圧力差はなく、したがって入口ポート14および16から出口ポート18への流体流れはない。入口ポート12からの流体流れを停止するために、制御弁82は、出口ポート18と入口ポート12の圧力を等しくするために圧力源#1 22に入口ポート12を接続し、次いで制御弁82を閉鎖するように作動される。
【0037】
入口ポート14からの流体流れを生成するために、制御弁84は、出口ポート18と入口ポート14の間に負圧の差を生じさせるために圧力源#2 80に入口ポート14を接続するように作動される。入口ポート12および16につながる弁82および86は閉じられ、このため入口ポート12および16とマイクロチャネルの入口の間に圧力差はなく、したがって入口ポート12および16から出口ポート18への流体流れはない。入口ポート14からの流体流れを停止するために、制御弁84は、マイクロチャネルの入口と入口ポート14の圧力を等しくするために圧力源#1 22に入口ポート14を接続するように作動され、次に弁84はこの圧力平衡を維持するために閉鎖される。
【0038】
入口ポート16からの流体流れを生成するために、制御弁86は、出口ポート18と入口ポート16の間に負圧の差を生じさせるために圧力源#2 80に入口ポート16を接続するように作動される。入口ポート12および14は、入口ポートとマイクロチャネルの入口の圧力を等しくするために、ある時間の間、それぞれ弁82および84によって圧力源#1 22に接続され、次いで確立された圧力を維持するために弁84および86を閉鎖する。このため、入口ポート12および14と出口ポート18の間に圧力差はなく、したがって入口ポート12および14から出口ポート18への流体流れはない。入口ポート16からの流体流れを停止するために、制御弁86は、出口ポート18と入口ポート16の圧力を等しくするために圧力源#1 22に入口ポート16を接続し、次に制御弁86を閉鎖するように作動される。
【0039】
一代替構成として、三方弁82、84、86はそれぞれ、各関連付けられた入口ポートと圧力源#1 22または圧力源#2 80とを選択的に接続する2つの二方弁によって置き換えることができる。
【0040】
本発明での使用に適切な弁としては、IQ Valves Co.、Melbourne、FloridaおよびThe Lee Company、Westbrook、Connecticutによる二方電磁弁および三方電磁弁がある。
【0041】
図1、図2、および図3に示されるシステムは、本願の譲受人に譲渡された、同時係属中の米国特許出願第11/505,358号に記載されている、マイクロチャネルを通って流れて緩衝液などの非反応性流体の液滴によって互いに分離されるアッセイ試薬の別個の液滴内でPCRを実施するプロセスにおいて利用することができる。このプロセスを、図4および図5を参照して説明する。
【0042】
図4はマイクロチャネルを通って流れる別個の液滴内でPCRを実施するステップを示す流れ図であり、図5はチャネルを通る種々の材料の流れを示す時間履歴曲線(time history curve)を示す。プロセスを、図1に示されるシステムに関して説明する。ただし、このプロセスはまた、図2または図3のシステムまたは図1、図2、および図3のシステムの混合組合せを使用しても実施できることを理解されたい。
【0043】
図4を参照すると、ステップ130において、関連付けられた弁によりポートを負圧源22に接続し、入口12、14、および16への弁を閉鎖することによって、負圧が出口ポート18および入口ポート12、14、16のすべてなどに加えられる。これは、廃棄物ポートとどの入口ポートの間にも圧力差がなく、したがってマイクロチャネル20への流体流れがないので、停止条件として知られている。
【0044】
ステップ132では、DNA/緩衝液の入口ポートに結合された弁(たとえば、入口ポート12に関連付けられた弁24)は、図5の曲線162によって示される試料流れ条件(すなわち、出口ポート18と入口ポート12の間の負圧の差)を生成するために負圧から大気圧に切り換えられる。図4に示されていないが、ポリメラーゼ入口ポートに結合された弁も、図5の曲線164によって示されるポリメラーゼ流れを生成するために負圧から大気圧に切り換えることができる。DNA/緩衝液混合物は、マイクロチャネル20を通る共通の流れに組み込まれる。
【0045】
ステップ134では、タイマ遅延(timer delay)は、チャネルをDNA/緩衝液(および、任意選択でポリメラーゼ)混合物で満たすように実施される。
【0046】
ステップ136では、プライマー1の入口ポートに結合された弁(たとえば、入口ポート14に関連付けられた弁26)は、試料流れストリームと混合されるマイクロチャネル20へのプライマー流れ条件を生成するために負圧から大気圧に切り換えられる。ステップ138では、所望のタイマ注入量に比例するタイマ遅延が、混合物に流れ込むプライマー1の量を制御するために実施される。ステップ140では、プライマー1の入口ポートに結合された弁が、元の条件すなわち弁を閉鎖した状態の負圧に切り換えられ、プライマーの流れを停止し、それによって(クロック周期4を通して)図5の流れ曲線166の第1の部分が生成される。
【0047】
所望のスペーサー・インタリーブ(spacer interleave)に比例するタイマ遅延が、ステップ142において実施される。これは、プライマーが流れない試料流れ条件である。
【0048】
ステップ144では、プライマー2の入口ポートに結合された弁(たとえば、入口ポート16に関連付けられた弁28)は、試料流れストリームと混合されるマイクロチャネル20へのプライマー流れ条件を生成するために、弁が閉鎖した状態で負圧から大気圧に変更される。プライマー2の所望の注入量に比例するタイマ遅延がステップ146において実施される。さらに、ステップ148では、プライマー2の入口ポートに結合された弁が元の負圧に切り換えられ、弁が閉鎖条件となり、プライマー2の流れを停止させる。ステップ144、146、および148によって、図5に示される流れ曲線168が生成される。
【0049】
ステップ150では、完全なアッセイ条件が生成されるまで、プライマーを追加して以前に注入したプライマーを別個に追加で注入するプライマー注入シーケンスが繰り返され、したがって流れ曲線170が生成される。その結果生成される試料試験ストリームの流れ曲線は、図5の曲線172によって示される。曲線の各「突出部」は、試料流れストリームで混合されるプライマーの別個の量を示す。別個のPCR(または他の)アッセイは、試料/プライマー混合物の各別個の量(またはボーラス)で実施することができる。
【0050】
ステップ152では、流れているマイクロ流体ストリームに関するPCRの熱サイクルが実施され、それによって各試験ボーラス内でPCR増幅反応が生成される。ステップ154では、流れているマイクロ流体ストリームに関するDNA熱融解分析(thermal melt analysis)が実施される。さらに、ステップ156では、一連のアッセイ熱融解データが、マイクロチャネル20内で実施されたマルチプレックスアッセイの試験ボーラスごとに生成される。
【0051】
図6に示すように、入口ポートに結合されたどの弁も、入口ポートで注入される流体の量を調整するために、パルス幅を変調するように動作することができる。たとえば、上述のように、入口ポートに結合された弁は、マイクロチャネルに注入される所望量の流体に対応する所定の時間の間、流れ条件に設定することができる。入口ポートに結合された弁を流れ条件に設定する時間を短くすることによって、注入される流体の量を少なくすることができる。ただし、指定の物理サイズの反応液滴を生じさせることが望ましい場合があり、したがって指定の時間の間(および、より少量に対応する、より短時間ではない)、入口ポートからの流体流れを有することが望ましい場合がある。指定の時間の間ポートからの流れを維持しながら入口ポートからの流体流れの量を少なくするために、図6の曲線174および176に示すように、所望の流れ時間にわたって、ポートに結合された弁を負圧と大気圧(またはより高い他の圧力)の間で変調させることができる。その結果生成される、入口ポートにおける圧力は図6の曲線180によって示される。その結果発生する試薬流れは、図6の曲線178に示されるように、ある流量において流れ時間全体にわたって全体的に一定の流れであり、その結果、流れ時間全体にわたって入口弁が大気圧に開放され続けている場合に比べて注入される流体の量が少なくなる。
【0052】
本発明の種々の実施形態/変形形態について上記で説明してきたが、これらは例示的なものとして提示されたに過ぎず、限定としてではないことを理解されたい。したがって、本発明の範囲は、上述の例示的な実施形態のいずれによっても制限されるべきではない。さらに、記述がない限り、上記の実施形態のいずれも相互に排他的でない。したがって、本発明は、種々の実施形態の特徴の任意の組合せおよび/または統合を含むことができる。
【0053】
加えて、上記で説明され図面に示されたプロセスは一連のステップとして示されているが、これは単に分かりやすくするために行われたものである。したがって、いくつかのステップを追加してもよく、いくつかのステップを省略してもよく、ステップの順序を並べ替えてもよいことが企図されている。

【特許請求の範囲】
【請求項1】
流体が回路内に導入される入口ポートと、前記入口ポートと流体連通する少なくとも1つの流体流れ用マイクロチャネルと、前記マイクロチャネルと流体連通し、前記マイクロチャネルからの流体が回収される出口ポートとを含むマイクロ流体回路内の流体流れを制御する方法であって、
a.第1の圧力を前記出口ポートに加え、前記入口ポートを前記第1の圧力より高い第2の圧力に開放することにより、前記出口ポートと前記入口ポートの間に負圧の差を生成することによって、前記入口ポートから前記マイクロチャネルへの流体流れを発生させるステップと、
b.次いで、前記入口ポートを前記第2の圧力に対して閉じ、前記第1の圧力を前記入口ポートに加えることによって、前記入口ポートからの前記流体流れを実質的に停止するステップとを備える方法。
【請求項2】
前記第1の圧力が大気圧より低い圧力であり、前記第2の圧力が大気圧である、請求項1に記載の方法。
【請求項3】
停止する前記ステップが、所定の時間の間、前記第1の圧力を前記入口ポートに加えるステップを含む、請求項1に記載の方法。
【請求項4】
停止する前記ステップが、前記入口ポートと前記出口ポートの間の前記圧力差が実質的にゼロになるまで前記第1の圧力を前記入口ポートに加えるステップを含む、請求項1に記載の方法。
【請求項5】
前記所定の時間の後で、前記第1の圧力を前記入口ポートから除去し、前記入口ポートを前記第2の圧力に対して閉じ続けて前記入口ポートからの流体流れを防ぐことをさらに含む、請求項3に記載の方法。
【請求項6】
前記第1の圧力を前記入口ポートから除去した後で、前記入口ポートを前記第2の圧力に再開放することによって、前記入口ポートから前記マイクロチャネルへの流体流れを再発生させることをさらに含む、請求項5に記載の方法。
【請求項7】
前記マイクロ流体回路が複数の入口ポートを備え、前記少なくとも1つのマイクロチャネルが前記入口ポートのそれぞれと流体連通し、さらにステップa中に、前記他のポートのそれぞれを前記第2の圧力に対して閉じることによって他のすべての入口ポートからの流体流れを実質的に防ぐステップをさらに含む、請求項1に記載の方法。
【請求項8】
c.ステップbの後で、前記第2の入口ポートを前記第2の圧力に開放することによって第2の入口ポートから前記マイクロチャネルへの流体流れを発生させるステップと、
d.次いで、前記第2の入口ポートを前記第2の圧力に対して閉じ、所定の時間の間、前記第2の入口ポートを前記第1の圧力に開放することによって、および前記弁を前記入口ポートに対して閉鎖して前記確立された圧力を維持することによって、前記第2の入口ポートからの前記流体流れを実質的に停止するステップとをさらに含む、請求項7に記載の方法。
【請求項9】
前記入口ポートのそれぞれに対してステップa〜bを繰り返すステップをさらに含む、請求項7に記載の方法。
【請求項10】
前記流体が、生物学的試料物質、試薬、緩衝液、またはマーカー材料を含む、請求項1に記載の方法。
【請求項11】
前記入口ポートから前記マイクロチャネルへの所定量の流体の前記流れに対応するステップaの所定の所要時間の後でステップbを開始することによって、前記入口ポートから前記マイクロチャネルに流れ込む流体の量を制御するためにステップaの所要時間を制御するステップをさらに含む、請求項1に記載の方法。
【請求項12】
所定量の流体流れに対応するステップaの所定の所要時間を指定するステップと、
ステップaの前記所定の所要時間中に(1)前記入口ポートを前記第2の圧力に開放すること、および(2)前記入口ポートを前記第2の圧力に対して閉じることを交互に実施することによって、前記所定量より少ない、前記入口ポートから前記マイクロチャネルへの流体流れの量を計測するステップとをさらに含む、請求項11に記載の方法。
【請求項13】
マイクロ流体流れを制御するためのシステムであって、
a.流体が回路に導入される少なくとも1つの入口ポートと、前記入口ポートと流体連通する少なくとも1つのマイクロ流体流れ用マイクロチャネルと、前記マイクロチャネルと流体連通し、前記マイクロチャネルからの流体が回収される出口ポートとを備えるマイクロ流体回路と、
b.前記出口ポートおよび前記少なくとも1つの入口ポートと選択的に連通する少なくとも1つの圧力源と、
c.各入口ポートに機能的に関連付けられ、前記圧力源と連通する弁機構であって、それぞれ(1)前記圧力源によって生成された第1の圧力に、または(2)前記第1の圧力より高い第2の圧力に、前記関連付けられた入口ポートを選択的に接続するように適合された弁機構とを備えるシステム。
【請求項14】
前記少なくとも1つの圧力源が真空ポンプを備え、前記第1の圧力が、前記真空ポンプによって生成される負圧であり、前記第2の圧力が大気圧を含む、請求項13に記載のシステム。
【請求項15】
前記少なくとも1つの圧力源が、前記第1の圧力を生成するための第1のポンプと、前記第2の圧力を生成するための第2のポンプとを備える、請求項13に記載のシステム。
【請求項16】
前記圧力源および前記弁機構の動作を制御し、前記圧力源に前記第1の圧力を前記出口ポートに加えさせ、前記弁機構に前記入口ポートを前記第2の圧力に開放させて流体を前記入口ポートから前記マイクロチャネルに流れ込ませ、さらに前記入口ポートが所定の時間の間、前記第2の圧力に開放された後で、前記弁機構に前記入口ポートを前記第2の圧力に対して閉じさせ、所定の時間の間、前記入口ポートを前記第1の圧力に開放させ、前記弁を前記前記入口ポートに対して閉鎖して前記入口ポートからの前記マイクロチャネルへの流れを停止するように適合された制御装置をさらに備える、請求項13に記載のシステム。
【請求項17】
前記弁機構が、前記入口ポートを、前記第2の圧力または前記第1の圧力のいずれかに選択的に連通させるように適合された三方弁を備える、請求項13に記載のシステム。
【請求項18】
前記弁機構が、選択的に、前記入口ポートを前記第2の圧力に開放し、または前記入口ポートを前記第2の圧力に対して閉じるように構成および配置された第1の二方弁と、選択的に、前記入口ポートを前記第1の圧力に開放し、または前記入口ポートを前記第1の圧力に対して閉じるように構成および配置された第2の二方弁とを備える、請求項13に記載のシステム。
【請求項19】
前記圧力源が、前記出口ポートと前記弁機構の両方と選択的に連通する単一の真空ポンプを備える、請求項13に記載のシステム。
【請求項20】
前記出口ポートに機能的に関連付けられ、前記出口ポートを前記圧力源に選択的に接続するように適合された出口弁機構をさらに備える、請求項19に記載のシステム。
【請求項21】
前記マイクロ流体回路が複数の入口ポートを備える、請求項13に記載のシステム。
【請求項22】
前記制御装置が、前記弁機構に、前記入口ポートを前記第2の圧力に対して閉じさせ、所定の時間の間、前記入口ポートを前記第1の圧力に開放させるように適合された、請求項16に記載のシステム。
【請求項23】
前記制御装置がさらに、前記所定の時間の後で、前記弁機構に、流体が前記入口ポートから前記マイクロチャネルに流れ込むのを防ぐために前記入口ポートが前記第2の圧力に対して閉じた状態を保ちながら前記入口ポートを前記第1の圧力に対して閉じさせるように適合された、請求項22に記載のシステム。
【請求項24】
前記制御装置がさらに、前記弁機構に、前記所定の時間の後で、前記入口ポートを前記第1の圧力に対して閉じさせ、前記入口ポートを前記第2の圧力に再解放させて、前記入口ポートから前記マイクロチャネルへの流体流れを再発生させるように適合された、請求項22に記載のシステム。
【請求項25】
前記マイクロ流体回路が、ガラス、シリカ、石英、またはプラスチックで作製されたチップを備える、請求項13に記載のシステム。
【請求項26】
前記弁機構が電磁弁を備える、請求項13に記載のシステム。
【請求項27】
マイクロチャネルと、前記マイクロチャネルと流体連通し、異なる反応流体が前記マイクロチャネルに導入される複数の入口ポートと、前記マイクロチャネルと流体連通し、前記マイクロチャネルからの流体が回収される出口ポートとを含むマイクロ流体回路に、所定量の異なる反応流体を順次導入する方法であって、
第1の圧力を前記出口ポートに加えることと、
順次、
所定の時間の間、前記他の入口ポートは前記第2の圧力に対して閉じられながら各入口ポートを前記第1の圧力より高い第2の圧力に開放し、前記出口ポートとその入口ポートの間の負圧の差を生じさせ、所定量の流体をその入口ポートから前記マイクロチャネルに流れ込ませて、
前記所定の時間の後で、その入口ポートを前記第2の圧力に対して閉じ、前記第1の圧力をその入口ポートに加えることにより、その入口ポートからの流体流れを実質的に停止することによって、
所定量の反応流体を前記入口ポートのそれぞれから前記マイクロチャネルに順次導入することとを含む方法。
【請求項28】
流体流れを停止することが、所定の時間の間、前記第1の圧力を前記入口ポートに加えることを含む、請求項27に記載の方法。
【請求項29】
前記第1の圧力が大気圧より低い圧力であり、前記第2の圧力が大気圧である、請求項27に記載の方法。
【請求項30】
停止する前記ステップが、前記入口ポートと前記出口ポートの間の前記圧力差が実質的にゼロになるまで前記第1の圧力を前記入口ポートに加えるステップを含む、請求項27に記載の方法。
【請求項31】
前記流体が、生物学的試料物質、試薬、緩衝液、またはマーカー材料を含む、請求項27に記載の方法。
【請求項32】
前記所定時間中に(1)前記入口ポートを前記第2の圧力に開放すること、および(2)前記入口ポートを前記第2の圧力に対して閉じることを交互に実施することによって、前記所定流体量より少ない、前記入口ポートから前記マイクロチャネルへの流体流れの量を計測することをさらに含む、請求項27に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2011−527011(P2011−527011A)
【公表日】平成23年10月20日(2011.10.20)
【国際特許分類】
【出願番号】特願2011−516770(P2011−516770)
【出願日】平成21年6月29日(2009.6.29)
【国際出願番号】PCT/US2009/049073
【国際公開番号】WO2010/002797
【国際公開日】平成22年1月7日(2010.1.7)
【出願人】(507028217)キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド (22)
【氏名又は名称原語表記】CANON U.S. LIFE SCIENCES, INC.
【住所又は居所原語表記】9800 Medical Center Drive Suite A−100 Rockville,Maryland 20850 U.S.A.
【Fターム(参考)】