説明

レンズアレイおよびこれを備えた光モジュール

【課題】モニタ光を確実に得ることができるとともに製造の容易化を実現することができるレンズアレイおよびこれを備えた光モジュールを提供すること。
【解決手段】第1のレンズ面11に入射した各発光素子ごとの光を、第1の光学面14aと第1のプリズム面16aとの間の反射/透過層17によって第2のレンズ面12側および第3のレンズ面13側にそれぞれ分光し、第3のレンズ面13側に分光された光に含まれるモニタ光を、第3のレンズ面13によって受光素子8側に出射させるとともに、第1の光学面14aに対する入射側の光路と第2の光学面14bに対する出射側の光路とを互いに平行にすること。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レンズアレイおよびこれを備えた光モジュールに係り、特に、複数の発光素子と光伝送体の端面とを光学的に結合するのに好適なレンズアレイおよびこれを備えた光モジュールに関する。
【背景技術】
【0002】
近年、システム装置内または装置間もしくは光モジュール間において信号を高速に伝送する技術として、いわゆる光インターコネクションの適用が広まっている。ここで、光インターコネクションとは、光部品をあたかも電気部品のように扱って、パソコン、車両または光トランシーバなどに用いられるマザーボードや回路基板等に実装する技術をいう。
【0003】
このような光インターコネクションに用いられる光モジュールには、例えば、メディアコンバータやスイッチングハブの内部接続、光トランシーバ、医療機器、テスト装置、ビデオシステム、高速コンピュータクラスタなどの装置内や装置間の部品接続等の様々な用途がある。
【0004】
この種の光モジュールにおいては、発光素子から出射された通信情報を含む光を、レンズを介して光伝送体の一例としての光ファイバの端面に結合させることによって、光ファイバを介した通信情報の送信を行うようになっていた。
【0005】
また、光モジュールの中には、双方向通信に対応すべく、光ファイバを介して伝搬されて光ファイバの端面から出射された通信情報を含む光を受光する受光素子を発光素子とともに備えたものもあった。
【0006】
ここで、従来から、このような光モジュールにおいては、温度等の影響によって発光素子の光の出力特性が変化することにより、通信情報の適切な送信に支障を来たす虞があるといった問題が生じていた。
【0007】
そこで、これまでにも、この種の光モジュールにおいては、発光素子の出力特性を安定させるべく発光素子から出射された光(特に、強度もしくは光量)をモニタ(監視)するための種々の技術が提案されていた。
【0008】
例えば、特許文献1には、レンズ面(透過面部)の周辺に発光素子から発光された光の一部をモニタ光として受光素子側に反射させるための反射面(反射面部)を備えた光学素子が開示されている。
【0009】
また、特許文献2には、面発光レーザから出射されたレーザ光を光ファイバ側に全反射させる全反射ミラーと、面発光レーザから出射されたレーザ光の一部をモニタ光としてPD側に反射させる切り欠き部とが連設された光学面を備えた光学ユニットが開示されている。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2008−151894号公報
【特許文献2】特開2006−344915号公報(特に、図16A、B参照)
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながら、特許文献1に記載の構成には、マルチチャンネルの光通信をコンパクトな構成で実現しようとする場合に有効に適用することが難しいといった問題点があった。すなわち、近年においては、マルチチャンネルの光通信を実現させる小型の光学部品として、複数のレンズを所定の整列方向に整列させたレンズアレイの需要が益々高まりつつある。この種のレンズアレイでは、複数の発光素子が整列された発光装置を、その各発光素子がレンズアレイの入射側の各レンズ面に対向するように配置するとともに、複数の光ファイバをレンズアレイの出射側の各レンズ面に対向するように配置して、各発光素子から出射された光をレンズアレイの各レンズによって各光ファイバの端面に光学的に結合させることにより、マルチチャンネルの光通信(送信)を行うようになっていた。そして、このようなレンズアレイにおいても、発光素子から出射された光をモニタすることは光通信の安定性を確保する観点から非常に重要であるところ、このようなレンズアレイは、各レンズの1つ1つが非常に小径に形成されているばかりでなく、互いに隣位する各レンズ同士が非常に狭ピッチに形成されているため、特許文献1に記載の構成をレンズアレイに適用してレンズの周辺にモニタ光を反射させるための反射面を形成することは困難であった。
【0012】
また、特許文献2に記載の構成は、全反射ミラーと切り欠き部との境界の位置精度が要求されるため、製造が困難であるといった問題点を有していた。
【0013】
そこで、本発明は、このような問題点に鑑みなされたものであり、モニタ光を確実に得ることができるとともに製造の容易化を実現することができるレンズアレイおよびこれを備えた光モジュールを提供することを目的とするものである。
【課題を解決するための手段】
【0014】
前述した目的を達成するため、本発明の請求項1に係るレンズアレイの特徴は、複数の発光素子が整列形成されるとともに前記複数の発光素子の少なくとも1つから発光された光をモニタするためのモニタ光を受光する少なくとも1つの受光素子が形成された光電変換装置と、光伝送体との間に配置され、前記複数の発光素子と前記光伝送体の端面とを光学的に結合可能とされたレンズアレイであって、レンズアレイ本体における前記光電変換装置に臨む第1の面に、前記複数の発光素子に対応する所定の整列方向に整列するように形成され、前記複数の発光素子ごとに発光された光がそれぞれ入射する複数の第1のレンズ面と、前記レンズアレイ本体における前記光伝送体の端面に臨む第2の面に、前記第1のレンズ面の整列方向に沿って整列するように形成され、前記複数の第1のレンズ面にそれぞれ入射した前記複数の発光素子ごとの光を、前記光伝送体の端面に向けてそれぞれ出射させる複数の第2のレンズ面と、前記レンズアレイ本体における前記第1の面に形成され、前記レンズアレイ本体の内部側から入射した前記モニタ光を前記受光素子に向けて出射させる少なくとも1つの第3のレンズ面と、前記レンズアレイ本体に、前記第1のレンズ面と前記第2のレンズ面とを結ぶ光路上に位置するように凹入形成された凹部と、この凹部における内面の一部をなすとともに、前記第2の面に対して所定の傾斜角を有するように形成され、前記複数の第1のレンズ面に入射した前記複数の発光素子ごとの光が前記第2の面に対して垂直な入射方向から入射する第1の光学面と、前記凹部における内面の一部であって前記第1の光学面に対向する部位をなすとともに、前記第2の面に対して平行に形成され、前記第1の光学面に入射した後に前記第2のレンズ面側に向かって進行した前記複数の発光素子ごとの光が垂直入射する第2の光学面と、前記凹部がなす空間内に配置され、前記レンズアレイ本体と同屈折率に形成され、前記第1の光学面に入射した後に前記第2のレンズ面側に向かって進行する前記複数の発光素子ごとの光の光路を形成するプリズムと、このプリズムにおける表面の一部をなすとともに、前記第1の光学面に臨む位置に前記第1の光学面に対して平行に配置された第1のプリズム面と、前記プリズムにおける表面の一部であって前記第1のプリズム面に対向する部位をなすとともに、前記第2の光学面に臨む位置に前記第2の光学面に対して平行に配置された第2のプリズム面と、前記第1のプリズム面上または前記第1の光学面上に配置され、前記第1の光学面に入射した前記複数の発光素子ごとの光を、所定の反射率で前記第3のレンズ面側に反射させるとともに所定の透過率で前記プリズム側に透過させ、その際に、前記複数の発光素子ごとの光の少なくとも1つを前記モニタ光として反射させる反射/透過層と、前記第1のプリズム面上の反射/透過層と前記第1の光学面との間または前記第1のプリズム面と前記第1の光学面上の前記反射/透過層との間に配置され、前記プリズムを前記レンズアレイ本体に貼り付けるための所定の屈折率の粘着シートと、前記第2の光学面と前記第2のプリズム面との間に充填された所定の屈折率の充填材とを備えた点にある。
【0015】
そして、この請求項1に係る発明によれば、第1のレンズ面に入射した各発光素子ごとの光を、第1の光学面と第1のプリズム面との間の反射/透過層によって第2のレンズ面側および第3のレンズ面側にそれぞれ分光し、第3のレンズ面側に分光されたモニタ光を、第3のレンズ面によって受光素子側に出射させることができるので、モニタ光を確実に得ることができ、また、このようなモニタ光を得るための構成として、ある程度の面積を有する反射/透過層を採用することによって、レンズアレイの製造の容易化を実現することができる。また、プリズムをレンズアレイ本体と同屈折率に形成することで、プリズム内での各発光素子ごとの光の光路を第2の面に対して垂直に維持することができ、さらに、プリズム内を進行した各発光素子ごとの光を第2のプリズム面および第2の光学面に順次垂直入射させることができるので、第1の光学面に対する入射側の光路と第2の光学面に対する出射側の光路とを互いに平行にすることができる。これにより、製品検査の際に第2のレンズ面に入射する光が第2のレンズ面の中心からずれていることが確認された場合に、これを解消するための寸法調整を要する箇所を少なくすることができ、更なる製造の容易化に寄与することができる。さらに、第2の光学面を第2の面に平行に形成することによって、第2の光学面の設計および寸法精度の測定を簡便化することができる。さらにまた、例えば、レンズアレイ本体を射出成形する場合における金型からのレンズアレイ本体の離型時等において、第2の光学面にキズが形成された場合であっても、第2の光学面と第2のプリズム面との間に充填された充填材によって、第2の光学面のキズを原因とした反射光や散乱光の発生を抑制することができる。これにより、製造および取り扱い(例えば、寸法精度測定)の容易化と、反射/散乱光に起因する迷光の発生および結合効率の低下を抑制することによる光学性能の確保とを両立させることができる。
【0016】
また、請求項2に係るレンズアレイの特徴は、請求項1において、更に、前記粘着シートは、前記レンズアレイ本体との屈折率差が所定値以下とされている点にある。
【0017】
そして、この請求項2に係る発明によれば、レンズアレイ本体と粘着シートとの界面または粘着シートとプリズムとの界面における各発光素子ごとの光の屈折を抑えることができるため、第1の光学面に対する入射側の光路と第2の光学面に対する出射側の光路とをほぼ同一線上に位置させることができる。これにより、設計の際に、第2のレンズ面の位置を簡便に決定することができ、更なる製造および取り扱いの容易化(例えば、製造工程の管理および寸法精度測定の容易化)に寄与することができる。また、レンズアレイ本体と粘着シートとの界面または粘着シートとプリズムとの界面における各発光素子ごとの光のフレネル反射を抑えることができるため、迷光の発生および結合効率の低下を更に確実に抑制することができる。
【0018】
さらに、請求項3に係るレンズアレイの特徴は、請求項1または2において、更に、前記充填材は、前記レンズアレイ本体との屈折率差が所定値以下とされている点にある。
【0019】
そして、この請求項3に係る発明によれば、第2のプリズム面と充填材との界面および充填材と第2の光学面との界面における各発光素子ごとの光のフレネル反射を抑制することができるので、迷光の発生および結合効率の低下を更に確実に抑制することができる。
【0020】
さらにまた、請求項4に係るレンズアレイの特徴は、請求項1〜3のいずれか1項において、更に、前記充填材は、透光性の接着材からなり、前記プリズムは、前記充填材によって前記レンズアレイ本体に接着されている点にある。
【0021】
そして、この請求項4に係る発明によれば、充填材が、プリズムをレンズアレイ本体に接着する接着材を兼ねることができるので、コストを削減することができる。
【0022】
また、請求項5に係るレンズアレイの特徴は、請求項1〜4のいずれか1項において、更に、前記レンズアレイ本体における前記第1のレンズ面と前記第1の光学面との間の前記複数の発光素子ごとの光の光路上に配置され、前記第1のレンズ面に入射した前記複数の発光素子ごとの光を、前記第1の光学面に向けて全反射させる全反射面を備えた点にある。
【0023】
そして、この請求項5に係る発明によれば、第1のレンズ面と第3のレンズ面とを光電変換素装置に臨む同一の面(第1の面)に配置することを前提として、第1のレンズ面に入射した各発光素子ごとの光を凹部側に進行させる上で無理のないコンパクトな設計が可能となる。
【0024】
さらに、請求項6に係るレンズアレイの特徴は、請求項1〜5のいずれか1項において、更に、前記第1の面と前記第2の面とが互いに垂直に形成され、前記凹部が、前記レンズアレイ本体における前記第1の面に対向する第3の面に形成され、前記全反射面は、その前記第3の面側の端部がその前記第1の面側の端部よりも前記凹部側に位置するような前記第1の面を基準とした45°の傾斜角を有するように形成され、前記第1の光学面は、その前記第3の面側の端部がその前記第1の面側の端部よりも前記全反射面側に位置するような前記第1の面を基準とした45°の傾斜角を有するように形成され、前記第1のレンズ面上の光軸および前記第3のレンズ面上の光軸が、前記第1の面に垂直に形成され、前記第2のレンズ面上の光軸が、前記第2の面に垂直に形成されている点にある。
【0025】
そして、この請求項6に係る発明によれば、レンズアレイ本体の形状を、設計および寸法精度の測定の更なる簡便化に適した形状にすることができる。
【0026】
さらにまた、請求項7に係る光モジュールの特徴は、請求項1〜6のいずれか1項に記載のレンズアレイと請求項1に記載の光電変換装置とを備えた点にある。
【0027】
そして、この請求項7に係る発明によれば、モニタ光を確実に得ることができるとともに製造の容易化を実現することができる。
【発明の効果】
【0028】
本発明によれば、モニタ光を確実に得ることができるとともに製造の容易化を実現することができる。
【図面の簡単な説明】
【0029】
【図1】本発明に係るレンズアレイおよびこれを備えた光モジュールの第1実施形態において、光モジュールの概要をレンズアレイの縦断面図とともに示す概略構成図
【図2】図1に示すレンズアレイの平面図
【図3】図1に示すレンズアレイの左側面図
【図4】図1に示すレンズアレイの右側面図
【図5】図1に示すレンズアレイの下面図
【図6】第1実施形態の変形例を示す概略構成図
【図7】本発明に係るレンズアレイおよびこれを備えた光モジュールの第2実施形態において、光モジュールの概要をレンズアレイの縦断面図とともに示す概略構成図
【図8】図7に示すレンズアレイの平面図
【図9】図8の左側面図
【図10】図8の右側面図
【図11】図8の下面図
【図12】第2実施形態の変形例を示す概略構成図
【図13】本発明に係るレンズアレイおよびこれを備えた光モジュールの第3実施形態において、光モジュールの概要をレンズアレイの縦断面図とともに示す概略構成図
【図14】図13に示すレンズアレイの平面図
【図15】図14の右側面図
【図16】第3実施形態の第1の変形例を示す概略構成図
【図17】第3実施形態の第2の変形例を示す概略構成図
【図18】第1〜第3実施形態とは異なる本発明の実施の一形態を示す概略図
【発明を実施するための形態】
【0030】
(第1実施形態)
以下、本発明に係るレンズアレイおよびこれを備えた光モジュールの第1実施形態について、図1〜図6を参照して説明する。
【0031】
図1は、本実施形態における光モジュール1の概要を本実施形態におけるレンズアレイ2の縦断面図とともに示した概略構成図である。図2は、図1に示すレンズアレイ2の平面図である。図3は、図1に示すレンズアレイ2の左側面図である。図4は、図1に示すレンズアレイ2の右側面図である。図5は、図1に示すレンズアレイ2の下面図である。
【0032】
図1に示すように、本実施形態におけるレンズアレイ2は、光電変換装置3と光ファイバ5との間に配置されるようになっている。
【0033】
ここで、光電変換装置3は、半導体基板6におけるレンズアレイ2に臨む面に、この面に対して垂直方向(図1における上方向)にレーザ光Lを出射(発光)する複数の発光素子7を有しており、これらの発光素子7は、垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)を構成している。なお、図1において、各発光素子7は、図1における紙面垂直方向に沿って整列形成されている。また、光電変換装置3は、半導体基板6におけるレンズアレイ2に臨む面であって、各発光素子7に対する図1の左部近傍位置に、各発光素子7からそれぞれ出射されたレーザ光Lの出力(例えば、強度や光量)をモニタするためのモニタ光Mを受光する発光素子7と同数の複数の受光素子8を有している。なお、受光素子8は、発光素子7と同方向に整列形成されており、互いに対応する素子7,8同士の間で、整列方向における位置が互いに一致している。すなわち、受光素子8は、発光素子7と同一ピッチで形成されている。この受光素子8は、フォトディテクタであってもよい。さらに、図示はしないが、光電変換装置3には、各受光素子8によって受光されたモニタ光Mの強度や光量に基づいて対応する発光素子7から発光されるレーザ光Lの出力を制御する制御回路が接続されている。このような光電変換装置3は、例えば、図示しないレンズアレイ2への当接部をレンズアレイ2に当接させるようにして、レンズアレイ2に対して対向配置されるようになっている。そして、この光電変換装置3は、公知の固定手段によってレンズアレイ2に取付けられるようになっている。
【0034】
また、本実施形態における光ファイバ5は、発光素子7および受光素子8と同数配設されており、図1において、各光ファイバ5は、図1における紙面垂直方向に沿って整列形成されている。また、光ファイバ5は、発光素子7と同一ピッチで整列されている。各光ファイバ5は、その端面5a側の部位が多芯一括型のコネクタ10内に保持された状態で公知の固定手段によってレンズアレイ2に取付けられるようになっている。
【0035】
そして、レンズアレイ2は、このような光電変換装置3と光ファイバ5との間に配置された状態で、各発光素子7と各光ファイバ5の端面5aとを光学的に結合させるようになっている。
【0036】
このレンズアレイ2についてさらに詳述すると、図1に示すように、レンズアレイ2は、レンズアレイ本体4を有しており、このレンズアレイ本体4は、その縦断面の外形がほぼ台形状に形成され、また、図2に示すように、その平面形状がほぼ長方形状に形成され、さらに、図3および図4に示すように、その側面形状が長方形状に形成されている。
【0037】
図1および図5に示すように、レンズアレイ2は、第1の面としてのレンズアレイ本体4における光電変換素装置3に臨む図1の下端面4a(平面)に、発光素子7と同数の複数(8個)の平面円形状の第1のレンズ面(凸レンズ面)11を有している。これら複数の第1のレンズ面11は、発光素子7に対応する所定の整列方向(図1における紙面垂直方向、図5における縦方向)に整列するように形成されている。また、各第1のレンズ面11は、発光素子7と同一ピッチで形成されている。さらに、図1に示すように、各第1のレンズ面11上の光軸OA(1)は、各第1のレンズ面11にそれぞれ対応する各発光素子7から発光されるレーザ光Lの中心軸に一致している。
【0038】
このような各第1のレンズ面11には、図1に示すように、各第1のレンズ面11にそれぞれ対応する各発光素子7ごとに出射されたレーザ光Lが入射する。そして、各第1のレンズ面11は、入射した各発光素子7ごとのレーザ光Lをそれぞれコリメートした上でレンズアレイ本体4の内部へと進行させる。
【0039】
また、図1および図3に示すように、レンズアレイ2は、第2の面としてのレンズアレイ本体4における光ファイバ5の端面5aに臨む図1の左端面4b(平面)に、第1のレンズ面11と同数の複数の第2のレンズ面(凸レンズ面)12を有している。これら複数の第2のレンズ面12は、第1のレンズ面11の整列方向と同方向に整列するように形成されている。各第2のレンズ面12は、第1のレンズ面11と同一ピッチで形成されている。なお、各第2のレンズ面12上の光軸OA(2)は、各第2のレンズ面12に対応する各光ファイバ5の端面5aの中心軸と同軸上に配置されていることが望ましい。
【0040】
このような各第2のレンズ面12には、図1に示すように、各第2のレンズ面12に対応する各第1のレンズ面11にそれぞれ入射してレンズアレイ本体4の内部の光路を進行してきた各発光素子7ごとのレーザ光Lが、その中心軸を各第2のレンズ面12上の光軸OA(2)と一致させた状態でそれぞれ入射する。そして、各第2のレンズ面12は、入射した各発光素子7ごとのレーザ光Lを、各第2のレンズ面12に対応する各光ファイバ5の端面5aに向けてそれぞれ出射させる。
【0041】
このようにして、各発光素子7と各光ファイバ5の端面5aとが第1のレンズ面11および第2のレンズ面12を介して光学的に結合されるようになっている。
【0042】
さらに、図1および図5に示すように、レンズアレイ本体4の下端面4aにおける第1のレンズ面11に対する図1の左部近傍位置には、受光素子8と同数(本実施形態においては、発光素子7、光ファイバ5、第1のレンズ面11および第2のレンズ面12とも同数)の第3のレンズ面13が形成されている。各第3のレンズ面13は、受光素子8に対応する所定の整列方向すなわち第1のレンズ面11の整列方向と同方向に整列するように形成されている。また、各第3のレンズ面13は、各受光素子8と同一ピッチで形成されている。なお、各第3のレンズ面13上の光軸OA(3)は、各第3のレンズ面13にそれぞれ対応する各受光素子8の受光面の中心軸に一致することが望ましい。
【0043】
このような各第3のレンズ面13には、図1に示すように、レンズアレイ本体4の内部側から各第3のレンズ面13にそれぞれ対応する各発光素子7ごとのモニタ光Mが入射する。そして、各第3のレンズ面13は、入射した各発光素子7ごとのモニタ光Mを、各第3のレンズ面13に対応する各受光素子8に向けてそれぞれ出射させる。
【0044】
さらにまた、図1および図4に示すように、レンズアレイ本体4は、図1における右上端部に、全反射面4dを有しており、この全反射面4dは、その上端部がその下端部よりも図1における左側(すなわち、後述する凹部14側)に位置するような傾斜面に形成されている。この全反射面4dは、第1のレンズ面11と後述する凹部14の第1の光学面14aとの間の各発光素子7ごとのレーザ光Lの光路上に配置されている。
【0045】
このような全反射面4dには、図1に示すように、各第1のレンズ面11にそれぞれ入射した後の各発光素子7ごとのレーザ光Lが、図1における下方から臨界角以上の入射角で入射する。そして、全反射面4dは、入射した各発光素子7ごとのレーザ光Lを、図1における左側に向かって全反射させる。
【0046】
なお、全反射面4d上に、Au、Ag、Al等からなる反射膜をコーティングしてもよい。
【0047】
また、図1および図2に示すように、第3の面としてのレンズアレイ本体4における図1の上端面4c(平面)には、凹部14が、第1のレンズ面11と第2のレンズ面12とを結ぶ光路上に位置するように凹入形成されている。なお、上端面4cは、下端面4aに対して平行に形成されている。
【0048】
ここで、図1に示すように、凹部14は、その内面の一部(凹部14の図1における右側面)をなす第1の光学面14aを有している。この第1の光学面14aは、その上端部がその下端部よりも図1における右側(すなわち、全反射面4d側)に位置するような左端面4bに対して所定の傾斜角を有する傾斜面に形成されている。
【0049】
このような第1の光学面14aには、図1に示すように、全反射面4dによって全反射された各発光素子7ごとのレーザ光Lが、所定の入射角で入射する。ただし、第1の光学面14aへの各発光素子7ごとのレーザ光Lの入射方向は、左端面4bに対して垂直となっている。
【0050】
また、図1に示すように、凹部14は、その内面の一部であって、第1の光学面14aに対して図1の左方において対向する部位(凹部14の図1における左側面)をなす第2の光学面14bを有しており、この第2の光学面14bは、左端面4bに対して平行に形成されている。
【0051】
このような第2の光学面14bには、図1に示すように、第1の光学面14aに入射した後に各第2のレンズ面12側に向かって進行した各発光素子7ごとのレーザ光Lが垂直入射する。そして、第2の光学面14bは、入射した各発光素子7ごとのレーザ光Lを垂直に透過させる。
【0052】
さらに、図1に示すように、凹部14がなす空間内には、縦断面台形状のプリズム16が配置されており、このプリズム16は、レンズアレイ本体4と同一の屈折率に形成されている。なお、プリズム16は、レンズアレイ本体4と同一の材料(例えば、ポリエーテルイミド等の樹脂材料)によって形成してもよい。例えば、レンズアレイ本体4とプリズム16とをポリエーテルイミドとしてのSABIC社製Ultem(登録商標)によって形成した場合には、レンズアレイ本体4およびプリズム16の屈折率は、波長850nmの光について1.64となる。
【0053】
この他にも、レンズアレイ本体4とプリズム16とを、環状オレフィン樹脂としてのJSR社製のARTON(登録商標)によって形成した場合には、波長850nmの光についての屈折率が1.50となる。
【0054】
ここで、図1に示すように、プリズム16は、その表面の一部(プリズム16の図1における右側面)をなす第1のプリズム面16aを有しており、この第1のプリズム面16aは、第1の光学面14aに対して図1における左方向に所定の間隔をもって臨む位置に、第1の光学面14aに対して平行に配置されている。
【0055】
また、図1に示すように、プリズム16は、その表面の一部(プリズム16の図1における左側面)をなす第2のプリズム面16bを有している。この第2のプリズム面16bは、第2の光学面14bに対して図1における右方向に所定の間隔をもって臨む位置に、第2の光学面14bに対して平行に配置されている。
【0056】
このプリズム16は、第1の光学面14aに入射した後に第2のレンズ面12側に向かって進行する各発光素子7ごとのレーザ光Lの光路を形成するようになっている。
【0057】
さらに、図1に示すように、第1のプリズム面16a上には、均一な厚みを有する薄肉の反射/透過層17が配置されている。この反射/透過層17は、その第1のプリズム面16a側の表面が第1のプリズム面16aに密接している。
【0058】
さらにまた、図1に示すように、反射/透過層17と第1の光学面14aとの間には、均一な厚みを有する透光性の所定の屈折率の粘着シート15が配置されており、この粘着シート15は、その反射/透過層17側の表面が反射/透過層17に密接しているとともに、その第1の光学面14a側の表面が第1の光学面14aに密接している。そして、この粘着シート15によって、プリズム16が反射/透過層17を介してレンズアレイ本体4(より具体的には、第1の光学面14a)に貼り付けられている。この粘着シート15としては、例えば、巴川製紙所製のFitwell(登録商標)のような粘着性を有する薄肉(例えば、20μm)の屈折率整合フィルム等を用いることができる。
【0059】
ここで、図1に示すように、第1の光学面14aに入射した各発光素子7ごとのレーザ光Lは、粘着シート15を透過した後に反射/透過層17に入射する。そして、反射/透過層17は、入射した各発光素子7ごとのレーザ光Lを、所定の反射率で第3のレンズ面13側に反射させるとともに、所定の透過率でプリズム16側に透過させる。
【0060】
この際に、反射/透過層17は、図1に示すように、反射/透過層17に入射した各発光素子7ごとのレーザ光Lのそれぞれの一部(反射率分の光)を、各発光素子7にそれぞれ対応する各発光素子7ごとのモニタ光Mとして各モニタ光Mに対応する各第3のレンズ面13側に向かって反射させる。
【0061】
そして、このようにして反射/透過層17によって反射された各発光素子7ごとのモニタ光Mは、各第3のレンズ面13側に向かってレンズアレイ本体4の内部を進行した後に、各第3のレンズ面13からこれらに対応する各受光素子8に向けてそれぞれ出射される。
【0062】
ここで、例えば、反射/透過層17を、第1のプリズム面16a上にCrの単層膜を公知のコーティング技術を用いてコーティングすることによって形成した場合には、例えば、反射/透過層17の反射率を30%、透過率を30%(吸収率40%)とすることができる。なお、NiやAl等のCr以外の単一金属の単層膜によって反射/透過層17を形成してもよい。また、反射/透過層17を、第1のプリズム面16a上にTiOやSiO等からなる公知の誘電体多層膜を公知のコーティング技術を用いてコーティングすることによって形成した場合には、例えば、反射/透過層17の反射率を20%、透過率を80%とすることができる。この他にも、反射/透過層17の反射率および透過率としては、レーザ光Lの出力をモニタするために十分とみなされる光量のモニタ光Mを得ることができる限度において、反射/透過層17の材質や厚み等に応じた所望の値を設定することができる。また、反射/透過層17のコーティングには、インコーネル蒸着等のコーティング技術を用いてもよい。さらに、例えば、ガラスフィルタによって反射/透過層17を構成してもよい。
【0063】
一方、反射/透過層17によって透過された各発光素子7ごとのレーザ光Lは、透過の直後に第1のプリズム面16aに入射する。そして、第1のプリズム面16aに入射した各発光素子7ごとのレーザ光Lは、プリズム16の内部の光路上を第2のレンズ面12側に向かって進行する。
【0064】
このとき、プリズム16がレンズアレイ本体4と同屈折率に形成されていることによって、プリズム16の内部における各発光素子7ごとのレーザ光Lの光路を、全反射面4dと第1の光学面14aとを結ぶレーザ光Lの光路に対して平行に維持することができる。
【0065】
このことを詳細に説明すると、まず、第1の光学面14a、粘着シート15と反射/透過層17との界面および第1のプリズム面16aが互いに平行であることを前提として、以下の(1)および(2)の各式が成立する。
【0066】
(第1の光学面におけるスネルの法則)
sinθ=nsinθ (1)
(第1のプリズム面におけるスネルの法則)
sinθ=nsinθ (2)
【0067】
ただし、(1)および(2)式において、nは、レンズアレイ本体4およびプリズム16の屈折率であり、nは、粘着シート15の屈折率である。これらnおよびnは、いずれも同一の波長の光を基準としている。また、(1)式におけるθは、第1の光学面14aへの各発光素子7ごとのレーザ光Lの入射角である。さらに、(1)および(2)式におけるθは、第1の光学面14aからの各発光素子7ごとのレーザ光Lの出射角であって、第1のプリズム面16aへの各発光素子7ごとのレーザ光Lの入射角である。ただし、ここでは、レンズアレイ本体4、粘着シート15およびプリズム16に比較して、反射/透過層17の厚み(光路方向の寸法)が極めて薄いことから、反射/透過層17におけるレーザ光Lの屈折は無視している。また、(2)式におけるθは、第1のプリズム面16aからの各発光素子7ごとのレーザ光Lの出射角である。θ〜θの基準(0°)は、いずれも第1の光学面14aの面法線方向にとられている。
【0068】
ここで、(1)式の右辺と(2)式の左辺とが共通することから、次式が導かれる。
【0069】
sinθ=nsinθ (3)
【0070】
そして、(3)式より、θ=θとなる。このことは、プリズム16の内部における各発光素子7ごとのレーザ光Lの光路が、全反射面4dと第1の光学面14aとを結ぶレーザ光Lの光路に対して平行であることを示していることに他ならない。
【0071】
かくして全反射面4dと第1の光学面14aとを結ぶレーザ光Lの光路に対する平行性を維持しつつ、プリズム16内の光路上を進行した各発光素子7ごとのレーザ光Lは、図1に示すように、第2のプリズム面16bに垂直入射するとともに、この第2のレンズ面16bからプリズム16の外部に垂直に出射される。
【0072】
また、図1に示すように、レンズアレイ本体4は、第2の光学面14bと第2のプリズム面16bとの間に充填された所定の屈折率の充填材18を有している。ここで、図1に示すように、充填材18における第2のプリズム面16b側の表面(以下、入射側の表面と称する)18aには、第2のプリズム面16bから出射された各発光素子7ごとのレーザ光Lが出射の直後に垂直入射する。そして、入射側の表面18aに入射した各発光素子7ごとのレーザ光Lは、充填材18の内部の光路上を第2のレンズ面12側に向かって進行する。さらに、この充填材18の内部の光路上を進行した各発光素子7ごとのレーザ光Lは、充填材18における第2の光学面14b側の表面(以下、出射側の表面と称する)18bに垂直入射するとともに、この出射側の表面18bから充填材18の外部に垂直に出射される。
【0073】
このようにして充填材18から垂直に出射された各発光素子7ごとのレーザ光Lは、出射の直後に、前述のように第2の光学面14bに垂直入射する。そして、第2の光学面14bに入射した各発光素子7ごとのレーザ光Lは、第2の光学面14b以後のレンズアレイ本体4の内部の光路上を各第2のレンズ面12側に向かって進行した後に、各第2のレンズ面12によって、これらに対応する各光ファイバ5の端面5aに向けてそれぞれ出射される。
【0074】
以上の構成によれば、第1のレンズ面11に入射した各発光素子7ごとのレーザ光Lを、粘着シート15と第1のプリズム面16aとの間の反射/透過層17によって各第2のレンズ面12側および各第3のレンズ面13側にそれぞれ分光し、各第3のレンズ面13側に分光されたモニタ光Mを、各第3のレンズ面13によって各受光素子8側に出射させることができる。この結果、モニタ光Mを確実に得ることができ、また、このようなモニタ光Mを得るための構成として、ある程度の面積を有する形成が容易な反射/透過層17を採用することによって、レンズアレイ2を容易に製造することができる。
【0075】
また、本実施形態によれば、プリズム16をレンズアレイ本体4と同屈折率に形成することによって、プリズム16内での各発光素子7ごとのレーザ光Lの光路を左端面4bに対して垂直に維持することができる。さらに、このようなプリズム16の内部の光路上を進行した各発光素子7ごとのレーザ光Lを、第2のプリズム面16bおよび第2の光学面14bに順次垂直入射させることができる。これにより、レンズアレイ本体4の内部における各発光素子7ごとのレーザ光Lの光路を、第1の光学面14aに対する入射側(図1における全反射面4dと第1の光学面14aとの間)と第2の光学面14bに対する出射側とで互いに平行にすることができる。この結果、例えば、製品検査の際に、各第2のレンズ面12に入射する各発光素子7ごとのレーザ光Lが各2のレンズ面12の中心からずれていることが確認された場合に、これを補正するための寸法調整(金型形状の変更等)を要する箇所を少なくすることができる。具体的には、仮に、第1の光学面14aに対する入射側の光路と第2の光学面14bに対する出射側の光路との平行性を確保できない構成の場合には、第2のレンズ面12に対する入射光の軸ずれを許容限度内に補正するために、凹部14の各光学面14a、14bやプリズム16の各プリズム面16a、16bの寸法(傾斜角を含む)の調整を要する場合がある。
【0076】
これに対して、本実施形態においては、全反射面4dにおける全反射方向が左端面4bに垂直であること、および、第2の光学面14bならびに第2のプリズム面16bが左端面4bに平行であることについての寸法精度が確保されれば、各面14a、14b、16a、16bにそれぞれ最適な傾斜角を設定し直すような複雑な寸法調整は要しない。これにより、更なるレンズアレイ2の製造の容易化に寄与することができる。
【0077】
さらに、本実施形態によれば、第2の光学面14bを左端面4bに平行に形成することによって、第2の光学面14bの設計および寸法精度の測定を簡便化することができる。
【0078】
さらにまた、本実施形態においては、第2の光学面14bと第2のプリズム面16bとの間に充填材18が充填されていることによって、第2の光学面14bにキズが形成されている場合であっても、このキズを原因とした第2の光学面14bにおけるレーザ光Lの反射または散乱を抑制することができる。このような充填材18による反射/散乱光の抑制作用は、すりガラスに水滴を落とすと、その部分の凹凸が水に覆われて透明になることと同様の原理である。ここで、レーザ光Lの反射や散乱は、迷光の発生やファイバ端5aへのレーザ光Lの結合効率の低下を招くため、これを抑制することは光学性能を確保する上で大いに意義がある。特に、このような反射/散乱光の抑制作用は、レンズアレイ本体4を、金型を用いた樹脂材料(ポリエーテルイミド等)の射出成形によって一体成形する場合に有効である。すなわち、レンズアレイ本体4を射出成形する場合には、凹部14の形状が転写された成形品を金型から離型することになるが、本実施形態においては、前述のように、設計および寸法精度測定の簡便化等の観点から第2の光学面14bが左端面4bに平行(換言すれば、上端面4cに垂直)に形成されている。このため、離型の際には、金型が、第2の光学面14bの面方向に摺動するようにして図1の上方向に相対移動することによって離型が行われることになり、第2の光学面14bが傷つきやすくなる。したがって、このようなキズの発生頻度が高い第2の光学面14bの構成上、キズがもたらす光学性能上の不具合を回避する充填材18を設ける意義はきわめて大きい。したがって、本実施形態によれば、第2の光学面14bを左端面4bに平行に形成することによる製造および取り扱い(例えば、寸法精度測定)の容易化と、第2の光学面14bにおける反射/散乱光を抑えることによる迷光の発生および結合効率の低下の抑制(すなわち光学性能の確保)とを両立させることができる。
【0079】
また、前述のように、反射/透過層17を、第1のプリズム面16a上に単一金属の単層膜や誘電体多層膜をコーティングすることによって形成すれば、反射/透過層17の構成を簡素化することができるので、更なる製造の容易化を実現することができる。さらに、コーティングによって反射/透過層17を極めて薄く(例えば、1μm以下に)形成することができるので、各発光素子7ごとのレーザ光Lが反射/透過層17を透過する際の屈折によって生じるレーザ光Lの横ずれ(図1における縦方向への移動量)を、無視できるレベルまで小さくすることができる。これにより、第1の光学面14aに対する入射側の光路と第2の光学面14bに対する出射側の光路とを同一線上に近づけることができるので、設計の際に、第2のレンズ面12の位置を簡便に決定することができ、更なる製造の容易化に寄与することができる。
【0080】
さらに、好ましくは、粘着シート15を、レンズアレイ本体4との屈折率差が0.35以下(より好ましくは、0)となるように構成する。このようにすれば、各発光素子7ごとのレーザ光Lが粘着シート15を透過する際の屈折を抑制することができるので、この粘着シート15の透過時におけるレーザ光Lの横ずれを抑えることができる。なお、屈折率差を0にすれば屈折が全く生じないことは言うまでもない。これにより、第1の光学面14aに対する入射側の光路と第2の光学面14bに対する出射側の光路とをほぼ同一線上に位置させることができるので、設計の際に第2のレンズ面12の位置を更に簡便に決定することができ、更なる製造の容易化に寄与することができる。
【0081】
さらにまた、充填材18として透光性の接着材を用いるとともに、この充填材18によってプリズム16をレンズアレイ本体4に接着してもよい。このようにすれば、粘着シート15だけの場合よりも更に強固にプリズム16をレンズアレイ本体4に固定することができるので、耐衝撃性等の機械的な強度を向上させることができる。また、充填材18が、プリズム16をレンズアレイ本体4に接着する接着材を兼ねることができるので、コストを削減することができる。なお、このような透光性の接着剤を兼ねる充填材18としては、例えば、熱硬化性樹脂または紫外線硬化性樹脂を用いることができる。
【0082】
また、好ましくは、充填材18を、レンズアレイ本体4との屈折率差が所定値としての0.35以下(より好ましくは、0)となるように構成する。このようにすれば、第2のプリズム面16bと充填材18との界面におけるフレネル反射および充填材18と第2の光学面14bとの界面におけるフレネル反射を抑制することができるので、迷光の発生および結合効率の低下を更に確実に抑制することができる。なお、レンズアレイ本体4を前述したSABIC社製Ultemによって形成する場合に、これに対応する充填材18としては、例えば、三菱ガス化学社製LPC1101を用いることができる。この製品は、メーカ公表値のd線に対する屈折率およびアッベ数を下に計算された波長850nmの光の屈折率が1.66とされている。この場合、充填材18は、レンズアレイ本体4との屈折率差が0.02(λ=850nm基準)となる。この他にも、レンズアレイ本体4を前述したJSR社製のARTONによって形成する場合は、これに対応する好適な充填材18としては、UV硬化樹脂としての(株)テクス製のA1754Bを用いることができる。この製品は、波長850nmの光の屈折率が1.50とされており、この場合には、レンズアレイ本体4と充填材18との屈折率差が0となる。
【0083】
さらに、好ましくは、全反射面4dの傾斜角を、下端面4aを基準(0°)として図1における時計回りに40°〜50°(より好ましくは、45°)とする。また、第1の光学面14aの傾斜角を、下端面4aを基準(0°)として図1における反時計回りに40°〜50°(より好ましくは、45°)とする。このようにすれば、全反射面4dに入射した各発光素子7ごとのレーザ光Lを凹部14側に向かって全反射させるとともに、第1の光学面14aに入射したレーザ光Lを第2のレンズ面12側と第3のレンズ面13側とに分光するのに無理がない設計が可能となる。特に、全反射面4d、第1の光学面14aの傾斜角を45°とした場合には、各面4d、14aの設計や寸法精度測定が更に簡便なものとなる。
【0084】
さらにまた、下端面4aと左端面4bとを互いに垂直に形成し、また、第1のレンズ面11上の光軸OA(1)および第3のレンズ面13上の光軸OA(3)を下端面4aに垂直に形成し、さらに、第2のレンズ面12上の光軸OA(2)を左端面4bに垂直に形成してもよい。このようにすれば、発光素子7と受光素子8とを結ぶ光路および発光素子7と光ファイバ5の端面5aとを結ぶ光路を確保するためにレンズアレイ2に要求される寸法精度を緩和することができ、更なる製造の容易化を実現することができる。すなわち、例えば、仮に、第3のレンズ面13上の光軸OA(3)を第1のレンズ面11上の光軸OA(1)に対して鋭角の傾きを有するように構成する場合には、図1における縦方向のわずかな寸法誤差によって、第3レンズ面13から出射されたモニタ光Mが受光素子8に結合しない虞がある。これに対して、本実施形態のように第1のレンズ面11上の光軸OA(1)と第3のレンズ面13上の光軸OA(3)とを互いに平行に形成すれば、たとえレンズアレイ2に図1における縦方向のわずかな寸法誤差が生じたとしても、第3レンズ面13から出射されたモニタ光Mは、そのビーム径が設計値に対して大きくまたは小さくなるだけで、各受光素子8に適正に受光されることになる。また、仮に、第2のレンズ面12上の光軸OA(2)を第1のレンズ面11上の光軸OA(1)に対して直角以外の角度を有するように構成する場合には、図1における横方向のわずかな寸法誤差によって、第2レンズ面12から出射されたレーザ光Lが光ファイバ5の端面に結合しない虞がある。これに対して、本実施形態のように、第1のレンズ面11上の光軸OA(1)と第2のレンズ面12上の光軸OA(2)とを互いに垂直に形成すれば、たとえレンズアレイ2に図1における横方向のわずかな寸法誤差が生じたとしても、第2レンズ面12から出射されたレーザ光Lは、そのビーム径が設計値に対して若干大きくまたは小さくなるだけで、光ファイバ5の端面に適正に結合されることになる。
【0085】
上記構成に加えて、さらに、本実施形態においては、図1および図2に示すように、凹部14が、上端面4cの面法線方向(図1における上方)から見た場合に、凹部14における底面(図1における下端面)14eおよび全ての側面14a〜dが、凹部14における開口部14fの外形によって示される範囲以内に収まるような形状に形成されている。換言すれば、凹部14は、底面14eおよび全ての側面14a〜dのそれぞれについての上端面4cの面法線方向への投影面が、開口部14fの外形によって示される範囲以内に収まるように形成されている。なお、図2に示すように、開口部14fは、図2における縦方向に長尺な長方形状に形成されているとともに、上端面4cに四方を囲まれている。また、第1の光学面14a以外の側面14b〜dは、上端面4cに垂直に形成されている。このような構成によれば、凹部14を金型からの離型性を確保することができる形状に形成することができるので、金型を用いたレンズアレイ2の効率的な製造を実現することができる。
【0086】
なお、第3のレンズ面13およびこれに対応する受光素子8は、必ずしも発光素子7と同数設ける必要はなく、少なくとも1組設けるようにすればよい。この場合には、反射/透過層17において、各第1のレンズ面11に入射した各発光素子7ごとのレーザ光Lのうち、対応する第3のレンズ面13が存在するレーザ光Lのみが、モニタ光Mとして反射されるようになり、他のレーザ光Lは、反射されるもののモニタ光Mとしては利用されないこととなる。
【0087】
また、図1の構成では、プリズム16の上端面16cがレンズアレイ4の上端面4cと同一平面上に位置されており、プリズム16の下端面16dが凹部14の底面14eに接しているが、仮に、図6に示すように、プリズム16の上端面16cがレンズアレイ4の上端面4cよりも上方に突出された状態でプリズム16の接着がなされた場合であっても、光学性能に影響はない。
【0088】
さらに、下端面4aにおける光電変換素装置3に臨む部位に、下端面4aに平行な底面を有するザグリ部を凹設し、このザグリ部の底面(第1の面となる)に第1のレンズ面11および第3のレンズ面13を形成してもよい。この場合には、下端面4aにおけるザグリ部の内周縁部に半導体基板6を当接させた状態で、光電変換素装置3をレンズアレイ2に固定すればよい。
【0089】
(第2実施形態)
次に、本発明に係るレンズアレイおよびこれを備えた光モジュールの第2実施形態について、第1実施形態との差異を中心に図7〜図12を参照して説明する。
【0090】
なお、第1実施形態と構成が同一もしくはこれに類する箇所については、同一を符号を用いて説明する。
【0091】
図7は、本実施形態における光モジュール21の概要を、本実施形態におけるレンズアレイ22の縦断面図とともに示した概略構成図である。図8は、図7に示すレンズアレイ22の平面図である。図9は、図8の左側面図である。図10は、図8の右側面図である。図11は、図8の下面図である。
【0092】
本実施形態においては、第1実施形態との差異の1つとして、光電変換素装置3および光ファイバ5をレンズアレイ22に固定する際に、光電変換素装置3および光ファイバ5の位置決めを機械的に行うための手段が講じられている。
【0093】
すなわち、図7および図11に示すように、本実施形態において、第1のレンズ面11および第2のレンズ面12は、レンズアレイ本体4の下端面4aに凹設された第1のザグリ部23の底面23a(本実施形態における第1の面)に形成されている。この第1のザグリ部23の底面23aは、下端面4aに対して平行に形成されている。図11に示すように、第1のザグリ部23の図11における縦方向(以下、レンズ整列方向と称する)における幅は、レンズ整列方向における最も外側に形成されたレンズ面11、13よりもわずかに外側に至るような幅に形成されている。そして、本実施形態においては、レンズアレイ本体4のレンズ整列方向における幅が、第1のザグリ部23のレンズ整列方向における幅よりも大きく形成されており、これにともなって、図11に示すように、下端面4aが、第1のザグリ部23に対してレンズ整列方向における両外側方向に延出されている。そして、図11に示すように、この下端面4aにおける第1のザグリ部23からレンズ整列方向における両外側方向に延出した各延出部分には、光電変換素装置3の位置決め構造として、第1のザグリ部23を挟んで2つずつの合計4つの平面円形状の嵌合穴部24が形成されている。これらの嵌合穴部24には、半導体基板6が下端面4aの延出部分に当接した状態で、半導体基板6を貫通する図示しない嵌合ピンが嵌合されるようになっている。これによって、レンズアレイ22に光電変換素装置3を固定する際の光電変換素装置3の位置決めを機械的に行うことができるようになっている。
【0094】
また、図7および図9に示すように、本実施形態において、第2のレンズ面12は、レンズアレイ4の左端面4bに凹設された第2のザグリ部26の底面26a(本実施形態における第2の面)に形成されている。この第2のザグリ部26の底面26aは、左端面4bに対して平行に形成されている。図9に示すように、第2のザグリ部26のレンズ整列方向における幅は、レンズ整列方向における最も外側に形成されたレンズ面12よりもわずかに外側に至るような幅に形成されている。そして、図9に示すように、本実施形態においては、左端面4bが、第2のザグリ部26に対してレンズ整列方向における両外側方向に延出されており、これらの各延出部分には、光ファイバ5の位置決め構造として、図9に示すように、第2のザグリ部26を挟んで1つずつの合計2つの嵌合ピン27が凸設されている。これらの嵌合ピン27は、コネクタ10を左端面4bの各延出部分に当接させた状態で、コネクタ10に形成された図示しない嵌合穴部に嵌合されるようになっている。これによって、レンズアレイ22に光ファイバ5を固定する際の光ファイバ5の位置決めを機械的に行うことができるようになっている。
【0095】
また、図7に示すように、本実施形態においては、第1実施形態との差異の1つとして、凹部14が、第1の光学面14aおよび第2の光学面14bよりも上方に向かって延出形成されており、これにともなって、レンズアレイ本体4の上端部が、プリズム16の上端面16cよりも上方に位置されている。
【0096】
なお、図7において、レンズアレイ本体4の上端部は、凹部14の左側においては、平面すなわち上端面4cとなっており、凹部14の右側においては、凹部14の内面における第1の光学面14aから上方に延出した部分と全反射面4dの延長部分とが交差されてなる稜線となっている。
【0097】
さらに、図7に示すように、本実施形態においては、充填材18が、第2のプリズム面16bと第2の光学面14bとの間だけでなく、レンズアレイ本体4の上端部とプリズム16の上端面16cとの段差を埋めるようにして、プリズム16の上端面16c上にも充填されている。
【0098】
このような本実施形態の構成においても、第1実施形態と同様の優れた作用効果を奏することができる。また、本実施形態においては、レンズアレイ22に対する光電変換素装置3および光ファイバ5の位置決めを、位置決め構造24、27を用いて簡便に行うことができるので、光電変換素装置3および光ファイバ5をレンズアレイ22に簡便に固定することができる。さらに、本実施形態においては、第1実施形態よりも充填材18が増量されているとともに、プリズム16と凹部14との接着面積が増加していることによって、プリズム16をレンズアレイ本体4に更に強固に固定することができる。
【0099】
なお、前述した嵌合穴部24の代わりに、レンズアレイ本体4を貫通する嵌合穴部24と同径の貫通孔を形成してもよい。また、光ファイバ5の位置決め構造は、レンズアレイ本体4側が嵌合穴部または貫通孔であるとともに、光ファイバ5側が嵌合ピンであってもよい。同様に、光電変換素装置3の位置決め構造は、レンズアレイ本体4側が嵌合ピンであり、光電変換素装置3側が嵌合穴部または貫通孔であってもよい。なお、光ファイバ5および光電変換素装置3の位置決めは、機械的な位置決めに限定されるものではなく、例えば、レンズアレイ本体4に形成したマークを光学的に認識することによる光学的な方法によって行うようにしてもよい。
【0100】
(変形例)
次に、図12は、本実施形態の変形例を示したものである。本変形例におけるレンズアレイ22は、凹部14の側面のうち、第2の光学面14bを含む図12の左側面のみが、プリズム16の上端面16cよりも上方に延出されており、他の部分は、プリズム16の上端面16cと同じ高さまで形成されている。そして、本変形例においては、充填材18が、第2のプリズム面16bと第2の光学面14bとの間だけでなく、これよりも上方に溢れるようにして凹部14の左側面における第2の光学面14bに対する上方への延出部位およびプリズム16の上端面16cにおける左端部側の所定範囲の領域にまで亘るように充填されている。
【0101】
(第3実施形態)
次に、本発明に係るレンズアレイおよびこれを備えた光モジュールの第3実施形態について、第1および第2実施形態との差異を中心に図13〜図17を参照して説明する。
【0102】
なお、第1および第2実施形態と構成が同一もしくはこれに類する箇所については、同一を符号を用いて説明する。
【0103】
図13は、本実施形態における光モジュール30の概要を、本実施形態におけるレンズアレイ31の縦断面図とともに示した概略構成図である。図14は、図13に示すレンズアレイ31の平面図である。図15は、図14の右側面図である。
【0104】
図13に示すように、本実施形態においては、凹部14の側面が第1の光学面14aおよび第2の光学面14bよりも上方に延出され、充填材18がプリズム16の上端面16cに亘るように充填されている点では、第2実施形態と構成が類似している。
【0105】
ただし、本実施形態においては、第2実施形態とは異なり、凹部14の内面の一部に、プリズム16の凹部14内への設置を補助するための特徴的な面形状が形成されている。すなわち、図13に示すように、本実施形態においては、凹部14の底面14eが2段構造に形成されており、凹部14の底面14eにおけるプリズム16に対して図13における左側に位置する部位が、凹部の底面14eにおける残余の部位(プリズム16の下端面16dに接する部位)よりも上方に突出されている。なお、底面14eにおける残余の部位は、その図13における横方向の寸法が、プリズム16の下端面16dの同方向の寸法に一致している。
【0106】
そして、このような2段構造の凹部14の底面14eによれば、プリズム16を凹部14内に充填材18の充填スペースを確保しつつ設置する際に、プリズム16の図13における横方向へのがたつきを底面14eの段差によって規制することによって、プリズム16の凹部14内への設置を補助することができる。
【0107】
したがって、本実施形態によれば、第1実施形態の優れた作用効果を奏することができる上に、プリズム16を凹部14に接着する際のプリズム16の設置を簡便に行うことができ、レンズアレイ31をより簡便に製造することができるといった更に顕著な効果を奏することができる。
【0108】
(第1の変形例)
次に、図16は、本実施形態の第1の変形例を示したものである。本変形例におけるレンズアレイ31は、図7〜図11に示した第2実施形態のレンズアレイ22の凹部14の底面14eを、図13と同様の2段構造にしたものに相当する。
【0109】
本変形例のレンズアレイ31においても、図13〜図15に示したレンズアレイ31と同様に、プリズム16を凹部14内に充填材18の充填スペースを確保しつつ設置する際に、プリズム16の図16における横方向へのがたつきを底面14eの段差によって規制することによって、プリズム16の凹部14内への設置を補助することができる。
【0110】
(第2の変形例)
次に、図17は、本実施形態の第2の変形例を示したものである。本変形例におけるレンズアレイ31は、図13または図16に示した構成において、プリズム16の底面16dの図17における横方向の寸法を、2段構造の凹部14の底面14eにおける下段側の部位の同方向の寸法よりも大きくすることによって、プリズム16の底面16dと凹部14の底面14eにおける下段側の部位との間に意図的に間隙が形成されるようにしたものである。本変形例のレンズアレイ31によれば、図17に示すように、プリズム16の底面16dと凹部14の底面14eにおける下段側の部位との間にまでも充填材18を充填させることができるので、プリズム16をより強固にレンズアレイ本体4に固定することができる。また、本変形例のレンズアレイ31によれば、レンズアレイ本体4が、その第1の光学面14aおよび底面14eの段差部を介してプリズム16を左右から挟むように支承することができるので、プリズム16を凹部14内に安定的に配置することができ、また、充填材18を用いたプリズム16の固定作業を簡便に行うことができる。
【0111】
なお、本発明は、前述した実施の形態に限定されるものではなく、本発明の特徴を損なわない限度において種々変更することができる。
【0112】
例えば、前述のように、反射/透過層17を第1のプリズム面16a上に形成することは、レンズアレイ本体4を樹脂材料によって一体成形する上で都合が良いが、コンセプトに応じては、図18に示すように、反射/透過層17を、第1の光学面14a上にコーティング等によって形成してもよい。この場合には、図18に示すように、第1のプリズム面16aと第1の光学面14a上の反射/透過層17との間に粘着シート15が配置され、この粘着シート15の粘着力によって、プリズム16が第1のプリズム面16aを介してレンズアレイ本体4に貼り付けられることになる。このような場合においても、第1〜第3実施形態と同様に、レンズアレイ本体4の内部における各発光素子7ごとのレーザ光Lの光路を、第1の光学面14aに対する入射側と第2の光学面14bに対する出射側とで互いに平行にすることができる。
【0113】
また、本発明を、双方向通信が可能な光モジュールに適用してもよい。この場合には、上記の各構成に加えて、更に、光信号の受信用の光ファイバを備え、また、レンズアレイ本体4に光信号の受信用のレンズ面を形成し、さらに、光電変換素装置3に光信号の受信用の受光素子を備えるようにすればよい。
【0114】
さらに、レンズアレイ本体4を、樹脂材料以外の透光性材料(例えば、ガラス)によって形成してもよい。
【0115】
さらにまた、本発明は、シート状の光導波路等の光ファイバ5以外の光伝送体にも有効に適用することができる。
【符号の説明】
【0116】
1 光モジュール
2 レンズアレイ
3 光電変換装置
4 レンズアレイ本体
5 光ファイバ
7 発光素子
8 受光素子
11 第1のレンズ面
12 第2のレンズ面
13 第3のレンズ面
14 凹部
14a 第1の光学面
14b 第2の光学面
15 粘着シート
16 プリズム
16a 第1のプリズム面
16b 第2のプリズム面
17 反射/透過層
18 充填材

【特許請求の範囲】
【請求項1】
複数の発光素子が整列形成されるとともに前記複数の発光素子の少なくとも1つから発光された光をモニタするためのモニタ光を受光する少なくとも1つの受光素子が形成された光電変換装置と、光伝送体との間に配置され、前記複数の発光素子と前記光伝送体の端面とを光学的に結合可能とされたレンズアレイであって、
レンズアレイ本体における前記光電変換装置に臨む第1の面に、前記複数の発光素子に対応する所定の整列方向に整列するように形成され、前記複数の発光素子ごとに発光された光がそれぞれ入射する複数の第1のレンズ面と、
前記レンズアレイ本体における前記光伝送体の端面に臨む第2の面に、前記第1のレンズ面の整列方向に沿って整列するように形成され、前記複数の第1のレンズ面にそれぞれ入射した前記複数の発光素子ごとの光を、前記光伝送体の端面に向けてそれぞれ出射させる複数の第2のレンズ面と、
前記レンズアレイ本体における前記第1の面に形成され、前記レンズアレイ本体の内部側から入射した前記モニタ光を前記受光素子に向けて出射させる少なくとも1つの第3のレンズ面と、
前記レンズアレイ本体に、前記第1のレンズ面と前記第2のレンズ面とを結ぶ光路上に位置するように凹入形成された凹部と、
この凹部における内面の一部をなすとともに、前記第2の面に対して所定の傾斜角を有するように形成され、前記複数の第1のレンズ面に入射した前記複数の発光素子ごとの光が前記第2の面に対して垂直な入射方向から入射する第1の光学面と、
前記凹部における内面の一部であって前記第1の光学面に対向する部位をなすとともに、前記第2の面に対して平行に形成され、前記第1の光学面に入射した後に前記第2のレンズ面側に向かって進行した前記複数の発光素子ごとの光が垂直入射する第2の光学面と、
前記凹部がなす空間内に配置され、前記レンズアレイ本体と同屈折率に形成され、前記第1の光学面に入射した後に前記第2のレンズ面側に向かって進行する前記複数の発光素子ごとの光の光路を形成するプリズムと、
このプリズムにおける表面の一部をなすとともに、前記第1の光学面に臨む位置に前記第1の光学面に対して平行に配置された第1のプリズム面と、
前記プリズムにおける表面の一部であって前記第1のプリズム面に対向する部位をなすとともに、前記第2の光学面に臨む位置に前記第2の光学面に対して平行に配置された第2のプリズム面と、
前記第1のプリズム面上または前記第1の光学面上に配置され、前記第1の光学面に入射した前記複数の発光素子ごとの光を、所定の反射率で前記第3のレンズ面側に反射させるとともに所定の透過率で前記プリズム側に透過させ、その際に、前記複数の発光素子ごとの光の少なくとも1つを前記モニタ光として反射させる反射/透過層と、
前記第1のプリズム面上の反射/透過層と前記第1の光学面との間または前記第1のプリズム面と前記第1の光学面上の前記反射/透過層との間に配置され、前記プリズムを前記レンズアレイ本体に貼り付けるための所定の屈折率の粘着シートと、
前記第2の光学面と前記第2のプリズム面との間に充填された所定の屈折率の充填材と
を備えたことを特徴とするレンズアレイ。
【請求項2】
前記粘着シートは、前記レンズアレイ本体との屈折率差が所定値以下とされていること
を特徴とする請求項1に記載のレンズアレイ。
【請求項3】
前記充填材は、前記レンズアレイ本体との屈折率差が所定値以下とされていること
を特徴とする請求項1または2に記載のレンズアレイ。
【請求項4】
前記充填材は、透光性の接着材からなり、
前記プリズムは、前記充填材によって前記レンズアレイ本体に接着されていること
を特徴とする請求項1〜3のいずれか1項に記載のレンズアレイ。
【請求項5】
前記レンズアレイ本体における前記第1のレンズ面と前記第1の光学面との間の前記複数の発光素子ごとの光の光路上に配置され、前記第1のレンズ面に入射した前記複数の発光素子ごとの光を、前記第1の光学面に向けて全反射させる全反射面を備えたこと
を特徴とする請求項1〜4のいずれか1項に記載のレンズアレイ。
【請求項6】
前記第1の面と前記第2の面とが互いに垂直に形成され、
前記凹部が、前記レンズアレイ本体における前記第1の面に対向する第3の面に形成され、
前記全反射面は、その前記第3の面側の端部がその前記第1の面側の端部よりも前記凹部側に位置するような前記第1の面を基準とした45°の傾斜角を有するように形成され、
前記第1の光学面は、その前記第3の面側の端部がその前記第1の面側の端部よりも前記全反射面側に位置するような前記第1の面を基準とした45°の傾斜角を有するように形成され、
前記第1のレンズ面上の光軸および前記第3のレンズ面上の光軸が、前記第1の面に垂直に形成され、
前記第2のレンズ面上の光軸が、前記第2の面に垂直に形成されていること
を特徴とする請求項5に記載のレンズアレイ。
【請求項7】
請求項1〜6のいずれか1項に記載のレンズアレイと請求項1に記載の光電変換装置とを備えたことを特徴とする光モジュール。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2011−133807(P2011−133807A)
【公開日】平成23年7月7日(2011.7.7)
【国際特許分類】
【出願番号】特願2009−295278(P2009−295278)
【出願日】平成21年12月25日(2009.12.25)
【出願人】(000208765)株式会社エンプラス (403)
【Fターム(参考)】