説明

二軸延伸ブローボトル

【課題】 耐衝撃層間剥離性、透明性、ガスバリア性、耐圧性、耐圧均一性に優れた二軸延伸ブローボトルを提供すること。
【解決手段】 下記の構造単位(1)を含有するエチレン−ビニルアルコール共重合体で、好適には3,4−ジアシロキシ−1−ブテン、ビニルエステル系モノマーおよびエチレンを共重合して得られた共重合体をケン化することによって得られるEVOHを中間層に含有し、その両外層に熱可塑性ポリエステル樹脂を配してなる。
【化1】


(ここで、Xは結合鎖であってエーテル結合を除く任意の結合鎖で、R1〜R4はそれぞれ独立して任意の置換基であり、nは0または1を表す。)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規なエチレン−ビニルアルコール共重合体を用いた二軸延伸ブローボトルに関し、さらに詳しくは耐衝撃層間剥離性、透明性、耐圧性、耐圧均一性に優れた二軸延伸ブローボトルに関する。
【背景技術】
【0002】
一般に、エチレン−ビニルアルコール共重合体(以下、EVOHと略記する)は、その透明性、ガスバリア性、保香性、耐溶剤性、耐油性などに優れており、かかる特性を生かして、食品包装材料、医薬品包装材料、工業薬品包装材料、農薬包装材料等の各種包装材料に用いられおり、特に、容器の防湿性や炭酸ガス・香気成分のバリア性、機械的特性等の性能を向上させる目的で、EVOH層の両面にポリエステル系樹脂(主にポリエチレンテレフタレート、以下PETと略記する)を積層した多層容器が用いられている。
【0003】
最近では、炭酸を含有したソフトドリンクやアルコール飲料の耐圧ボトルとしても注目を浴びている。
一方、PETは、優れた透明性と剛性、適度なガスバリア性、保香性を有し、炭酸飲料や清涼飲料用の容器に広く使用されているが、ビールやワイン等の高度なガスバリア性を要求される用途には、そのガスバリア性は不充分であり、上記のようにEVOH層との積層により、優れたガスバリア容器としての利用が可能である。
【0004】
しかし、一般的に、PETのような熱可塑性ポリエステル系樹脂とEVOHは接着性に乏しく、その層間剥離強度や耐層間剥離性を高めるために、その層間に特定の接着性樹脂を介在させることが必要となる。
しかしながら、最近PETはリサイクルされて再生使用される状況下にあり、層間に接着性樹脂が存在すると、PETとEVOHの分離が困難となり、その結果、再生PETの品質が低下するという問題が生じるため、市場に受け入れられることが困難となっている。
【0005】
そこで、かかる接着性樹脂を使用せずにEVOH層の両面にポリエステル系樹脂(PET)層を積層した多層容器が提案されている(例えば、特許文献1参照。)。
しかし、接着樹脂を用いていない為、容器として使用されている最中にもEVOH層とPET層での層間剥離が発生することがあり、その対策として、1)複数のEVOHをブレンドする方法(例えば、特許文献2〜5参照。)、2)低ケン化のEVOHを使用する方法(例えば、特許文献6参照。)、3)他の樹脂をブレンドする方法(例えば、特許文献7〜9参照。)が提案されている。また、4)EVOHに溶融反応でエポキシ化合物をグラフトさせ、容器への熱成形性や延伸性を改善する方法(例えば、特許文献10参照。)が提案されている。
【特許文献1】特開昭61−173924号公報
【特許文献2】特開平11−348196号公報
【特許文献3】特開2001−236919号公報
【特許文献4】特開2002−210888号公報
【特許文献5】特開2002−210889号公報
【特許文献6】特開平11−348197号公報
【特許文献7】特開平11−079156号公報
【特許文献8】特開2002−210887号公報
【特許文献9】特開2002−210890号公報
【特許文献10】特開2003−320600号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、上記の各方法では耐衝撃層間剥離性は改善されるものの、1)の方法ではEVOH同士とは言え、完全に相溶するものではなく、透明性が低下したり、延伸が不均一となるためかボトルの耐圧強度が低下する傾向にあり、2)の方法ではバリア性の低下が懸念され、3)の方法でも、透明性の低下が懸念され、4)の方法では胴部の透明性は改善されるものの、EVOHとエポキシ化合物を溶融状態で反応させたEVOH組成物を中間層とするため、雑多な副反応生成物の発生を避けることができず、ロングラン成形性の低下や、安全衛生上の懸念が生じる可能性があり、また、EVOHの層厚の厚くなるボトルの底部や首部の透明性に関しては何ら考慮されていない。また、近年、省資源化の観念から、ボトルの樹脂使用量を減量させる傾向にあり、それでも耐圧性が良好で、かつ全ボトルに関して耐圧性の試験を行えるわけではないので、耐圧強度のばらつきが小さいボトルが求められている。これまでの検討ではこのような耐圧性や耐圧強度のばらつきに関しては何ら考慮されておらず、バリア性が良好で、耐衝撃層間剥離性、底部や首部の透明性が良好で、かつ耐圧性が高く、耐圧強度のばらつきの小さいボトルが求められている。
【課題を解決するための手段】
【0007】
そこで、本発明者は、かかる現況に鑑みて鋭意研究を重ねた結果、下記の構造単位(1)を含有するEVOHを中間層とし、その両外層にポリエステルを用いた二軸延伸ブローボトルが上記の目的に合致することを見出して本発明を完成するに至った。
【化1】

(ここで、Xは結合鎖であってエーテル結合を除く任意の結合鎖で、R1〜R4はそれぞれ独立して任意の置換基であり、nは0または1を表す。)
本発明においては、エチレン含有量が10〜60モル%であり、上記の構造単位(1)を0.1〜30モル%含有すること、ホウ素化合物がホウ素換算でEVOH100部に対して0.001〜1重量部含有する等のEVOHを用いることが好ましい実施形態である。
【発明の効果】
【0008】
本発明の二軸延伸ブローボトルは、中間層に、側鎖に1,2−グリコール結合を有する特定の構造単位を有するEVOHを含有しているため、透明性に優れ、かつ耐圧性、耐圧均一性の高い二軸延伸ブローボトルを得ることができるものである。
【発明を実施するための最良の形態】
【0009】
以下、本発明について具体的に説明する。
本発明のボトルの中間層に含有されるEVOHは、上記の構造単位(1)、すなわち側鎖に1,2−グリコール結合を有する構造単位を含有することを特徴とするEVOHで、その分子鎖と1,2−グリコール結合構造とを結合する結合鎖(X)に関しては、エーテル結合を除くいずれの結合鎖を適用することも可能で、その結合鎖としては特に限定されないが、アルキレン、アルケニレン、アルキニレンの他、フェニレン、ナフチレン等の炭化水素(これらの炭化水素はフッ素、塩素、臭素等のハロゲン等で置換されていても良い)の他、−CO−、−COCO−、−CO(CH2mCO−、−CO(C64)CO−、−S−、−CS−、−SO−、−SO2−、−NR−、−CONR−、−NRCO−、−CSNR−、−NRCS−、−NRNR−、−HPO4−、−Si(OR)2−、−OSi(OR)2−、−OSi(OR)2O−、−Ti(OR)2−、−OTi(OR)2−、−OTi(OR)2O−、−Al(OR)−、−OAl(OR)−、−OAl(OR)O−、等があげられるが(Rは各々独立して任意の置換基であり、水素原子、アルキル基が好ましく、またmは自然数である)、エーテル結合は溶融成形時に分解し、樹脂組成物の熱溶融安定性が低下する点で好ましくない。その中でも熱溶融安定性の点では結合種としてはアルキレンが好ましく、さらには炭素数が5以下のアルキレンが好ましい。また、樹脂組成物のガスバリア性能が良好となる点で、炭素数はより少ないものが好ましく、n=0である1,2−グリコール結合構造が直接、分子鎖に結合している構造が最も好ましい。また、R1〜R4に関しては任意の置換基であり、とくに限定されないが水素原子、アルキル基がモノマーの入手が容易である点で好ましく、さらには水素原子が樹脂組成物のガスバリア性が良好である点で好ましい。
【0010】
本発明のEVOHの製造方法については特に限定されないが、最も好ましい構造である主鎖に直接1,2−グリコール結合構造を結合した構造単位を例とすると、3,4−ジオール−1−ブテン、ビニルエステル系モノマーおよびエチレンを共重合して得られた共重合体をケン化する方法、3,4−ジアシロキシ−1−ブテン、ビニルエステル系モノマーおよびエチレンを共重合して得られた共重合体をケン化する方法、3−アシロキシ−4−オール−1−ブテン、ビニルエステル系モノマーおよびエチレンを共重合して得られた共重合体をケン化する方法、4−アシロキシ−3−オール−1−ブテン、ビニルエステル系モノマーおよびエチレンを共重合して得られた共重合体をケン化する方法、3,4−ジアシロキシ−2−メチル−1−ブテン、ビニルエステル系モノマーおよびエチレンを共重合して得られた共重合体をケン化する方法、2,2−ジアルキル−4−ビニル−1,3−ジオキソラン、ビニルエステル系モノマーおよびエチレンを共重合して得られた共重合体をケン化する方法、およびビニルエチレンカーボネート、ビニルエステル系モノマーおよびエチレンを共重合して得られた共重合体をケン化、脱炭酸する方法があげられえる。また、結合鎖(X)としてアルキレンを有するものとしては4,5−ジオール−1−ペンテンや4,5−ジアシロキシ−1−ペンテン、4,5−ジオール−3−メチル−1−ペンテン、4,5−ジオール−3−メチル−1−ペンテン、5,6−ジオール−1−ヘキセン、5,6−ジアシロキシ−1−ヘキセン等とビニルエステル系モノマーおよびエチレンを共重合して得られた共重合体をケン化する方法が挙げられるが、3,4−ジアシロキシ−1−ブテン、ビニルエステル系モノマーおよびエチレンを共重合して得られた共重合体をケン化する方法が共重合反応性に優れる点で好ましく、さらには3,4−ジアシロキシ−1−ブテンとして、3,4−ジアセトキシ−1−ブテンを用いることが好ましい。また、これらのモノマーの混合物を用いてもよい。また、少量の不純物として3,4−ジアセトキシ−1−ブタンや1,4−ジアセトキシ−1−ブテン、1,4−ジアセトキシ−1−ブタン等を含んでいても良い。また、かかる共重合方法について以下に説明するが、これに限定されるものではない。
【0011】
なお、かかる3,4−ジオール−1−ブテンとは、下記(2)式、3,4−ジアシロキシ−1−ブテンとは、下記(3)式、3−アシロキシ−4−オール−1−ブテンは下記(4)式、4−アシロキシ−3−オール−1−ブテンは下記(5)式で示されるものである。
【化2】

【化3】

(ここで、Rはアルキル基であり、好ましくはメチル基である。)
【化4】

(ここで、Rはアルキル基であり、好ましくはメチル基である。)
【化5】

(ここで、Rはアルキル基であり、好ましくはメチル基である。)
なお、上記の(2)式で示される化合物は、イーストマンケミカル社から、上記(3)式で示される化合物はイーストマンケミカル社やアクロス社の製品を市場から入手することができる。
【0012】
また、ビニルエステル系モノマーとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等が挙げられるが、経済的にみて中でも酢酸ビニルが好ましく用いられる。
【0013】
3,4−ジアシロキシ−1−ブテン等のモノマー、ビニルエステル系モノマー及びエチレンを共重合するに当たっては、特に制限はなく、塊状重合、溶液重合、懸濁重合、分散重合、またはエマルジョン重合等の公知の方法を採用することができるが、通常は溶液重合が行われる。
【0014】
共重合時のモノマー成分の仕込み方法としては特に制限されず、一括仕込み、分割仕込み、連続仕込み等任意の方法が採用される。
また、共重合体中にエチレンを導入する方法としては通常のエチレン加圧重合を行えばよく、その導入量はエチレンの圧力によって制御することが可能であり、目的とするエチレン含有量により一概にはいえないが、通常は25〜80kg/cm2の範囲から選択される。
【0015】
かかる共重合で用いられる溶媒としては、通常、メタノール、エタノール、プロパノール、ブタノール等の低級アルコールやアセトン、メチルエチルケトン等のケトン類等が挙げられ、工業的には、メタノールが好適に使用される。
溶媒の使用量は、目的とする共重合体の重合度に合わせて、溶媒の連鎖移動定数を考慮して適宜選択すればよく、例えば、溶媒がメタノールの時は、S(溶媒)/M(モノマー)=0.01〜10(重量比)、好ましくは0.05〜7(重量比)程度の範囲から選択される。
【0016】
共重合に当たっては重合触媒が用いられ、かかる重合触媒としては、例えばアゾビスイソブチロニトリル、過酸化アセチル、過酸化ベンゾイル、過酸化ラウリル等の公知のラジカル重合触媒やt−ブチルパーオキシネオデカノエート、t−ブチルパーオキシピバレート、α,α’ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3,−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ヘキシルパーオキシピバレート等のパーオキシエステル類、ジ−n−プロピルパーオキシジカーボネート、ジ−iso−プロピルパーオキシジカーボネート]、ジ−sec−ブチルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシエチルパーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネート等のパーオキシジカーボネート類、3,3,5−トリメチルヘキサノイルパーオキシド、ジイソブチリルパーオキシド、ラウロイルパーオキシド等のジアシルパーオキシド類などの低温活性ラジカル重合触媒等が挙げられ、重合触媒の使用量は、触媒の種類により異なり一概には決められないが、重合速度に応じて任意に選択される。例えば、アゾビスイソブチロニトリルや過酸化アセチルを用いる場合、ビニルエステル系モノマーに対して10〜2000ppmが好ましく、特には50〜1000ppmが好ましい。
また、共重合反応の反応温度は、使用する溶媒や圧力により40℃〜沸点程度の範囲から選択することが好ましい。
【0017】
本発明では、上記触媒とともにヒドロキシラクトン系化合物またはヒドロキシカルボン酸を共存させることも好ましく、該ヒドロキシラクトン系化合物としては、分子内にラクトン環と水酸基を有する化合物であれば特に限定されず、例えば、L−アスコルビン酸、エリソルビン酸、グルコノデルタラクトン等を挙げることができ、好適にはL−アスコルビン酸、エリソルビン酸が用いられ、また、ヒドロキシカルボン酸としては、グリコール酸、乳酸、グリセリン酸、リンゴ酸、酒石酸、クエン酸、サリチル酸等を挙げることができ、好適にはクエン酸が用いられる。
【0018】
かかるヒドロキシラクトン系化合物またはヒドロキシカルボン酸の使用量は、回分式及び連続式いずれの場合でも、酢酸ビニル100重量部に対して0.0001〜0.1重量部(さらには0.0005〜0.05重量部、特には0.001〜0.03重量部)が好ましく、かかる使用量が0.0001重量部未満では本発明の効果が得られないことがあり、逆に0.1重量部を越えると酢酸ビニルの重合を阻害する結果となって好ましくない。かかる化合物を重合系に仕込むにあたっては、特に限定はされないが、通常は低級脂肪族アルコールや酢酸ビニルを含む脂肪族エステルや水等の溶媒又はこれらの混合溶媒で希釈されて重合反応系に仕込まれる。
【0019】
また、本発明では、上記の共重合時に本発明の効果を阻害しない範囲で共重合可能なエチレン性不飽和単量体を共重合していてもよく、かかる単量体としては、プロピレン、1−ブテン、イソブテン等のオレフィン類、アクリル酸、メタクリル酸、クロトン酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和酸類あるいはその塩あるいは炭素数1〜18のモノまたはジアルキルエステル類、アクリルアミド、炭素数1〜18のN−アルキルアクリルアミド、N,N−ジメチルアクリルアミド、2−アクリルアミドプロパンスルホン酸あるいはその塩、アクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のアクリルアミド類、メタクリルアミド、炭素数1〜18のN−アルキルメタクリルアミド、N,N−ジメチルメタクリルアミド、2−メタクリルアミドプロパンスルホン酸あるいはその塩、メタクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のメタクリルアミド類、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド等のN−ビニルアミド類、アクリルニトリル、メタクリルニトリル等のシアン化ビニル類、炭素数1〜18のアルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、アルコキシアルキルビニルエーテル等のビニルエーテル類、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、臭化ビニル等のハロゲン化ビニル類、トリメトキシビニルシラン等のビニルシラン類、酢酸アリル、塩化アリル、アリルアルコール、ジメチルアリルアルコール、トリメチル−(3−アクリルアミド−3−ジメチルプロピル)−アンモニウムクロリド、アクリルアミド−2−メチルプロパンスルホン酸、グリセリンモノアリルエーテル、エチレンカーボネート等が挙げられる。
【0020】
さらに、N−アクリルアミドメチルトリメチルアンモニウムクロライド、N−アクリルアミドエチルトリメチルアンモニウムクロライド、N−アクリルアミドプロピルトリメチルアンモニウムクロライド、2−アクリロキシエチルトリメチルアンモニウムクロライド、2−メタクリロキシエチルトリメチルアンモニウムクロライド、2−ヒドロキシ−3−メタクリロイルオキシプロピルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、3−ブテントリメチルアンモニウムクロライド、ジメチルジアリルアンモニウムクロリド、ジエチルジアリルアンモニウムクロライド等のカチオン基含有単量体、アセトアセチル基含有単量体等も挙げられる。
【0021】
さらにビニルシラン類としては、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、ビニルイソブチルジメトキシシラン、ビニルエチルジメトキシシラン、ビニルメトキシジブトキシシラン、ビニルジメトキシブトキシシラン、ビニルトリブトキシシラン、ビニルメトキシジヘキシロキシシラン、ビニルジメトキシヘキシロキシシラン、ビニルトリヘキシロキシシラン、ビニルメトキシジオクチロキシシラン、ビニルジメトキシオクチロキシシラン、ビニルトリオクチロキシシラン、ビニルメトキシジラウリロキシシラン、ビニルジメトキシラウリロキシシラン、ビニルメトキシジオレイロキシシラン、ビニルジメトキシオレイロキシシラン等を挙げることができる。
【0022】
得られた共重合体は、次いでケン化されるのであるが、かかるケン化にあたっては、上記で得られた共重合体をアルコール又は含水アルコールに溶解された状態で、アルカリ触媒又は酸触媒を用いて行われる。アルコールとしては、メタノール、エタノール、プロパノール、tert−ブタノール等が挙げられるが、メタノールが特に好ましく用いられる。アルコール中の共重合体の濃度は系の粘度により適宜選択されるが、通常は10〜60重量%の範囲から選ばれる。ケン化に使用される触媒としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等のアルカリ金属の水酸化物やアルコラートの如きアルカリ触媒、硫酸、塩酸、硝酸、メタスルフォン酸、ゼオライト、カチオン交換樹脂等の酸触媒が挙げられる。
【0023】
かかるケン化触媒の使用量については、ケン化方法、目標とするケン化度等により適宜選択されるが、アルカリ触媒を使用する場合は通常、ビニルエステル系モノマー及び3,4−ジアシロキシ−1−ブテン等のモノマーの合計量に対して0.001〜0.1当量、好ましくは0.005〜0.05当量が適当である。
また、ケン化時の圧力は目的とするエチレン含有量により一概に言えないが、2〜7kg/cm2の範囲から選択され、このときの温度は80〜150℃、好ましくは100〜130℃から選択される。
【0024】
かくして、本発明に使用される側鎖に1,2−グリコール結合を有する構造単位を含有するEVOHが得られるのであるが、本発明においては、得られたEVOHのエチレン含有量やケン化度は、特に限定されないが、エチレン含有量が10〜60モル%(さらには20〜50モル%、特には25〜48モル%)、ケン化度が90モル%以上(さらには95モル%以上、特には99モル%以上)のものが好適に用いられ、該エチレン含有量が10モル%未満では高湿時のガスバリア性や外観性が低下する傾向にあり、逆に60モル%を越えるとガスバリア性が低下する傾向にあり、さらにケン化度が90モル%未満ではガスバリア性や耐湿性等が低下する傾向にあり好ましくない。
【0025】
さらに、EVOH中に導入される1,2−グリコール結合を有する構造単位量としては特に制限はされないが、0.1〜30モル%(さらには0.5〜20モル%、特には1〜10モル%)が好ましく、かかる導入量が0.1モル%未満では本発明の効果が十分に発現されず、逆に30モル%を越えるとガスバリア性が低下する傾向にあり好ましくない。また、1,2−グリコール結合を有する構造単位量を調整するにあたっては、1,2−グリコール結合を有する構造単位の導入量の異なる少なくとも2種のEVOHをブレンドして調整することも可能である。また、そのうちの少なくとも1種が1,2−グリコール結合を有する構造単位を有していなくても構わない。
このようにして1,2−グリコール結合量が調整されたEVOHに関しては、1,2−グリコール結合量は重量平均で算出しても差し支えなく、またそのエチレン含有量についても重量平均で算出させても差し支えないが、正確には後述する1H−NMRの測定結果より、エチレン含有量、1,2−グリコール結合量を算出することができる。
【0026】
また、本発明で使用されるEVOHは、構造単位(1)を含有するEVOHとこれと異なる他のEVOHのブレンド物であることもガスバリア性と耐圧性を良好とする点で好ましく、かかる他のEVOHとしては、構造単位が異なるもの、エチレン含有量が異なるもの、ケン化度が異なるもの、分子量が異なるものなどを挙げることができる。
構造単位(1)を有するEVOHと構造単位が異なるEVOHとしては、例えばエチレン構造単位とビニルアルコール構造単位のみからなるEVOHや、EVOHの側鎖に2−ヒドロキシエトキシ基などの官能基を有する変性EVOHを挙げることができる。
また、エチレン含有量が異なるものを用いる場合、その構造単位は同じであっても異なっていても良いが、そのエチレン含有量差は1モル%以上(さらには2モル%以上、特には2〜20モル%)であることが好ましい。かかるエチレン含有量差が大きすぎると透明性が不良となる場合があり、好ましくない。
【0027】
2種のEVOHをブレンド方法としては、特に限定されず、各EVOHを水−アルコールやジメチルスルフォキサイド等の溶剤に溶解して溶液状態で混合する方法、各EVOHのケン化前のエチレン−酢酸ビニル系共重合体をメタノール等のアルコール溶媒に溶解した状態で混合して同時にケン化する方法、あるいは各EVOHを溶融混合する方法などが挙げられるが、通常は溶融混合する方法が採用される。
【0028】
かかる溶融混合する方法としては、例えば、ニーダールーダー、押出機、ミキシングロール、バンバリーミキサー、プラストミルなどの公知の混練装置を使用して行うことができるが、通常は単軸又は二軸の押出機を用いることが工業上好ましく、また、必要に応じて、ベント吸引装置、ギヤポンプ装置、スクリーン装置等を設けることも好ましい。特に、水分や副生成物(熱分解低分子量物等)を除去するために、押出機に1個以上のベント孔を設けて減圧下に吸引したり、押出機中への酸素の混入を防ぐために、ホッパー内に窒素等の不活性ガスを連続的に供給したりすることにより、熱着色や熱劣化が軽減された品質の優れたEVOH組成物を得ることができる。
【0029】
また、各EVOHを押出機に供給する方法についても特に限定されず、イ)各EVOHを押出機に供給する前に予めブレンド(前述の溶液混合やケン化前混合等)しておく方法、ロ)各EVOHをドライブレンドして一括して押出機に供給する方法、ハ)1種以上のEVOHを押出機に供給して溶融させたところに固体状の他のEVOHを供給する方法(ソリッドサイドフィード法)、ニ)1種以上のEVOHを押出機に供給して溶融させたところに溶融状態の他のEVOHを供給する方法(メルトサイドフィード法)等を挙げることができるが、中でもロ)の方法が装置の簡便さ、ブレンド物のコスト面等で工業上実用的である。
【0030】
2種以上のEVOHのブレンド割合に関しては特に限定されないが、EVOHのブレンドがEVOH(a)とEVOH(b)の2種の場合、重量比がEVOH(a)/EVOH(b)=99/1〜55/45(さらには99/1〜60/40)が好ましく、99/1を超える場合または55/45未満では2種のEVOHをブレンドする効果がえられない。また、EVOH(a)、EVOH(b)のいずれが構造単位(1)を有していても良いし、両方ともに構造単位(1)を有していてもよいが、EVOH(b)に構造単位(1)を含有している方がガスバリア性が良好となる傾向にあり、好ましい。
【0031】
さらには、本発明の目的を阻害しない範囲において、EVOHに酢酸、リン酸等の酸類やそのアルカリ金属、アルカリ土類金属、遷移金属等の金属塩を添加させることが、ホウ素化合物としてホウ酸またはその金属塩を添加させることが樹脂の熱安定性を向上させる点で好ましい。
【0032】
酢酸の添加量としてはEVOH100重量部に対して0.001〜1重量部(さらには0.005〜0.2重量部、特には0.010〜0.1重量部)とすることが好ましく、かかる添加量が0.001重量部未満ではその含有効果が十分に得られないことがあり、逆に1重量部を越えると得られる成形物の外観が悪化する傾向にあり好ましくない。
ホウ酸金属塩としてはホウ酸カルシウム、ホウ酸コバルト、ホウ酸亜鉛(四ホウ酸亜鉛,メタホウ酸亜鉛等)、ホウ酸アルミニウム・カリウム、ホウ酸アンモニウム(メタホウ酸アンモニウム、四ホウ酸アンモニウム、五ホウ酸アンモニウム、八ホウ酸アンモニウム等)、ホウ酸カドミウム(オルトホウ酸カドミウム、四ホウ酸カドミウム等)、ホウ酸カリウム(メタホウ酸カリウム、四ホウ酸カリウム、五ホウ酸カリウム、六ホウ酸カリウム、八ホウ酸カリウム等)、ホウ酸銀(メタホウ酸銀、四ホウ酸銀等)、ホウ酸銅(ホウ酸第2銅、メタホウ酸銅、四ホウ酸銅等)、ホウ酸ナトリウム(メタホウ酸ナトリウム、二ホウ酸ナトリウム、四ホウ酸ナトリウム、五ホウ酸ナトリウム、六ホウ酸ナトリウム、八ホウ酸ナトリウム等)、ホウ酸鉛(メタホウ酸鉛、六ホウ酸鉛等)、ホウ酸ニッケル(オルトホウ酸ニッケル、二ホウ酸ニッケル、四ホウ酸ニッケル、八ホウ酸ニッケル等)、ホウ酸バリウム(オルトホウ酸バリウム、メタホウ酸バリウム、二ホウ酸バリウム、四ホウ酸バリウム等)、ホウ酸ビスマス、ホウ酸マグネシウム(オルトホウ酸マグネシウム、二ホウ酸マグネシウム、メタホウ酸マグネシウム、四ホウ酸三マグネシウム、四ホウ酸五マグネシウム等)、ホウ酸マンガン(ホウ酸第1マンガン、メタホウ酸マンガン、四ホウ酸マンガン等)、ホウ酸リチウム(メタホウ酸リチウム、四ホウ酸リチウム、五ホウ酸リチウム等)などの他、ホウ砂、カーナイト、インヨーアイト、コトウ石、スイアン石、ザイベリ石等のホウ酸塩鉱物などが挙げられ、好適にはホウ砂、ホウ酸、ホウ酸ナトリウム(メタホウ酸ナトリウム、二ホウ酸ナトリウム、四ホウ酸ナトリウム、五ホウ酸ナトリウム、六ホウ酸ナトリウム、八ホウ酸ナトリウム等)があげられる。またホウ素化合物の添加量としては、組成物中の全EVOH100重量部に対してホウ素換算で0.001〜1重量部(さらには0.002〜0.2重量部、特には0.005〜0.1重量部)とすることが好ましく、かかる添加量が0.001重量部未満ではその含有効果が十分に得られないことがあり、逆に1重量部を越えると得られる成形物の外観が悪化する傾向にあり好ましくない。
【0033】
また、かかる金属塩としては、ナトリウム、カリウム、カルシウム、マグネシウム等の、酢酸、プロピオン酸、酪酸、ラウリル酸、ステアリン酸、オレイン酸、ベヘニン酸等の有機酸や、硫酸、亜硫酸、炭酸、リン酸等の無機酸の金属塩が挙げられ、好適には酢酸塩、リン酸塩、リン酸水素塩である。また、該金属塩の添加量としては、EVOH100重量部に対して金属換算で0.0005〜0.1重量部(さらには0.001〜0.05重量部、特には0.002〜0.03重量部)とすることが好ましく、かかる添加量が0.0005重量部未満ではその含有効果が十分に得られないことがあり、逆に0.1重量部を越えると得られるボトルの外観が悪化する傾向にあり好ましくない。尚、EVOHに2種以上のアルカリ金属及び/又はアルカリ土類金属の塩を添加する場合は、その総計が上記の添加量の範囲にあることが好ましい。
【0034】
EVOHに酸類やその金属塩を添加する方法については、特に限定されず、ア)含水率20〜80重量%のEVOHの多孔性析出物を、酸類やその金属塩の水溶液と接触させて、酸類やその金属塩を含有させてから乾燥する方法、イ)EVOHの均一溶液(水/アルコール溶液等)に酸類やその金属塩を含有させた後、凝固液中にストランド状に押し出し、次いで得られたストランドを切断してペレットとして、さらに乾燥処理をする方法、ウ)EVOHと酸類やその金属塩を一括して混合してから押出機等で溶融混練する方法、エ)EVOHの製造時において、ケン化工程で使用したアルカリ(水酸化ナトリウム、水酸化カリウム等)を酢酸等の酸類で中和して、残存する酢酸等の酸類や副生成する酢酸ナトリウム、酢酸カリウム等のアルカリ金属塩の量を水洗処理により調整したりする方法等を挙げることができる。本発明の効果をより顕著に得るためには、酸類やその金属塩の分散性に優れるア)、イ)またはエ)の方法が好ましい。
【0035】
上記ア)、イ)またはエ)の方法で得られたEVOH(組成物)は、塩類や金属塩が添加された後、乾燥が行われる。
かかる乾燥方法としては、種々の乾燥方法を採用することが可能である。例えば、実質的にペレット状のEVOHが、機械的にもしくは熱風により撹拌分散されながら行われる流動乾燥や、実質的にペレット状のEVOHが、撹拌、分散などの動的な作用を与えられずに行われる静置乾燥が挙げられ、流動乾燥を行うための乾燥器としては、円筒・溝型撹拌乾燥器、円管乾燥器、回転乾燥器、流動層乾燥器、振動流動層乾燥器、円錐回転型乾燥器等が挙げられ、また、静置乾燥を行うための乾燥器として、材料静置型としては回分式箱型乾燥器が、材料移送型としてはバンド乾燥器、トンネル乾燥器、竪型乾燥器等を挙げることができるが、これらに限定されるものではない。流動乾燥と静置乾燥を組み合わせて行うことも可能である。
【0036】
該乾燥処理時に用いられる加熱ガスとしては空気または不活性ガス(窒素ガス、ヘリウムガス、アルゴンガス等)が用いられ、該加熱ガスの温度としては、40〜150℃が、生産性とEVOHの熱劣化防止の点で好ましい。該乾燥処理の時間としては、EVOHの含水量やその処理量にもよるが、通常は15分〜72時間程度が、生産性とEVOHの熱劣化防止の点で好ましい。
【0037】
上記の条件でEVOH(組成物)が乾燥処理されるのであるが、該乾燥処理後のEVOH(組成物)の含水率は0.001〜5重量%(さらには0.01〜2重量%、特には0.1〜1重量部)になるようにするのが好ましく、該含水率が0.001重量%未満では、ロングラン成形性が低下する傾向にあり、逆に5重量%を越えると、溶融成形時時に発泡が発生する虞があり好ましくない。
【0038】
かくして得られた本発明のEVOHには、本発明の目的を阻害しない範囲において、多少のモノマー残査(3,4−ジオール−1−ブテン、3,4−ジアシロキシ−1−ブテン、3−アシロキシ−4−オール−1−ブテン、4−アシロキシ−3−オール−1−ブテン、4,5−ジオール−1−ペンテン、4,5−ジアシロキシ−1−ペンテン、4,5−ジオール−3−メチル−1−ペンテン、4,5−ジオール−3−メチル−1−ペンテン、5,6−ジオール−1−ヘキセン、5,6−ジアシロキシ−1−ヘキセン、4,5−ジアシロキシ−2−メチル−1−ブテン等)やモノマーのケン化物(3,4−ジオール−1−ブテン、4,5−ジオール−1−ペンテン、4,5−ジオール−3−メチル−1−ペンテン、4,5−ジオール−3−メチル−1−ペンテン、5,6−ジオール−1−ヘキセン等)を含んでいてもよい。
【0039】
かくして得られたEVOH組成物のメルトフローレート(MFR)(210℃、荷重2160g)については特に限定はされないが、0.1〜100g/10分(さらには0.5〜50g/10分、特には1〜30g/10分)が好ましく、該メルトフローレートが該範囲よりも小さい場合には、成形時に射出成形内で高粘度となって射出成形が困難となる傾向にあり、また該範囲よりも大きい場合には、外観性やガスバリア性が低下する傾向にあり好ましくない。
【0040】
また、かかるEVOHに本発明の目的を阻害しない範囲において、飽和脂肪族アミド(例えばステアリン酸アミド等)、不飽和脂肪酸アミド(例えばオレイン酸アミド等)、ビス脂肪酸アミド(例えばエチレンビスステアリン酸アミド等)、脂肪酸金属塩(例えばステアリン酸カルシウム、ステアリン酸マグネシウム等)、低分子量ポリオレフィン(例えば分子量500〜10,000程度の低分子量ポリエチレン、又は低分子量ポリプロピレン等)などの滑剤、無機塩(例えばハイドロタルサイト等)、可塑剤(例えばエチレングリコール、グリセリン、ヘキサンジオール等の脂肪族多価アルコールなど)、酸素吸収剤(例えば無機系酸素吸収剤として、還元鉄粉類、さらにこれに吸水性物質や電解質等を加えたもの、アルミニウム粉、亜硫酸カリウム、光触媒酸化チタン等が、有機化合物系酸素吸収剤として、アスコルビン酸、さらにその脂肪酸エステルや金属塩等、ハイドロキノン、没食子酸、水酸基含有フェノールアルデヒド樹脂等の多価フェノール類、ビス−サリチルアルデヒド−イミンコバルト、テトラエチレンペンタミンコバルト、コバルト−シッフ塩基錯体、ポルフィリン類、大環状ポリアミン錯体、ポリエチレンイミン−コバルト錯体等の含窒素化合物と遷移金属との配位結合体、テルペン化合物、アミノ酸類とヒドロキシル基含有還元性物質の反応物、トリフェニルメチル化合物等が、高分子系酸素吸収剤として、窒素含有樹脂と遷移金属との配位結合体(例:MXDナイロンとコバルトの組合せ)、三級水素含有樹脂と遷移金属とのブレンド物(例:ポリプロピレンとコバルトの組合せ)、炭素−炭素不飽和結合含有樹脂と遷移金属とのブレンド物(例:ポリブタジエンとコバルトの組合せ)、光酸化崩壊性樹脂(例:ポリケトン)、アントラキノン重合体(例:ポリビニルアントラキノン)等や、さらにこれらの配合物に光開始剤(ベンゾフェノン等)や過酸化物補足剤(市販の酸化防止剤等)や消臭剤(活性炭等)を添加したものなど)、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、着色剤、帯電防止剤、界面活性剤、抗菌剤、アンチブロッキング剤、スリップ剤、充填材(例えば無機フィラー等)、他樹脂(例えばポリオレフィン、ポリアミド等)等を配合しても良い。
【0041】
本発明の二軸延伸ブローボトルは、上記の如きEVOHを中間層に含有するもので、その両側に熱可塑性ポリエステル系樹脂層が配されてなるものであり、かかる熱可塑性ポリエステル系樹脂としては、特に限定されず、例えば、芳香族ジカルボン酸またはこれらのアルキルエステルとグリコールを主成分とする縮合重合体が挙げられ、代表的にはエチレンテレフタレートを主たる繰り返し単位とするものが好ましい。さらに、加工性、強度等を大幅に損なわない範囲で共重合成分を含有させることも可能で、そのような共重合成分として、酸成分としては、イソフタル酸、ジフェニル−4,4’−ジカルボン酸、ジフェノキシエタンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸等の芳香族ジカルボン酸およびこれらのエステル形成性誘導体、アジピン酸、セバシン酸、アゼライン酸、コハク酸等の脂肪族ジカルボン酸およびこれらのエステル形成性誘導体、シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸等の脂環族ジカルボン酸およびこれらのエステル形成性誘導体、p−オキシ安息香酸、オキシカプロン酸等のオキシ酸およびこれらのエステル形成性誘導体の他、トリメリット酸、ピロメリット酸等を挙げることができる。また、グリコール成分としては、ジエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ネオペンチルグリコール等の脂肪族グリコール、1,4−シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物等の芳香族グリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコールの他、グリセリン、1,3−プロパンジオール、ペンタエリスリトール等を挙げることができる。
【0042】
エチレンテレフタレート単位の含有量は、75〜100モル%、好ましくは85〜100モル%程度である。また、好ましい固有粘度(フェノールとテトラクロルエタンの50重量%/50重量%の混合溶剤中、温度30℃にて測定)は、0.5〜1.3dl/g(更には0.65〜1.2dl/g)である。
【0043】
次に、代表的には、エチレンテレナフタレートを主たる繰り返し単位とするものが挙げられる。上記と同様の共重合成分を含有させることも可能であり、エチレンテレナフタレートの含有量は、75〜100モル%、好ましくは85〜98モル%程度である。また、好ましい固有粘度は0.4〜1.2dl/g(さらには0.55〜1.0dl/g)である。
【0044】
また、上記エチレンテレフタレート系ポリエステル樹脂とエチレンテレナフタレート系樹脂をブレンドして使用することも、ガスバリア性や紫外線遮断性、溶融成形性が向上する点で好ましく、その場合のブレンド比率は、エチレンテレフタレート系ポリエステル樹脂が5〜90重量%、更には15〜85重量%であり、エチレンテレナフタレート系ポリエステル樹脂が95〜10重量%、更には85〜15重量%である。
【0045】
さらに、諸特性を大幅に損なわない範囲で、他の熱可塑性樹脂や添加剤を配合することも可能で、熱可塑性樹脂としては、MXD−6ナイロン、ポリカーボネート、ポリアリレート、液晶ポリマー等が挙げられる。
【0046】
かくして本発明の二軸延伸ブローボトルに使用されるEVOHおよびポリエステル樹脂が得られるわけであるが、かかるEVOHおよびポリエステル樹脂は、主に溶融成形によってボトルに成型される。以下に二軸延伸ブローボトルの成型方法について説明する。
【0047】
本発明の二軸延伸ブローボトルを製造するに当たっては、特に限定はされないが、特に共射出二軸延伸ブロー成形法が生産上最も好適な方法として挙げられ、以下、かかる方法について更に詳細に説明をするが、これに限定されるものではない。
【0048】
共射出二軸延伸ブロー成形法とは、まず、少なくともEVOH含有層を中間層とし、その両側に熱可塑性ポリエステル系樹脂層を配してなる、多層構造を有するパリソン(容器前駆体、プリフォームとも言う)を共射出成形により作製してから、これを加熱してブロー金型内で一定温度に保ちながら縦方向に機械的に延伸し、同時あるいは逐次に加圧空気を吹き込んで円周方向に膨らませる方式である。
【0049】
まず、多層構造を有するパリソンを作製するのであるが、通常は、2台の射出シリンダーと多層マニホールドシステムを有する射出成形機を用い、単一の金型内に、溶融したEVOH及び熱可塑性ポリエステル系樹脂をそれぞれの射出シリンダーより、多層マニホールドシステムを通して同時あるいは時間をずらして射出することにより得られる。
【0050】
例えば、先に両外層用の熱可塑性ポリエステル系樹脂を射出し、次いで中間層となるEVOHを射出して、所定量のEVOHを射出後に更に熱可塑性ポリエステル系樹脂の射出を継続することにより、熱可塑性ポリエステル系樹脂層/EVOH層/熱可塑性ポリエステル系樹脂層の3層の構成からなり、中間のEVOH層が両側の熱可塑性ポリエステル系樹脂層に完全に封入された有底パリソンが得られるのである。
【0051】
かかるパリソンの射出成形条件としては、EVOHの射出成形温度は150〜300℃(さらには160〜270℃、特には170〜230℃)が好ましく、かかる温度が150℃未満では、EVOHの溶融が不充分となることがあり、逆に300℃を越えると、EVOHの熱分解により得られる二軸延伸ブローボトルの外観性が悪化したり臭気が著しくなったりすることがあり好ましくない。
【0052】
一方、熱可塑性ポリエステル系樹脂の射出成形温度は230〜350℃(さらには250〜330℃、特には270〜310℃)が好ましく、かかる温度が230℃未満では、熱可塑性ポリエステル系樹脂の溶融が不充分となることがあり、逆に350℃を越えると、熱可塑性ポリエステル系樹脂の熱分解により得られる二軸延伸ブローボトルの外観性が悪化したり臭気が著しくなったりすることがあり好ましくない。
【0053】
さらに、EVOH及び熱可塑性ポリエステル系樹脂が合流する多層マニホールド部の温度は230〜350℃(さらには250〜330℃、特には270〜310℃)が好ましく、かかる温度が230℃未満では、熱可塑性ポリエステル系樹脂の溶融が不充分となることがあり、逆に350℃を越えると、EVOH及び熱可塑性ポリエステル系樹脂の熱分解により得られる二軸延伸ブローボトルの外観性が悪化したり臭気が著しくなったりすることがあり好ましくない。
【0054】
また、EVOH及び熱可塑性ポリエステル系樹脂が流入する金型の温度は0〜80℃(さらには5〜60℃、特には10〜30℃)が好ましく、かかる温度が0℃未満では、金型が結露することがあり得られるパリソンや二軸延伸ブローボトルの外観性が低下し、逆に80℃を越えると、得られるパリソンのブロー成形性が低下したり得られる二軸延伸ブローボトルの透明性が低下したりすることがあり好ましくない。
【0055】
かくして多層構造を有するパリソンが得られるのであるが、次にかかるパリソンを直接そのまま、あるいは再加熱してブロー金型内で一定温度に保ちながら縦方向に機械的に延伸し、同時あるいは逐次に加圧空気を吹き込んで円周方向に膨らませることにより、目的とする二軸延伸ブローボトルが得られるのである。
【0056】
射出成形されたパリソンをすぐに温かい状態のまま再加熱工程に送りブロー成形する方式がホットパリソン法、射出成形されたパリソンを室温状態で一定時間保管してから再加熱工程に送りブロー成形する方式がコールドパリソン法であり、目的に応じて両者共に採用されうるが、一般的にはコールドパリソン法の方が生産性に優れる点で好ましい。
【0057】
パリソンを再加熱するには、赤外線ヒーターやブロックヒーターなどの発熱体を用いて行うことができる。加熱されたパリソンの温度は80〜140℃(さらには85〜130℃、特には90〜120℃)が好ましく、かかる温度が80℃未満では、延伸の均一性が不充分となり得られる多層容器の形状や厚みが不均一となることがあり、逆に140℃を越えると、熱可塑性ポリエステル系樹脂の結晶化が促進され、得られる多層容器が白化することがあり好ましくない。
【0058】
次いで、再加熱されたパリソンは二軸延伸されて目的とする二軸延伸ブローボトルが得られるのである。一般的には、縦方向に1〜7倍程度、プラグやロッド等により機械的に延伸されてから、圧空力により横方向に1〜7倍程度延伸されて、目的とする二軸延伸ブローボトルが得られるのである。かかる縦方向の延伸と横方向の延伸は、同時に行うこともできるし逐次に行うこともできる。また、縦方向の延伸時に圧空力を併用することも可能である。
【0059】
かくして本発明の二軸延伸ブローボトルが得られるわけであるが、かかる二軸延伸ブローボトルの層構成としては、EVOH含有層(以下、単にEVOH層と称することがある)をI、熱可塑性ポリエステル系樹脂層をIIとするとき、II/I/IIの三層構造のみならず、II/I/II/I、II/I/II/I/II、II/I/II/I/II/I、II/I/II/I/II/I/II、等の任意の組み合わせが可能である。更に、リグラインド層やEVOHや熱可塑性ポリエステル系樹脂以外の熱可塑性樹脂層を設けることも可能であり、かかる熱可塑性樹脂としては、特に限定されず、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、超低密度ポリエチレン(VLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、エチレン−酢酸ビニル共重合体(EVA)、アイオノマー、エチレン−プロピレン(ブロック又はランダム)共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸エステル共重合体、ポリプロピレン(PP)、プロピレン−α−オレフィン(炭素数4〜20のα−オレフィン)共重合体、ポリブテン、ポリペンテン、ポリメチルペンテン等のオレフィンの単独又は共重合体、或いはこれらのブレンド物などの広義のポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、共重合ポリアミド、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン、アクリル系樹脂、ビニルエステル系樹脂、ポリエステルエラストマー、ポリウレタンエラストマー、塩素化ポリエチレン、塩素化ポリプロピレン、芳香族および脂肪族ポリケトン、脂肪族ポリアルコール等が挙げられる。
【0060】
また、二軸延伸ブローボトルの各層の厚みは、層構成や用途によって一概に言えないが、通常は、EVOH層については1〜100μm(さらには5〜50μm)が好ましく、熱可塑性ポリエステル系樹脂層については20〜3000μm(さらには50〜1000μm)が好ましく、EVOH層が1μm未満ではガスバリア性が不足することがあり、またその厚み制御が不安定となることがあり、逆に100μmを越えると耐衝撃性が劣ることがあり、かつ経済的でなく好ましくなく、また熱可塑性ポリエステル系樹脂層が20μm未満では耐圧強度が不足することがあり、逆に3000μmを越えると重量が大きくなり、かつ経済的でなく好ましくない。
【0061】
本発明の二軸延伸ブローボトルにおいては、EVOHや熱可塑性ポリエステル系樹脂以外の各層の樹脂に対しても、本発明の目的を逸脱しない範囲において、可塑剤、滑剤、熱安定剤、光安定剤、紫外線吸収剤、酸化防止剤、着色剤、帯電防止剤、界面活性剤、抗菌剤、無機フィラーなどの添加剤を配合したり、他樹脂をブレンドすることも可能である。特にゲル発生防止剤として、ハイドロタルサイト系化合物、ヒンダードフェノール系、ヒンダードアミン系熱安定剤、高級脂肪族カルボン酸の金属塩を添加することもできる。
【0062】
さらに、かかるEVOHや熱可塑性ポリエステル系樹脂以外の各層の樹脂に対しても、酸素吸収剤を配合することも可能で、二軸延伸ブローボトルの外部からの酸素遮断性や内部の残存酸素除去性が向上する点で好ましい。酸素吸収剤としては、無機系酸素吸収剤として、還元鉄粉類、さらにこれに吸水性物質や電解質等を加えたもの、アルミニウム粉、亜硫酸カリウム、光触媒酸化チタン等が、有機化合物系酸素吸収剤として、アスコルビン酸またはその脂肪酸エステルや金属塩等、ハイドロキノン、没食子酸、水酸基含有フェノールアルデヒド樹脂等の多価フェノール類、ビス−サリチルアルデヒド−イミンコバルト、テトラエチレンペンタミンコバルト、コバルト−シッフ塩基錯体、ポルフィリン類、大環状ポリアミン錯体、ポリエチレンイミン−コバルト錯体等の含窒素化合物と遷移金属との配位結合体、テルペン化合物、アミノ酸類とヒドロキシル基含有還元性物質の反応物、トリフェニルメチル化合物等が、高分子系酸素吸収剤として、窒素含有樹脂と遷移金属との配位結合体(例:MXDナイロンとコバルトの組合せ)、三級水素含有樹脂と遷移金属とのブレンド物(例:ポリプロピレンとコバルトの組合せ)、炭素−炭素不飽和結合含有樹脂と遷移金属とのブレンド物(例:ポリブタジエンとコバルトの組合せ)、光酸化崩壊性樹脂(例:ポリケトン)、アントラキノン重合体(例:ポリビニルアントラキノン)等が挙げられる。さらにこれらの配合物に光開始剤(ベンゾフェノン等)や過酸化物補足剤(市販の酸化防止剤等)や消臭剤(活性炭等)を添加することも好ましい。
【0063】
かくして得られた本発明の二軸延伸ブローボトルは、耐圧強度が25kg/cm2以上、さらには30kg/cm2以上であることが好ましい。
なお、かかる耐圧強度は、耐圧試験装置(イーヴィック社製、KT−5000)を用いて測定した値である。
【0064】
かくして得られた本発明の二軸延伸ブローボトルは、一般的な食品の他、醤油、ソース、ケチャップ、マヨネーズ、ドレッシング等の調味料、味噌、食酢等の発酵食品、サラダ油等の油脂食品、清酒、ビール、みりん、ウィスキー、焼酎、ワイン等の酒類、炭酸飲料、ジュース、スポーツドリンク、牛乳、コーヒー飲料、ウーロン茶、紅茶、ミネラルウォーター等の清涼飲料水、化粧品、医薬品、洗剤、香粧品、工業薬品、農薬等各種の容器として有用であるが、特に、ビール、ワイン、炭酸飲料、ジュース、お茶、牛乳、コーヒー飲料等の飲料や、ソース、ドレッシング等の調味料の容器の用途に有用である。
【実施例】
【0065】
以下に、実施例を挙げて本発明の方法を具体的に説明する。なお、以下「%」とあるのは、特にことわりのない限り、重量基準を意味する。
【0066】
重合例1
下記の方法によりEVOH組成物(A1)を得た。
冷却コイルを持つ1m3の重合缶に酢酸ビニルを500kg、メタノール35kg、アセチルパーオキシド500ppm(対酢酸ビニル)、クエン酸20ppm、および3,4−ジアセトキシ−1−ブテンを14kgを仕込み、系を窒素ガスで一旦置換した後、次いでエチレンで置換して、エチレン圧が45kg/cm2となるまで圧入して、攪拌した後、67℃まで昇温して、3,4−ジアセトキシ−1−ブテンを15g/分で全量4.5kgを添加しながら重合し、重合率が50%になるまで6時間重合した。その後、重合反応を停止してエチレン含有量38モル%のエチレン−酢酸ビニル共重合体を得た。
【0067】
該エチレン−酢酸ビニル共重合体のメタノール溶液を棚段塔(ケン化塔)の塔上部より10kg/時の速度で供給し、同時に該共重合体中の残存酢酸基に対して、0.012当量の水酸化ナトリウムを含むメタノール溶液を塔上部より供給した。一方、塔下部から15kg/時でメタノールを供給した。塔内温度は100〜110℃、塔圧は3kg/cm2Gであった。仕込み開始後30分から、1,2−グリコール結合を有する構造単位を有するEVOHのメタノール溶液(EVOH30%、メタノール70%)が取出された。かかるEVOHの酢酸ビニル成分のケン化度は99.5モル%であった。
【0068】
次いで、得られたEVOHのメタノール溶液をメタノール/水溶液調整塔の塔上部から10kg/時で供給し、120℃のメタノール蒸気を4kg/時、水蒸気を2.5kg/時の速度で塔下部から仕込み、塔頂部よりメタノールを8kg/時で留出させると同時に、ケン化で用いた水酸化ナトリウム量に対して6当量の酢酸メチルを塔内温95〜110℃の塔中部から仕込んで塔底部からEVOHの水/アルコール溶液(樹脂濃度35%)を得た。
【0069】
得られたEVOHの水/アルコール溶液を、孔径4mmのノズルより、メタノール5%、水95%よりなる5℃に維持された凝固液槽にストランド状に押し出して、凝固終了後、ストランド状物をカッターで切断し、直径3.8mm、長さ4mmの含水率45%のEVOHの多孔性ペレットを得た。
【0070】
該多孔性ペレット100部に対して水100部で洗浄した後、0.032%のホウ酸及び0.007%のリン酸二水素カルシウムを含有する混合液中に投入し、30℃で5時間撹拌した。さらにかかる多孔性ペレットを回分式通気箱型乾燥器にて、温度70℃、水分含有率0.6%の窒素ガスを通過させて12時間乾燥を行って、含水率を30%とした後に、回分式塔型流動層乾燥器を用いて、温度120℃、水分含有率0.5%の窒素ガスで12時間乾燥を行って目的とするEVOH組成物のペレットを得た。かかるペレットは、EVOH100重量部に対して、ホウ酸およびリン酸二水素カルシウムをそれぞれ0.015重量部(ホウ素換算)および0.005重量部(リン酸根換算)含有していた。また、このEVOH組成物(A1)のMFRは4.0g/10分(210℃ 2160g)であった。
【0071】
また、1,2−グリコール結合の導入量は、ケン化前のエチレン−酢酸ビニル共重合体を1H−NMR(内部標準物質:テトラメチルシラン、溶媒:d6−DMSO)で測定して算出したところ、2.5モル%であった。なお、NMR測定には日本ブルカー社製「AVANCE DPX400」を用いた。
【化6】

【0072】
1H−NMR](図1参照)
1.0〜1.8ppm:メチレンプロトン(図1の積分値a)
1.87〜2.06ppm:メチルプロトン
3.95〜4.3ppm:構造(I)のメチレン側のプロトン+未反応の3,4−ジア セトキシ−1−ブテンのプロトン(図1の積分値b)
4.6〜5.1ppm:メチンプロトン+構造(I)のメチン側のプロトン(図1の積 分値c)
5.2〜5.9ppm:未反応の3,4−ジアセトキシ−1−ブテンのプロトン(図1 の積分値d)
【0073】
[算出法]
5.2〜5.9ppmに4つのプロトンが存在するため、1つのプロトンの積分値はd/4、積分値bはジオールとモノマーのプロトンが含まれた積分値であるため、ジオールの1つのプロトンの積分値(A)は、A=(b−d/2)/2、積分値cは酢酸ビニル側とジオール側のプロトンが含まれた積分値であるため、酢酸ビニルの1つプロトンの積分値(B)は、B=1−(b−d/2)/2、積分値aはエチレンとメチレンが含まれた積分値であるため、エチレンの1つのプロトンの積分値(C)は、C=(a−2×A−2×B)/4=(a−2)/4と計算し、構造単位(1)の導入量は、100×{A/(A+B+C)} =100×(2×b−d)/(a+2)より算出した。
【0074】
また、ケン化後のEVOHに関しても同様に1H−NMR測定を行った結果を図2に示す。1.87〜2.06ppmのメチルプロトンに相当するピークが大幅に減少していることから、共重合された3,4−ジアセトキシ−1−ブテンもケン化され、1,2−グリコール構造となっていることは明らかである。
【0075】
重合例2
下記の方法によりEVOH組成物(A2)を得た。
重合例1において、メタノールの仕込み量を20kgとし、アセチルパーオキシドの代わりにt−ブチルパーオキシネオデカノエート210ppm(対酢酸ビニル)を5時間かけて添加し、3,4−ジアセトキシ−1−ブテンを15g/分として全量4.5kgを添加しながら重合し、ホウ酸を添加しなかった以外は同様に行い、エチレン含有量38モル% ケン化度99.5モル%、リン酸二水素カルシウム含有量0.005重量部(リン酸根換算)、側鎖に1,2−グリコール結合を有する構造単位の導入量が2.5モル%、MFR=5.2g/10分のEVOH組成物(A2)を得た。
【0076】
重合例3
下記の方法によりEVOH組成物(A3)を得た。
重合例1の3,4−ジアセトキシ−1−ブテンの代わりに3,4−ジアセトキシ−1−ブテンと3−アセトキシ−4−オール−1−ブテンと1,4−ジアセトキシ−1−ブテンの70:20:10の混合物を用いた以外は同様に行い、エチレン含有量38モル%、1,2−グリコール結合を有する構造単位の導入量2.0モル%、ホウ酸の含有量(ホウ素換算)0.015重量部、リン酸二水素カルシウム含有量0.005重量部(リン酸根換算)、MFRが3.7g/10分のEVOH組成物(A3)を得た。
【0077】
また、別に下記の1,2−グリコール結合を有する構造単位を含有しないEVOH組成物を得た。
EVOH組成物(B1):エチレン含有量38モル%、ケン化度99.5モル%、ホウ酸の含有量(ホウ素換算)0.015重量部、リン酸二水素カルシウム含有量0.005重量部(リン酸根換算)、MFRが3.2g/10分
EVOH組成物(B2):エチレン含有量32モル%、ケン化度99.5モル%、ホウ酸の含有量(ホウ素換算)0.015重量部、リン酸二水素カルシウム含有量0.005重量部(リン酸根換算)、MFRが3.2g/10分
EVOH組成物(B3):エチレン含有量44モル%、ケン化度97.0モル%、ホウ酸の含有量(ホウ素換算)0.012重量部、リン酸二水素カルシウム含有量0.005重量部(リン酸根換算)、MFRが3.2g/10分
【0078】
実施例1
重合例1で得られたEVOH組成物(A1)ペレットと熱可塑性ポリエステル系樹脂(ポリエチレンテレフタレート、日本ユニペット社『BK2180』)を用いて、多層マニホールドシステム(KORTEC社製)を有する射出成形機(ARBURG社製)にて、熱可塑性ポリエステル系樹脂層/EVOH層/熱可塑性ポリエステル系樹脂の2種3層の多層パリソン(厚み構成:[内側]2.1/0.15/2.1[外側]mm、外径:22mm、高さ:110mm)を共射出成形にて作製した。得られた多層パリソンを室温で一日保管してから、二軸延伸ブロー成形機(SIDEL社製)を用いて、赤外線ヒーターにて該多層パリソンを回転させながら予備加熱し、続いて縦方向および横方向に逐次二軸延伸ブロー成形して、内容積500cc(胴部の外径65mm、高さ250mm)の多層ボトルを得た。
【0079】
その他、主な成形条件は以下の通りであった。
EVOH可塑化温度 :190〜200℃
熱可塑性ポリエステル系樹脂可塑化温度 :275〜280℃
多層マニホールドシステム部温度 :275℃
金型冷却温度 :10℃
EVOH射出圧力 :87.5MPa
熱可塑性ポリエステル系樹脂射出圧力 :60MPa
多層パリソン加熱温度 :110℃
ブロー空気圧力 :3.8MPa
得られた多層ボトルのボトル胴部の層厚み構成は、[内側]熱可塑性ポリエステル系樹脂/EVOH/熱可塑性ポリエステル系樹脂[外側]=150/15/200(μm)であった。
【0080】
得られたボトルについて以下の評価を行った。
(耐衝撃層間剥離性)
ボトル内に水(約500cc)を充填して口部分をキャップで密封して、温度23℃下で1mの高さより胴部を水平にして鉄製の床面にそれぞれ10回繰り返し落下させたときの層間剥離の状況を目視により観察して、以下の通り評価した。
◎・・・層間剥離は全く認められなかった
○・・・ごく僅かに層間剥離が認められた
△・・・若干層間剥離が認められた
×・・・著しい層間剥離が認められた
【0081】
(透明性)
ボトルの下に、間隔が0.5mm、1.0mm、1.5mm、2.0mm、2.5mmの太さ0.8mmの2本の線を書いた紙を敷いて、口部から底部を覗いた時に、2本の線がはっきり見える最小の間隔を確認し、透明性として評価した。
【0082】
(酸素透過度)
温度23℃、ボトル内湿度100%RH、ボトル外湿度50%の条件でのボトル1個当たりの酸素透過度(cc/day)を酸素透過度測定装置(MOCON社製『OXTRAN2/20』)を用いて測定した。
【0083】
(耐圧性)
ボトル10本について、耐圧試験装置(イーヴィック社製 KT−5000)を用いて耐圧バーストテストを行い、耐圧強度の平均値を算出し、耐圧性を評価した。
【0084】
(耐圧均一性)
ボトル10本について行った耐圧バーストテストから得られた耐圧強度に関して、標準偏差を算出し、耐圧均一性として評価した。
【0085】
実施例2
実施例1において、EVOH組成物(A1)の代わりにEVOH組成物(A2)を使用した以外は同様にボトルを作製して、同様に評価を行った。
【0086】
実施例3
実施例1において、EVOH組成物(A1)の代わりにEVOH組成物(A3)を使用した以外は同様にボトルを作製して、同様に評価を行った。
【0087】
実施例4
実施例1において、EVOH組成物(A1)の代わりにEVOH組成物(A1)とEVOH組成物(B2)を重量比30/70で溶融混合したEVOH組成物を使用した以外は同様にボトルを作製して、同様に評価を行った。
【0088】
比較例1
実施例1において、EVOH組成物(A1)の代わりにEVOH組成物(B1)を使用した以外は同様にボトルを作製して、同様に評価を行った。
【0089】
比較例2
実施例1において、EVOH組成物(A1)の代わりにEVOH組成物(B1)を用いて、EVOH組成物(B3)との重量比70/30で溶融混練したEVOH組成物を使用した以外は同様にボトルを作製して、同様に評価を行った。
【0090】
比較例3
実施例1において、EVOH組成物(A1)の代わりにEVOH組成物(B1)とポリアミド系樹脂[エムスジャパン社製『グリロンCF6S』、ナイロン6/12の共重合体、密度1.05g/cm3、融点133℃、MFR18g/10分(210℃、荷重2160g)]を重量比90/10で溶融混練したEVOH組成物を使用した以外は同様にボトルを作製して、同様に評価を行った。
【0091】
実施例及び比較例の評価結果を表1にまとめて示す。
【0092】
〔表1〕

【産業上の利用可能性】
【0093】
本発明の二軸延伸ブローボトルは、特定のEVOHを中間層に含有しているため、耐衝撃層間剥離性、透明性、ガスバリア性、耐圧性、耐圧均一性に優れており、食品や医療品の包装容器として有用である。
【図面の簡単な説明】
【0094】
【図1】重合例1で得られたEVOHのケン化前の1H−NMRチャートである。
【図2】重合例1で得られたEVOHの1H−NMRチャートである。

【特許請求の範囲】
【請求項1】
下記の構造単位(1)を含有するエチレン−ビニルアルコール共重合体の中間層の両外層に熱可塑性ポリエステル樹脂を配してなることを特徴とする二軸延伸ブローボトル。
【化1】

(ここで、Xは結合鎖であってエーテル結合を除く任意の結合鎖で、R1〜R4はそれぞれ独立して任意の置換基であり、nは0または1を表す。)
【請求項2】
構造単位(1)のR1〜R4がそれぞれ独立して水素原子、炭素数1〜8の炭化水素基、炭素数3〜8の環状炭化水素基又は芳香族炭化水素基のいずれかであることを特徴とする請求項1記載の二軸延伸ブローボトル。
【請求項3】
構造単位(1)のR1〜R4がいずれも水素原子であることを特徴とする請求項1または2記載の二軸延伸ブローボトル。
【請求項4】
構造単位(1)のXが炭素数6以下のアルキレンであることを特徴とする請求項1〜3いずれか記載の二軸延伸ブローボトル。
【請求項5】
構造単位(1)のnが0であることを特徴とする請求項1〜3いずれか記載の二軸延伸ブローボトル。
【請求項6】
エチレン−ビニルアルコール共重合体のエチレン含有量が10〜60モル%であることを特徴とする請求項1〜5いずれか記載の二軸延伸ブローボトル。
【請求項7】
構造単位(1)が共重合によりエチレン−ビニルアルコール共重合体の分子鎖中に導入されたものであることを特徴とする請求項1〜6いずれか記載の二軸延伸ブローボトル。
【請求項8】
エチレン−ビニルアルコール共重合体の分子鎖中に構造単位(1)を0.1〜30モル%含有することを特徴とする請求項1〜7いずれか記載の二軸延伸ブローボトル。
【請求項9】
エチレン−ビニルアルコール共重合体が3,4−ジアシロキシ−1−ブテン、ビニルエステル系モノマーおよびエチレンの共重合体をケン化して得られたものであることを特徴とする請求項1〜8いずれか記載の二軸延伸ブローボトル。
【請求項10】
エチレン−ビニルアルコール共重合体が3,4−ジアセトキシ−1−ブテン、ビニルエステル系モノマーおよびエチレンの共重合体をケン化して得られたものであることを特徴とする請求項1〜9記載の二軸延伸ブローボトル。
【請求項11】
エチレン−ビニルアルコール共重合体がホウ素化合物をエチレン−ビニルアルコール共重合体100重量部に対してホウ素換算で0.001〜1重量部含有することを特徴とする請求項1〜10いずれか記載の二軸延伸ブローボトル。
【請求項12】
構造単位(1)を含有するエチレン−ビニルアルコール共重合体の中間層の厚さが1〜100μmであることを特徴とする請求項1〜11いずれか記載の二軸延伸ブローボトル。
【請求項13】
構造単位(1)を含有するエチレンビニルアルコール共重合体を中間層とする二軸延伸ブローボトルであって、その耐圧強度が25kg/cm2以上であることを特徴とする請求項1〜12いずれか記載の二軸延伸ブローボトル。


【図1】
image rotate

【図2】
image rotate


【公開番号】特開2006−123528(P2006−123528A)
【公開日】平成18年5月18日(2006.5.18)
【国際特許分類】
【出願番号】特願2005−280426(P2005−280426)
【出願日】平成17年9月27日(2005.9.27)
【出願人】(000004101)日本合成化学工業株式会社 (572)
【Fターム(参考)】