説明

光学デバイス

【課題】
より簡単に製造できて小さな、電気光学効果を有する光学デバイスを提供する。
【解決手段】
光ファイバ(12)は、コア(14)とクラッド(16)を有する。光ファイバ(12)の外周に、コア(14)を挟むように、2つの電極(18,20)を接着してある。電圧源(22)が、電極(18,20)間に直流電圧を印加する。コア(14)とクラッド(16)は共に、カルコゲナイドガラス、即ちS,Se又はTeを含むガラスからなる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学デバイスに関し、より具体的には、光の位相、偏波又は強度の光パラメータの変調又は調整に利用可能な光学デバイスに関する。
【背景技術】
【0002】
偏波、位相又は強度等の光パラメータの調整には、従来、LiNbO又はLiTaOのような電気光学効果(ポッケルス効果)を持つ単結晶の導波路型デバイスが使用される(例えば、非文献文献1)。
【0003】
他方、ガラスは、光学的等方体であり巨視的な反転対称性を具備するので、2次非線形光学効果を示さない。しかし、ポーリングと呼ばれる処理により、2次非線形光学効果を示すことが報告されている。例えば、シリカガラス光ファイバにコアに平行な二本の孔を開け、そこに通した電極でポーリングを行う例が、知られている(例えば、非特許文献2)。
【0004】
ポーリングとして、紫外線照射状態で強電界を印加する方法(紫外光ポーリング)、高温下で強電界を印加する方法(熱ポーリング)及び、ハイパワーレーザ照射状態で強電界を印加する方法(光ポーリング)等が、知られている。
【0005】
ガラス材料へのポーリングによる2次非線形性の発生に、ガラスの3次の非線形が関わっていることが、非特許文献3に記載されている。これによれば、電界Eをシリカファイバに印加することにより発生する2次の非線形成分χ(2)は、
χ(2)=3χ(3)
で与えられる。χ(3)は、シリカガラスの持つ3次の非線形成成分である。ガラスは、ポーリングを施さなくても、3次の非線形性を持つので、電界を印加するだけで、2次の非線形性効果を示す。しかし、その2次の非線形成分χ(2)は非常に小さく、実用できない。
【0006】
2次非線形特性は、物質の電気分極が電界の二乗に比例する効果であり、屈折率nが電界印加により変化するいわゆる電気光学効果をもたらす。電気光学係数rと、2次非線形成分χ(2)との間には、
χ(2)=nr/2
の関係が成立する。このような2次非線形効果又は電気光学効果を利用することで、光シャッタ、光変調器及び光路スイッチ等を実現できる。
【非特許文献1】IEEE Journal of Selected Topics i Quantum Electronics, Vol. 6, No. 1, pp. 69-82 (2000)
【非特許文献2】Electronics Lett., Vol. 31, No. 1, pp. 62-63 (1995)
【非特許文献3】Optical Fiber Technology, 5, pp. 232-241 (1999)
【発明の開示】
【発明が解決しようとする課題】
【0007】
単結晶の導波路型デバイスの場合、損失が大きく、他の光デバイスとの接続性が悪いという問題がある。
【0008】
シリカ系の光ファイバの2次非線形特性を利用した光学デバイスは、低損失であり、ファイバ形状に形成するのは容易である。しかし、大きな2次非線形特性を得るためには、高温と強電界を、例えば、250°C以上で5×10乃至3×10V/cmの電界を必要とする。更には、得られる2次非線形係数が小さいので、数m乃至数十mに及ぶ長い光ファイバを用意しなければならず、実用上,長すぎる。
【0009】
シリカ系光ファイバは波長2μm帯で低損失であり、これ以外の波長帯では利用できない。
【0010】
このような状況に対し、より低温で2次非線形効果を得られ、低損失で、ファイバ化が容易で、小型な光デバイスが望まれている。
【0011】
本発明は、このような希望を満たす新規な光学デバイスを提示することを目的とする。
【課題を解決するための手段】
【0012】
本発明に係る光学デバイスは、コア及びクラッドを有する光導波路と、当該コアを挟む第1及び第2の電極と、当該第1及び第2の電極に電圧を印加する第1の電圧源とを具備する光学デバイスであって、当該コア及びクラッドが共にカルコゲンを含むことを特徴とする。
【発明の効果】
【0013】
本発明によれば、容易に製造できて小さな、電気光学効果を有する光学デバイスを実現できる。結晶でないので、配置上、接続上の制約が少ない。光ファイバ形状とすることで、他の光ファイバとの接続が容易になる。遠赤外領域で透明な材料であるので、広い波長範囲で利用可能である。
【発明を実施するための最良の形態】
【0014】
以下、図面を参照して、本発明の実施例を詳細に説明する。
【0015】
図1は、本発明の一実施例の斜視図を示し、図2は、本実施例の側面図を示し、図3は、本実施例の正面図を示す。本実施例の光学デバイス10は、コア14とクラッド16を有するカロコゲナイド光ファイバ12からなる。コア14を伝搬する光に電界を印加するために、光ファイバ12の外周に、コア14を挟むように、2つの電極18,20を接着してある。電圧源22が、電極18,20間に直流電圧を印加する。これにより、光ファイバ12の光軸に直交する方向の電界が、コア14を伝搬する光に印加される。光学デバイス10を電気信号により光を変調する変調素子として使用する場合、電圧源22は、電気信号を重畳された直流電圧を電極18,20間に印加する。
【0016】
カルコゲナイドガラスは、一般的には、カルコゲン、即ちS、Se又はTeを含むガラスであり、屈折率が高い。光ファイバ12の端面での反射を低減するために、光ファイバ16の両端面には、無反射(AR)膜24,26を被覆してある。
【0017】
本実施例では、コア14とクラッド16は共に、As(ヒ素)とSe(セレニウム)を含むカルコゲナイドガラスからなり、ここでは、AsSeからなる。このような組成の光ファイバ12は、例えば、As−S−Seから製造され得る。コア14又はクラッド16にS(硫黄)を含めても良い。コア14の屈折率がクラッド16の屈折率よりも高くなるように、AsとSeの組成比を調節するか、又は適当な添加物をコア14及び/又はクラッド16に添加する。
【0018】
例えば、コア径(Da)が6μmの光ファイバで、コア14をAs39Se61とし、クラッド16をAs38.25Se61.75とすると、開口数は0.18(比屈折率差Δn=5.74×10−3)が得られた。同じくコア径(Da)を6μmとした場合で、コア14をAs4058Seとし、クラッド16をAs40Se60とすると、開口数は0.17が得られた。一般的には、As40−xSe60+x(但し、−10<x<10)が、透過波長範囲と高い3次の非線形性(電気光学係数)とから、光ファイバ12の素材として利用可能である。
【0019】
本実施例では、クラッドの外径(Db)は160μm程度、光学デバイス10の長さ(L)は、10cm程度である。このように全体のサイズが小さいので、ポーリングを容易に実行できるし、小さな筐体に組み込んで使うことができる。
【0020】
SとSeの混合比を調整することで、光ファイバ12は、近赤外から6乃至10μmの波長範囲で透明になる。例えば、As4060は6μmの光を透過し、As40Se60は10μmの光を透過する。即ち、光学デバイス10は、広い波長範囲で利用可能である。
【0021】
本実施例の光学デバイス10は、室温で高電界を印加することにより、2次非線形効果を一時的に発現し、2次非線形効果に応じた電気光学効果も発現する。例えば、電圧源22が、信号電圧を重畳された直流電圧に電極18,20間に印加した状態で、光ファイバ12のコア14に直線偏波の信号光を入射する。信号光の光位相が、電極18,20間の電界に応じた電気光学効果により変調される。
【0022】
光学デバイス10はまた、より高い温度、例えば、200°C以上でのポーリングにより、永続的な2次非線形効果を発現し得る。例えば、電極18,20間に直流の高電圧を印加した状態で、光ファイバ12のコア14にハイパワーのレーザ光を入射するか、又は、光ファイバ12の横からハイパワーの可視光を入射するといった方法がある。AsSe材料のバンドギャップエネルギーは、通信波長帯1.55μmのフォトンエネルギーの2倍程度、あるので、短波長側で吸収が高い。そのため、シリカファイバのように紫外(UV)光を補助的に使用する必要が無い。
【0023】
なお、電極18,20とは別に、電界印加用の電極を用意し、ポーリング後に電極18,20をポーリングした光ファイバ12に接着しても良いことはいうまでもない。
【0024】
図4は、試作した光学デバイス10の複屈折特性を示す。横軸は印加電圧を示し、縦軸は、複屈折の位相差を任意目盛で示す。コア14及びクラッド16は、上述の通りAs40−xSe60+xからなる。コア径(Da)は6μmであり、クラッド16の外径(Db)は170μmである。クラッド16の外側にアクリレートの被覆があり、その被覆の外側に電極18,20を配置してある。位相差が印加電界の二乗で変化することから、電気光学係数rが印加電界により発生したものと思われる。バイアス直流電圧に信号を重畳することで、光ファイバ12を伝搬する光を変調できる。
【0025】
図4に示す特性では、例えば、500V以上の直流電圧に信号電圧を重畳することで、入射光の光位相を変調する素子として利用できる。
【0026】
例えば、マッハツェンダ干渉計の一方のアーム上に光学デバイス10を配置し、電極18,20間に印加する電圧を変化させることで、光を変調又はスイッチングすることが可能になる。マッハツェンダ干渉計の一方のアーム上に位相変調器を配置する光変調器及び光スイッチは公知であり、このような用途の位相変調器として光学デバイス10を利用できる。
【0027】
また、複屈折性を利用することで、光スイッチング、偏波変調、及び、直線偏波/円偏波の変換等に利用できる。
【0028】
コア14又はクラッド16として利用可能な材料は、As−Se化合物以外に、一般的には、S,Se,Teの内の何れか1つと、As,Ge,Ga,Sbの内の何れか1つとを含む化合物である。これらの何れの組み合わせも、近赤外以上で低損失であり、3次非線形成分が大きいので、ポーリングによって、大きな2次非線形効果を出現させることができる。
【0029】
具体的には、As4060,As4050Se10,As4040Se20,As4030Se30,As4020Se40,As4010Se50,AS40Se60が、光ファイバ12の構成材料として利用可能である。これらは、一般的には、As40(60-x)Seと表記できる。但し。0≦x≦60である。
【0030】
As−S化合物の場合、As40-y60-y(但し、−10<y<10)が、利用可能である。
【0031】
Ge30As10Se30Te30,Ge15As35Se15Te35,Ge15As35Se10Te40,Ge15As35Se50-xTeも利用可能である。
【0032】
Ge0.25Se0.75,Ge0.25Se0.65Te0.10,Ge0.28Se0.60Te0.12,Ge0.25Se0.75-xTe,Ge0.28Se0.60Te0.12,Ge33As12Se55も利用可能である。
【0033】
これらの利用可能な材料を一般的に表現すると、AsGeGaSbInSeTeとなる。但し、x,y,z,v,w,p,q,rは、
x+y+z+v+w+p+q+r=100
20<x+y+z+v+w<55
を満たす。
【0034】
Biはシリカ系ガラスよりも1桁大きい3次非線形係数χ(3)を具備し、遠赤外領域で透明である。従って、Biを光ファイバ12の構成材料として利用可能である。
【実施例1】
【0035】
光ファイバ12の外形状に沿って電極18,20を光ファイバ12に接着する実施例を説明したが、図5に示す側面図として示すように、光ファイバ12の側面を部分的に平らに研磨し、その平面に電極18a,20aを接着した光学デバイス10aとしてもよい。光ファイバ12の側面を研磨する手間が増えるが、コア14に印加される電界が増すという利点がある。
【実施例2】
【0036】
図1及び図5に示す実施例に対し、光ファイバ12の光軸を中心に45°回転した電極対を追加することで、光偏波制御装置を実現できる。図6は、そのように構成した光学デバイスの斜視図を示す。
【0037】
図6に示す光学デバイス10bでは、電極30,32が光ファイバ12の光軸を間に挟んで光ファイバ12の外周面上に接着され、更に、光ファイバの軸方向にずれて、電極34,36が、光ファイバ12の光軸を間に挟んで光ファイバ12の外周面上に接着されている。電極34,36は、電極30,32に対して、光ファイバ12の光軸を中心に45°回転した位置に配置される。電圧源38が電極30,32間に電圧を印加し、電圧源40が電極34,36間に電圧を印加する。図6には、電極30,32による電界と電極34,36による電界を図示してある。電極34,36からなる電極対が、電極30,32からなる電極対に対して、光ファイバ12の光軸を中心に45°回転しているので、入射光の偏波は、ポアンカレ球上を自由に移動できる。即ち、光学デバイス10bは、入射光の偏波方向を自在に調節できる。
【実施例3】
【0038】
本発明により、透過又は反射周波数をチューニング可能なファブリペロー型フィルタを実現できる。図7は、そのフィルタの正面図を示す。ファブリペロー型フィルタとなる図7に示す光学デバイス10cでは、図1に示す実施例の無反射膜24,26の代わりに、高反射膜50,52を用いている。図1乃至図3に示す実施例と同じ構成要素には同じ符号を付してある。
【0039】
高反射膜50,52間の距離をL、光ファイバ12の実効屈折率をnとすると、このファブリペロー型フィルタの自由スペクトルレンジFSR(Free Spectral Range)は、
c/(2nL)
で与えられる。cは光速である。
【0040】
電極18,20間に印加する電圧を変更することで、光ファイバ12の実効屈折率nが変化する。実効屈折率の変化をΔnとすると、半波長(λ/2)となるΔnLが得られれば、FSRの周期内で共振波長、即ち、透過ピーク波長をチューニングできる。
【実施例4】
【0041】
図1乃至図3に示す光学デバイス10を使って、電磁波を検出できる。図8は、電磁波検出装置の実施例の概略構成図を示す。ここでは、図1に示す構成の光学デバイス10を複屈折媒体として動作させる。
【0042】
プローブ光源60は、直線偏波のレーザ光を出力する。レーザ光源60から出力されるプローブ光は、偏光子62を介して光学デバイス10に入力する。偏光子62は、好ましくは、電極18,20による電界方向に対して45°回転した方向に配置される。光学デバイス10から出力されるプローブ光は、検光子64を介して、受光器66に入射する。受光器66は、検光子64を透過したプローブ光の強度に応じた振幅の電気信号を出力する。電圧源22は、プローブ光の入射時に、光学デバイス10に複屈折性をもたらすほどに十分に高い直流電圧を電極18,20間に印加する。
【0043】
計測対象の電磁波68は、チャッパ70により断続されて、光ファイバ12にその側面から入射する。駆動回路72がチョッパ70を回転駆動する。駆動回路72からチョッパ70に印加される駆動信号が、ロックインアンプ74にも印加される。ロックインアンプ74は、駆動回路72からの駆動信号に同期して、受光器66の出力電気信号を増幅する。ロックインアンプ74の出力は、解析装置76に印加される。解析装置76は、ロックインアンプ74の出力値から、電磁波68の強度を示す値を画像表示装置の画面に表示し、又は、印刷装置により印刷出力する。
【0044】
この実施例では、電磁波68の入射により、光ファイバ12の複屈折特性が変化し、その結果、光学デバイス10から出力されるプローブ光の偏光方向が変化する。偏光方向の変化により、受光器66に入射するプローブ光の光量が変化し、解析装置76は、このプローブ光の光量変化を解析することで、電磁波68の強度を計測する。
【実施例5】
【0045】
図7に示す光学デバイス10cを使っても、電磁波を検出できる。図9は、光学デバイス10cを使用する電磁波検出装置の実施例の概略構成図を示す。ここでは、図7に示す構成の光学デバイス10cの共振周波数が、外部入力される電磁波により変化することを利用する。
【0046】
プローブ光源80は直線偏光のレーザ光であるプローブ光を発生する。プローブ光は、電極18,20による電界方向に平行な方向又は直交する偏波方向で光学デバイス10cに入力する。光学デバイス10cから出力されるプローブ光は、受光器86に入射する。受光器86は、光学デバイス10cからのプローブ光の強度に応じた振幅の電気信号を出力する。電圧源22は、プローブ光の入射時に、光学デバイス10cに電気光学効果をもたらすほどに十分に高い直流電圧を電極18,20間に印加する。
【0047】
計測対象の電磁波88は、チャッパ90により断続されて、光学デバイス10cにその側面から入射する。駆動回路92がチョッパ90を回転駆動する。駆動回路92からチョッパ90に印加される駆動信号が、同期信号として同期検出装置94にも印加される。同期検出装置94は、駆動回路92からの同期信号に同期して、受光器86の出力信号の振幅を検出する。電磁波88の強度と受光器86の出力電気信号の振幅との関係を予め計測しておくことで、電磁波88の強度を計測可能になる。
【0048】
この実施例では、電磁波88の入射により光ファイバ12の屈折率が変化し、その結果、光学デバイス10cの共振周波数が変化し、プローブ光に対する透過率が変化する。透過率の変化が、受光器86に入射するプローブ光の光量を変化させ、受光器86の出力電気信号の振幅を変化させる。結局、本実施例は、入射する電磁波88による光ファイバ12の透過率の変化を計測する。
【0049】
以上の説明では、光ファイバ形状の光学デバイス10,10a,10b,10cでは、他の光ファイバとの接続が容易である。勿論、光ファイバ形状でなく、平面導波路形状であっても、同様の作用効果を得られることは明らかである。また、単結晶でないので、形状に制約が無く、従ってまた、配置上の制約が少ない。
【0050】
特定の説明用の実施例を参照して本発明を説明したが、特許請求の範囲に規定される本発明の技術的範囲を逸脱しないで、上述の実施例に種々の変更・修整を施しうることは、本発明の属する分野の技術者にとって自明であり、このような変更・修整も本発明の技術的範囲に含まれる。
【図面の簡単な説明】
【0051】
【図1】本発明の一実施例の斜視図である。
【図2】本実施例の側面図である。
【図3】本実施例の正面図である。
【図4】本実施例の特性図である。
【図5】変更実施例の側面図である。
【図6】更に別の変更実施例の正面図である。
【図7】ファブリペロー型フィルタを実現する実施例の正面図である。
【図8】電磁波を検出する実施例の概略構成図である。
【図9】電磁波を検出する別の実施例の概略構成図である。
【符号の説明】
【0052】
10,10a,10b,10c:光学デバイス
12:光ファイバ
14:コア
16:クラッド
18,20:電極
18a,20a:電極
22:電圧源
24,26:無反射膜
30,32,34:電極
36,38:電圧源
50,52:高反射膜
60:プローブ光源
62:偏光子
64:検光子
66:受光器
68:計測対象の電磁波
70:チャッパ
72:駆動回路
74:ロックインアンプ
76:解析装置
80:プローブ光源
86:受光器
88:計測対象の電磁波
90:チャッパ
92:駆動回路
94:同期検出装置

【特許請求の範囲】
【請求項1】
コア(14)及びクラッド(16)を有する光導波路(12)と、
当該コア(14)を挟んで配置される第1及び第2の電極(18,20)と、
当該第1及び第2の電極(18,20)に電圧を印加する第1の電圧源(22)
とを具備する光学デバイスであって、
当該コア(14)及びクラッド(16)が共にカルコゲンを含む
ことを特徴とする光学デバイス。
【請求項2】
当該コア(14)及びクラッド(16)が共に、更にAs(ヒ素)を含むことを特徴とする請求項1に記載の光学デバイス。
【請求項3】
当該コア(14)及びクラッド(16)が共に、S,Se,Teの内の何れか1つと、As,Ge,Ga,Sbの内の何れか1つとを含む化合物からなることを特徴とする請求項1に記載の光学デバイス。
【請求項4】
当該光導波路が光ファイバであることを特徴とする請求項1乃至3の何れか1項に記載の光学デバイス。
【請求項5】
更に、当該光導波路の両端面に無反射膜(24,26)を具備することを特徴とする請求項1乃至4の何れか1項に記載の光学デバイス。
【請求項6】
更に、当該光導波路の両端面に反射膜(50,52)を具備することを特徴とする請求項1乃至4の何れか1項に記載の光学デバイス。
【請求項7】
更に、当該導波路の光軸を中心に、当該第1及び第2の電極とは所定角度、回転した方向に電界を印加する第3及び第4の電極(34,36)と、当該第3及び第4の電極間に電圧を印加する第2の電圧源(40)とを有することを特徴とする請求項1乃至6の何れか1項に記載の光学デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2007−226072(P2007−226072A)
【公開日】平成19年9月6日(2007.9.6)
【国際特許分類】
【出願番号】特願2006−49513(P2006−49513)
【出願日】平成18年2月27日(2006.2.27)
【出願人】(301022471)独立行政法人情報通信研究機構 (1,071)
【Fターム(参考)】