説明

光学フィルムの製造方法、その方法により製造された光学フィルム、その光学フィルムを用いた偏光板及び液晶表示装置

【課題】 光学フィルムの、ヘイズ上昇および切り粉発生を抑える。
【解決手段】 熱可塑性樹脂をダイのスリットから金属支持体上に流延して光学フィルムを製膜する製造方法において、樹脂がスリットを流れるときのせん断応力を0.01〜0.4[MPa]、通過時間を0.1〜2.0[sec]の範囲に設定する。そうすると、ドープ中のポリマー分子および添加されているマット剤等の粒子がせん断応力を受ける。すなわち、スリットを通過する間にポリマー分子および粒子がせん断応力を受けることにより流動するので、均一性が上昇する。そのため、具体的には、ダイのスリット間隙を、0.2〜3.0mmに設定する。また、スリット長さは、従来より長めの40〜250mmにすることが、切り粉減少およびヘイズ低減のためには好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、光学フィルムの製造方法に関する。
【背景技術】
【0002】
IPS、VA、OCB等種々の方式の液晶表示装置が提案されており、これら液晶表示装置における位相差フィルムの必要性が高まっている。フィルムに位相差を与える手段としてポリカーボネートやシクロオレフィン系のフィルム、セルロースエステル系の樹脂フィルムを延伸する方法が提案されている。ポリカーボネートやシクロオレフィン系のフィルムを用いる場合には偏光板に位相差板を貼り合わせる必要があるが、セルロースエステルフィルムの場合は偏光板の保護フィルムが位相差フィルムを兼ねることもできるので、部材の減少、製造工程の簡略化、コストダウンなどの点で位相差フィルムとして好適である。特に近年、大型液晶テレビの普及により、保護フィルムおよび位相差フィルムとしてセルロースエステルフィルムの需要が急速に伸びている。
【0003】
このセルロースエステルフィルムは、ベルト状やドラム状の支持体上にダイのスリット部から流延させ、乾燥させたのち剥離してフィルムを製膜する流延製膜法より、これまで製造されてきた。この流延製膜法において、需要の伸びに対応するため、ドープを高濃度にして生産速度を上げる試みが行われている。例えば、特許文献1には、溶液流延製膜法にて40m/分以上流延速度で高速流延する方法が記載されている。
【0004】
【特許文献1】特開2004−66545号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところが、溶液製膜で原料溶液(ドープと呼ぶ)を高濃度化して高速製膜で製膜速度を上げていくと、フィルムのヘイズが上昇したり、また、フィルム端部をスリットする際に切り粉が発生しやすくなるなどの品質悪化が発生していた。また、近年、環境対応で進められている溶剤を使用しない溶融押出製膜法でも、製膜速度を上げていくと、同様の問題が発生していた。
【0006】
本発明はこのような状況に鑑みてなされたものであり、ヘイズの上昇とスリットでの切り粉の発生が抑えられた光学フィルムを提供することを目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成するために、請求項1に記載の発明は、熱可塑性樹脂をダイのスリットから金属支持体上に流延して光学フィルムを製膜する製造方法において、樹脂が前記スリットを流れるときのせん断応力を0.01〜0.4[MPa]、前記スリットを樹脂が通過する時間を0.1〜2.0[sec]の範囲にして製膜することを特徴とする。
【発明の効果】
【0008】
ドープがダイのスリットを通過する間に、ドープ中のポリマー分子および添加されているマット剤等の粒子がせん断応力を受けて流動する。そこで、請求項1に記載する範囲にせん断応力を設定し、請求項1記載の通過時間をかけてドープにスリットを通過させることにより、ドープ中のポリマー分子および添加されているマット剤等の粒子が十分に流動し、均一な分布にすることができる。その結果、光学フィルムにおける、ヘイズの低減およびスリット時の切り粉の発生を抑えることができる。
【発明を実施するための最良の形態】
【0009】
本発明を実施するための最良の形態について以下説明するが、本発明はこれにより限定されるものではない。
本発明による製膜方法は、熱可塑性樹脂を、加熱溶融したものあるいは溶媒に溶解したドープを、ダイから金属支持体上に流延して製膜する方法である。
【0010】
本発明に係るフィルムとしては、製造が容易であること、活性線硬化型樹脂層との接着性が良好であること、光学的に等方性であること、光学的に透明であること等が好ましい要件として挙げられる。
【0011】
本発明でいう透明とは、可視光の透過率が60%以上であることを指し、好ましくは80%以上であり、特に好ましくは90%以上である。
【0012】
上記の性質を有していれば特に限定はないが、本発明において好ましく用いられる樹脂として、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のアシル基の置換度が1.8〜2.80のセルロースエステル樹脂;セルロースメチルエーテル、セルロースエチルエーテル、セルロースプロピルエーテル等のアルキル基置換度2.0〜2.80のセルロースエーテル樹脂;アルキレンジカルボン酸とジアミンとの重合物のポリアミド樹脂;アルキレンジカルボン酸とジオールとの重合物、アルキレンジオールとジカルボン酸との重合物、シクロヘキサンジカルボン酸とジオールとの重合物、シクロヘキサンジオールとジカルボン酸との重合物、芳香族ジカルボン酸とジオールとの重合物等のポリエステル樹脂;ポリ酢酸ビニル、酢酸ビニル共重合体等の酢酸ビニル樹脂;ポリビニルアセタール、ポリビニルブチラール等のポリビニルアセタール樹脂;エポキシ樹脂、ケトン樹脂、アルキレンジイソシアナートとアルキレンジオールの線状重合物等のポリウレタン樹脂等を挙げることができ、これらから選ばれる少なくとも一つを含有することが好ましい。中でも、セルローストリアセテートフィルム、ポリカーボネートフィルム、ポリスルホン(ポリエーテルスルホンを含む)が好ましい。また、相溶性のあるポリマーを2種類以上ブレンドして後で述べるドープ溶解を行っても良いが、本発明はこれらに限定されるものではない。
【0013】
この他の樹脂としては、例えば、エチレン性不飽和単量体単位を有する単独重合体または共重合体を挙げることができ、より好ましくは、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸プロピル、ポリアクリル酸シクロヘキシル、アクリル酸アルキルの共重合体、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸シクロヘキシル、メタクリル酸アルキルエステル共重合体等のアクリル酸またはメタクリル酸エステルの単独重合体または共重合体であり、さらにアクリル酸またはメタクリル酸のエステルは透明性、相溶性に優れ、アクリル酸エステルまたはメタクリル酸エステル単位を有する単独重合体または共重合体、特に、アクリル酸またはメタクリル酸メチル単位を有する単独重合体または共重合体が好ましい。具体的にはポリメタクリル酸メチルが好ましい。ポリアクリル酸またはポリメタクリル酸シクロヘキサンのようなアクリル酸またはメタクリル酸の脂環式アルキルエステルは耐熱性が高く、吸湿性が低い等の利点を有し好ましい。
【0014】
なお、エポキシ樹脂としては、1分子中にエポキシ基を2個以上持った化合物が、開環反応によって樹脂を形成したもので、代表的な市販品としてアラルダイドEPN1179及びアラルダイドAER260(旭チバ(株)製)がある。なお、アラルダイドEPN1179は重量平均分子量が約405である。
【0015】
また、ケトン樹脂としては、ビニルケトン類を重合して得られるもので、代表的な市販品として、ハイラック110及びハイラック110H(日立化成(株)製)がある。
【0016】
〔ドープを形成する材料〕
本発明において、セルロースエステル及び有機溶媒を含有するセルロースエステル溶液をドープといい、これをもって溶液流延製膜し、セルロースエステルフィルムを形成せしめるものである。
【0017】
(セルロースエステル)
本発明に用いられるセルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフ等を挙げることができる。またそれらから得られたセルロースエステルはそれぞれ単独で、または任意の割合で混合して使用することができる。
【0018】
本発明に係わるセルロースエステルは、セルロース原料のアシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いて反応が行われる。アシル化剤が酸クロライド(CH3COCl、C25COCl、C37COCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には特開平10−45804号に記載の方法で合成することができる。セルロースエステルはアシル基がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットあたり3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度という。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している。
【0019】
セルロースエステルフィルムに用いることができるセルロースエステルとしては、総アシル基置換度が2.4〜2.8であることが好ましい。
【0020】
本発明に用いられるセルロースエステルの分子量は、数平均分子量(Mn)で50,000〜200,000のものが用いられる。60,000〜200,000のものがさらに好ましく、80,000〜200,000が特に好ましい。
【0021】
本発明で用いられるセルロースエステルは、重量平均分子量(Mw)と数平均分子量(Mn)の比、Mw/Mnが、前記のように1.4〜3.0であることが好ましく、さらに好ましくは1.7〜2.2の範囲である。
【0022】
セルロースエステルの平均分子量及び分子量分布は、高速液体クロマトグラフィーを用いて公知の方法で測定することができる。これを用いて数平均分子量、重量平均分子量を算出し、その比(Mw/Mn)を計算することができる。
【0023】
本発明に用いられるセルロースエステルは、炭素数2〜22程度のカルボン酸エステルであり、特にセルロースの低級脂肪酸エステルであることが好ましい。セルロースの低級脂肪酸エステルにおける低級脂肪酸とは炭素原子数が6以下の脂肪酸を意味し、例えば、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートフタレート等や、特開平10−45804号、同8−231761号、米国特許第2,319,052号等に記載されているようなセルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステルを用いることができる。あるいは、特開2002−179701号、同2002−265639号、同2002−265638号に記載の芳香族カルボン酸とセルロースとのエステル、セルロースアシレートも好ましく用いられる。上記記載の中でも、特に好ましく用いられるセルロースの低級脂肪酸エステルは、セルローストリアセテート、セルロースアセテートプロピオネートである。これらのセルロースエステルは混合して用いることもできる。
【0024】
セルローストリアセテート以外で好ましいセルロースエステルは、炭素原子数2〜4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基もしくはブチリル基の置換度をYとした時、下記式(a)及び(b)を同時に満たすセルロースエステルである。
【0025】
式(a) 2.4≦X+Y≦2.8
式(b) 0≦X≦2.5
アシル基で置換されていない部分は通常水酸基として存在している。これらは公知の方法で合成することができる。
【0026】
これらアシル基置換度は、ASTM−D817−96に規定の方法に準じて測定することができる。
【0027】
アセチルセルロースの場合、酢化率を上げようとすれば、酢化反応の時間を延長する必要がある。ただし、反応時間を余り長くとると分解が同時に進行し、ポリマー鎖の切断やアセチル基の分解等が起り、好ましくない結果をもたらす。従って、酢化度を上げ、分解をある程度抑えるためには反応時間はある範囲に設定することが必要である。反応時間で規定することは反応条件がさまざまであり、反応装置や設備その他の条件で大きく変わるので適切でない。ポリマーの分解は進むにつれ、分子量分布が広くなっていくので、セルロースエステルの場合にも、分解の度合いは通常用いられる重量平均分子量(Mw)/数平均分子量(Mn)の値で規定できる。即ちセルローストリアセテートの酢化の過程で、余り長過ぎて分解が進み過ぎることがなく、かつ酢化には十分な時間酢化反応を行わせしめるための反応度合いの一つの指標として重量平均分子量(Mw)/数平均分子量(Mn)の値を用いることができる。
【0028】
セルロースエステルの製造法の一例を以下に示すと、セルロース原料として綿化リンター100質量部を解砕し、40質量部の酢酸を添加し、36℃で20分間前処理活性化をした。その後、硫酸8質量部、無水酢酸260質量部、酢酸350質量部を添加し、36℃で120分間エステル化を行った。24質量%酢酸マグネシウム水溶液11質量部で中和した後、63℃で35分間ケン化熟成し、アセチルセルロースを得た。これを10倍の酢酸水溶液(酢酸:水=1:1(質量比))を用いて、室温で160分間攪拌した後、濾過、乾燥させてアセチル置換度2.75の精製アセチルセルロースを得た。このアセチルセルロースはMnが92,000、Mwが156,000、Mw/Mnは1.7であった。同様にセルロースエステルのエステル化条件(温度、時間、攪拌)、加水分解条件を調整することによって置換度、Mw/Mn比の異なるセルロースエステルを合成することができる。
【0029】
なお、合成されたセルロースエステルは、精製して低分子量成分を除去したり、未酢化の成分を濾過で取り除くことも好ましく行われる。
【0030】
また、混酸セルロースエステルの場合には、特開平10−45804号公報に記載の方法によって得ることができる。アシル基の置換度の測定方法はASTM−D817−96の規定に準じて測定することができる。
【0031】
また、セルロースエステルは、セルロースエステル中の微量金属成分によっても影響を受ける。これらは製造工程で使われる水に関係していると考えられるが、不溶性の核となり得るような成分は少ない方が好ましく、鉄、カルシウム、マグネシウム等の金属イオンは、有機の酸性基を含んでいる可能性のあるポリマー分解物等と塩形成することにより不溶物を形成する場合があり、少ないことが好ましい。鉄(Fe)成分については、1ppm以下であることが好ましい。カルシウム(Ca)成分については、地下水や河川の水等に多く含まれ、これが多いと硬水となり、飲料水としても不適当であるが、カルボン酸や、スルホン酸等の酸性成分と、また多くの配位子と配位化合物、即ち錯体を形成しやすく、多くの不溶なカルシウムに由来するスカム(不溶性の澱、濁り)を形成する。
【0032】
カルシウム(Ca)成分は60ppm以下、好ましくは0〜30ppmである。マグネシウム(Mg)成分については、やはり多過ぎると不溶分を生ずるため、0〜70ppmであることが好ましく、特に0〜30ppmであることが好ましい。鉄(Fe)分の含量、カルシウム(Ca)分含量、マグネシウム(Mg)分含量等の金属成分は、絶乾したセルロースエステルをマイクロダイジェスト湿式分解装置(硫硝酸分解)、アルカリ溶融で前処理を行った後、ICP−AES(誘導結合プラズマ発光分光分析装置)を用いて分析を行うことによって求めることができる。
【0033】
(有機溶媒)
セルロースエステルを溶解しセルロースエステル溶液またはドープ形成に有用な有機溶媒としては、塩素系有機溶媒と非塩素系有機溶媒がある。塩素系の有機溶媒としてメチレンクロライド(塩化メチレン)を挙げることができ、セルロースエステル、特にセルローストリアセテートの溶解に適している。昨今の環境問題から非塩素系有機溶媒の使用が検討されている。非塩素系有機溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−ヘキサフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン等を挙げることができる。これらの有機溶媒をセルローストリアセテートに対して使用する場合には、常温での溶解方法も使用可能であるが、高温溶解方法、冷却溶解方法、高圧溶解方法等の溶解方法を用いることにより不溶解物を少なくすることができるので好ましい。セルローストリアセテート以外のセルロースエステルに対しては、メチレンクロライドを用いることはできるが、酢酸メチル、酢酸エチル、アセトンが好ましく使用される。特に酢酸メチルが好ましい。本発明において、上記セルロースエステルに対して良好な溶解性を有する有機溶媒を良溶媒といい、また溶解に主たる効果を示し、その中で大量に使用する有機溶媒を主(有機)溶媒または主たる(有機)溶媒という。
【0034】
本発明に係るドープには、上記有機溶媒の他に、1〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。これらはドープを金属支持体に流延後溶媒が蒸発をし始めアルコールの比率が多くなるとドープ膜(ウェブ)がゲル化し、ウェブを丈夫にし金属支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノールを挙げることができる。これらのうちドープの安定性に優れ、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。これらの有機溶媒は単独ではセルロースエステルに対して溶解性を有していないので貧溶媒という。
【0035】
ドープ中のセルロースエステルの濃度は15〜30質量%、ドープ粘度は100〜500Pa・sの範囲に調製されることが良好なフィルム面品質を得る上で好ましい。
【0036】
ドープ中に添加される添加剤としては、可塑剤、紫外線吸収剤、酸化防止剤、染料、マット剤などの微粒子がある。本発明において、これらの添加剤はセルロースエステル溶液の調製の際に添加してもよいし、マット剤などの微粒子分散液の調製の際に添加してもよい。液晶画像表示装置に使用する偏光板には耐熱耐湿性を付与する可塑剤、酸化防止剤や紫外線吸収剤等を添加することが好ましい。以下、添加剤を説明する。
【0037】
(可塑剤)
本発明に係わるセルロースエステル溶液またはドープには、いわゆる可塑剤として知られる化合物を、機械的性質向上、柔軟性を付与、耐吸水性付与、水蒸気透過率低減、リターデーション調整等の目的で添加することが好ましく、例えばリン酸エステルやカルボン酸エステルが好ましく用いられる。
【0038】
リン酸エステルとしては、例えばトリフェニルホスフェート、トリクレジルホスフェート、フェニルジフェニルホスフェート等を挙げることができる。
【0039】
カルボン酸エステルとしては、フタル酸エステル及びクエン酸エステル等、フタル酸エステルとしては、例えばジメチルフタレート、ジエチルホスフェート、ジオクチルフタレート及びジエチルヘキシルフタレート等、またクエン酸エステルとしてはクエン酸アセチルトリエチル及びクエン酸アセチルトリブチルを挙げることができる。またその他、オレイン酸ブチル、リシノール酸メチルアセチル、セバチン酸ジブチル、トリアセチン等も挙げられる。アルキルフタリルアルキルグリコレートもこの目的で好ましく用いられる。アルキルフタリルアルキルグリコレートのアルキルは炭素原子数1〜8のアルキル基である。アルキルフタリルアルキルグリコレートとしてはメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、プロピルフタリルエチルグリコレート、メチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等を挙げることができ、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレートが好ましく用いられる。またこれらアルキルフタリルアルキルグリコレートを2種以上混合して使用してもよい。
【0040】
また、多価アルコールエステルも好ましく用いられる。
【0041】
本発明に用いられる多価アルコールは次の一般式(1)で表される。
【0042】
一般式(1) R1−(OH)n
但し、R1はn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/またはフェノール性水酸基を表す。
【0043】
多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環またはシクロアルキル環を有することが好ましい。好ましくは2〜20価の脂肪族多価アルコールエステルである。
【0044】
好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
【0045】
多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
【0046】
好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
【0047】
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1〜20であることがさらに好ましく、1〜10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
【0048】
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
【0049】
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
【0050】
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタレンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
【0051】
多価アルコールエステルの分子量は特に制限はないが、300〜1500であることが好ましく、350〜750であることがさらに好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
【0052】
多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
【0053】
これらの化合物は、セルロースエステルに対して1〜30質量%、好ましくは1〜20質量%となるように含まれていることが好ましい。また、延伸及び乾燥中のブリードアウト等を抑制させるため、200℃における蒸気圧が1400Pa以下の化合物であることが好ましい。
【0054】
これらの化合物は、セルロースエステル溶液の調製の際に、セルロースエステルや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。
【0055】
この他の添加剤として、特開2002−22956号に記載のポリエステル、ポリエステルエーテル、特開2003−171499号記載のウレタン樹脂、特開2002−146044号記載のロジン及びロジン誘導体、エポキシ樹脂、ケトン樹脂、トルエンスルホンアミド樹脂、特開2003−96236号記載の多価アルコールとカルボン酸とのエステル、特開2003−165868号の一般式(1)記載の化合物、特開2004−292696号記載のポリエステル重合体またはポリウレタン重合体等が挙げられる。これらの添加剤は、ドープもしくは微粒子分散液に含有させることができる。
【0056】
(紫外線吸収剤)
本発明のセルロースエステルフィルムには、紫外線吸収剤を含有させることができる。使用し得る紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物、トリアジン系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10−182621号、同8−337574号、特開2001−72782号記載の紫外線吸収剤、特開平6−148430号、特開2002−31715号、同2002−169020号、同2002−47357号、同2002−363420号、同2003−113317号記載の高分子紫外線吸収剤も好ましく用いられる。紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、かつ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
【0057】
本発明に有用な紫外線吸収剤の具体例として、2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)326(何れもチバ・スペシャリティ・ケミカルズ社製)を好ましく使用できる。高分子紫外線吸収剤としては、大塚化学社製の反応型紫外線吸収剤RUVA−93を例として挙げることができる。
【0058】
ベンゾフェノン系化合物の具体例として、2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されない。
【0059】
本発明で好ましく用いられる上記記載の紫外線吸収剤は、透明性が高く、偏光板や液晶素子の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
【0060】
紫外線吸収剤のドープへの添加方法は、ドープ中で紫外線吸収剤が溶解するようなものであれば制限なく使用できるが、本発明においては紫外線吸収剤をメチレンクロライド、酢酸メチル、ジオキソラン等のセルロースエステルに対する良溶媒、または良溶媒と低級脂肪族アルコール(メタノール、エタノール、プロパノール、ブタノール等)のような貧溶媒との混合有機溶媒に溶解し紫外線吸収剤溶液としてセルロースエステル溶液に添加するかまたは直接ドープ組成中に添加してもよい。無機粉体のように有機溶剤に溶解しないものは、有機溶剤とポリマー中にデゾルバーやサンドミルを使用し、分散してからドープに添加する。紫外線吸収剤の含有量は0.01〜5質量%、特に0.5〜3質量%である。
【0061】
本発明においては、これら紫外線吸収剤を単独で用いても良いし、異なる2種以上の混合で用いても良い。
【0062】
(酸化防止剤)
酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N′−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト等が挙げられる。特に2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N′−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4−ジ−t−ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。これらの化合物の添加量は、セルロースエステルに対して質量割合で1ppm〜1.0%が好ましく、10〜1000ppmがさらに好ましい。
【0063】
(マット剤)
本発明では、滑り性を改善して搬送や巻き取りをしやすくするため、微粒子を添加させることができる。
【0064】
微粒子としては、ケイ素を含むものが好ましく、特に二酸化珪素が好ましい。本発明に好ましい二酸化珪素の微粒子としては、例えば、日本アエロジル(株)製のアエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されているものを挙げることができ、アエロジル200V、R972、R972V、R974、R202、R812を好ましく用いることができる。ポリマーの微粒子の例として、シリコーン樹脂、弗素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(東芝シリコーン(株)製)を挙げることができる。その他、炭酸カルシウム、炭酸マグネシウム、炭酸マンガン、炭酸コバルト、炭酸亜鉛、炭酸バリウム等の種々の炭酸塩、酸化チタンに代表される種々の酸化物、MgSO4・5Mg(OH)2・3H2O、6CaO・6SiO2・H2O、9Al23・2B23等が挙げられる。また、ポリスチレンあるいはアクリル樹脂等も好ましく用いられる。
【0065】
これら微粒子は、有機物によって表面処理されていることが、フィルムのヘイズを低下できるため好ましい。表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサンなどがあげられる。
【0066】
マット剤の形状は、球状、板状、針状、棒状、不定形等、どのようなものでも良い。
【0067】
二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/L以上であるものが好ましい。1次粒子の平均径が5〜16nmがより好ましく、5〜12nmがさらに好ましい。1次粒子の平均径が小さい方がヘイズが低く好ましい。見かけ比重は90〜200g/L以上が好ましく、100〜200g/L以上がより好ましい。見かけ比重が大きい程、高濃度の微粒子分散液を作ることが可能になり、ヘイズ、凝集物が発生せず好ましい。
【0068】
本発明におけるマット剤の添加量は、セルロースエステルフィルム1m2当たり0.01〜1gが好ましい。
【0069】
(界面活性剤)
本発明で用いられるドープあるいは微粒子分散液には、界面活性剤を含有することが好ましく、リン酸系、スルフォン酸系、カルボン酸系、ノニオン系、カチオン系等特に限定されない。これらは、例えば特開昭61−243837号等に記載されている。界面活性剤の添加量は、セルロースアシレートに対して0.002〜2質量%が好ましく、0.01〜1質量%がより好ましい。添加量が0.001質量%未満であれば添加効果を十分に発揮することができず、添加量が2質量%を超えると、析出したり、不溶解物を生じたりすることがある。
【0070】
ノニオン系界面活性剤としては、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリグリシジルやソルビタンをノニオン性親水性基とする界面活性剤であり、具体的には、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニールエーテル、ポリオキシエチレンーポリオキシプロピレングリコール、多価アルコール脂肪酸部分エステル、ポリオキシエチレン多価アルコール脂肪酸部分エステル、ポリオキシエチレン脂肪酸エステル、ポリグリセリン脂肪酸エステル、脂肪酸ジエタノールアミド、トリエタノールアミン脂肪酸部分エステルを挙げることができる。
【0071】
アニオン系界面活性剤としてはカルボン酸塩、硫酸塩、スルフォン酸塩、リン酸エステル塩であり、代表的なものとしては脂肪酸塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、アルキルスルフォン酸塩、α−オレフィンスルフォン酸塩、ジアルキルスルフォコハク酸塩、α−スルフォン化脂肪酸塩、N−メチル−Nオレイルタウリン、石油スルフォン酸塩、アルキル硫酸塩、硫酸化油脂、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニールエーテル硫酸塩、ポリオキシエチレンスチレン化フェニールエーテル硫酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、ナフタレンスルフォン酸塩ホルムアルデヒド縮合物等である。
【0072】
カチオン系界面活性剤としてはアミン塩、4級アンモニウム塩、ピリジュム塩等を挙げることができ、第1〜第3脂肪アミン塩、第4級アンモニウム塩(テトラアルキルアンモニウム塩、トリアルキルベンジルアンモニウム塩、アルキルピリジウム塩、アルキルイミダゾリウム塩等)を挙げることができる。両性系界面活性剤としてはカルボキシベタイン、スルフォベタイン等であり、N−トリアルキル−N−カルボキシメチルアンモニウムベタイン、N−トリアルキル−N−スルフォアルキレンアンモニウムベタイン等である。フッ素系界面活性剤は、フルオロカーボン鎖を疎水基とする界面活性剤である。フッ素系界面活性剤としては、C817CH2CH2O−(CH2CH2O)10−OSO3Na、C817SO2N(C37)(CH2CH2O)16−H、C817SO2N(C37)CH2COOK、C715COONH4、C817SO2N(C37)(CH2CH2O)4−(CH24−SO3Na、C817SO2N(C37)(CH23−N+(CH33・I-、C817SO2N(C37)CH2CH2CH2+(CH32−CH2COO-、C817CH2CH2O(CH2CH2O)16−H、C817CH2CH2O(CH23−N+(CH33・I-、H(CF28−CH2CH2OCOCH2CH(SO3)COOCH2CH2CH2CH2(CF28−H、H(CF26CH2CH2O(CH2CH2O)16−H、H(CF28CH2CH2O(CH23−N+(CH33・I-、H(CF28CH2CH2OCOCH2CH(SO3)COOCH22CH2CH2817、C917−C64−SO2N(C37)(CH2CH2O)16−H、C917−C64−CSO2N(C37)(CH23−N+(CH33・I-等が挙げられるが、これらに限定される訳ではない。
【0073】
(剥離促進剤)
さらに、剥離時の荷重を小さくするための剥離促進剤も、ドープに添加してもよい。それらは、界面活性剤が有効であり、リン酸系,スルフォン酸系,カルボン酸系,ノニオン系,カチオン系等があるが、これらに特に限定されない。これらの剥離促進剤は、例えば特開昭61−243837号等に記載されている。特開昭57−500833号にはポリエトキシル化リン酸エステルが剥離促進剤として開示されている。特開昭61−69845号には非エステル化ヒドロキシ基が遊離酸の形であるモノまたはジリン酸アルキルエステルをセルロースエステルに添加することにより迅速に剥離できることが開示されている。また、特開平1−299847号には非エステル化ヒドロキシル基及びプロピレンオキシド鎖を含むリン酸エステル化合物と無機物粒子を添加することにより剥離荷重が低減できることが開示されている。
【0074】
また、下記式(2)または(3)で表される化合物が含まれていることが好ましい。
【0075】
(2)(R1−B1−O)n1−P(=O)−(OM1n2
(3) R2−B2−X
式中、R1及びR2は、それぞれ、炭素数4〜40の置換もしくは無置換のアルキル基、アルケニル基、アラルキル基またはアリール基であり;M1は、アルカリ金属、アンモニア、低級アルキルアミンであり;B1及びB2は、それぞれ、2価の連結基であり;Xは、カルボン酸またはその塩、スルフォン酸またはその塩、あるいは硫酸エステルまたはその塩であり;n1は、1または2であり;そして、n2は、3−n1である。
【0076】
式(2)または(3)で表される少なくとも一種の剥離剤を、セルロースアシレートフィルムが含有することを特徴とする。以下に、これらの剥離剤について記述する。R1とR2の好ましい例としては、炭素数4〜40の置換、無置換のアルキル基(例えば、ブチル、ヘキシル、オクチル、2−エチルヘキシル、ノニル、ドデシル、ヘキサデシル、オクタデシル、エイコサニル、ドコサニル、ミリシル、等)、炭素数4〜40の置換、無置換のアルケニル基(例えば、2−ヘキセニル、9−デセニル、オレイル等)、炭素数4〜40の置換、無置換のアリール基(例えば、フェニル、ナフチル、メチルフェニル、ジメチルフェニル、トリメチルフェニル、エチルフェニル、プロピルフェニル、ジイソプロピルフェニル、トリイソプロピルフェニル、t−ブチルフェニル、ジ−t−ブチルフェニル、トリ−t−ブチルフェニル、イソペンチルフェニル、オクチルフェニル、イソオクチルフェニル、イソノニルフェニル、ジイソノニルフェニル、ドデシルフェニル、イソペンタデシルフェニル)である。
【0077】
これらの中でもさらに好ましいのは、アルキルとしては、ヘキシル、オクチル、2−エチルヘキシル、ノニル、ドデシル、ヘキサデシル、オクタデシル、ドコサニル、アルケニルとしてはオレイル、アリール基としてはフェニル、ナフチル、トリメチルフェニル、ジイソプロピルフェニル、トリイソプロピルフェニル、ジ−t−ブチルフェニル、トリ−t−ブチルフェニル、イソオクチルフェニル、イソノニルフェニル、ジイソノニルフェニル、ドデシルフイソペンタデシルフェニルである。
【0078】
次に、B1、B2の2価の連結基について記述する。炭素数1〜10のアルキレン、ポリ(重合度1〜50)オキシエチレン、ポリ(重合度1〜50)オキシプロピレン、ポリ(重合度1〜50)オキシグリセリン、でありこれらの混合したものでもよい。これらで好ましい連結基は、メチレン、エチレン、プロピレン、ブチレン、ポリ(重合度1〜25)オキシエチレン、ポリ(重合度1〜25)オキシプロピレン、ポリ(重合度1〜15)オキシグリセリンである。
【0079】
次に、Xは、カルボン酸(または塩)、スルフォン酸(または塩)、硫酸エステル(または塩)であるが、特に好ましくはスルフォン酸(または塩)、硫酸エステル(または塩)である。塩としては好ましくはNa、K、アンモニウム、トリメチルアミン及びトリエタノールアミンである。以下に、本発明の好ましい化合物の具体例を記載する。
【0080】
RZ−1 C817O−P(=O)−(OH)2
RZ−2 C1225O−P(=O)−(OK)2
RZ−3 C1225OCH2CH2O−P(=O)−(OK)2
RZ−4 C1531(OCH2CH25O−P(=O)−(OK)2
RZ−5 {C1225O(CH2CH2O)52−P(=O)−OH
RZ−6 {C1835(OCH2CH28O}2−P(=O)−ONH4
RZ−7 (t−C493−C62−OCH2CH2O−P(=O)−(OK)2
RZ−8 (iso−C919−C64−O−(CH2CH2O)5−P(=O)−(OK)(OH)
RZ−9 C1225SO3Na
RZ−10 C1225OS3Na
RZ−11 C1733COOH
RZ−12 C1733COOH・N(CH2CH2OH)3
RZ−13 iso−C817−C64−O−(CH2CH2O)3−(CH22SO3Na
RZ−14 (iso−C9192−C63−O−(CH2CH2O)3−(CH24SO3Na
RZ−15 トリイソプロピルナフタレンスルフォン酸ナトリウム
RZ−16 トリ−t−ブチルナフタレンスルフォン酸ナトリウム
RZ−17 C1733CON(CH3)CH2CH2SO3Na
RZ−18 C1225−C64SO3・NH4
これらの化合物の使用量は、ドープ中に0.002〜2質量%で含有することが好ましい。より好ましくは0.005〜1質量%であり、さらに好ましくは0.01〜0.5質量%である。その添加方法は、特に限定されないがそのまま液体あるいは固体のまま、溶解する前に他の素材と共に添加され溶液としてもよいし、予め作製されたセルロースアシレート溶液に後から添加してもよい。
【0081】
(その他の添加剤)
この他、カオリン、タルク、ケイソウ土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等の熱安定剤を加えてもよい。さらに帯電防止剤、難燃剤、滑剤、油剤等も加える場合がある。
【0082】
〔溶液流延製膜方法〕
本発明のセルロースエステルフィルムは、溶液流延製膜法により製膜される。ここで、溶液流延製膜方法について図1を用いて説明する。
【0083】
図1は、本発明に係わる溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程を模式的に示した工程の1例を示した図である。
【0084】
(1)微粒子分散液調製工程
本発明の微粒子分散液の調製方法は、特に限定はされないが、下記のa)もしくはb)の方法で行うことが好ましい。
【0085】
a)溶解釜中に有機溶媒と微粒子分散用樹脂を導入し、攪拌溶解し、樹脂溶液とする。これとは別に有機溶媒と微粒子の混合液を送液ポンプでマントンゴーリーやサンドミル等の分散機に移送しプレ分散を行なう。これを前記の樹脂溶液に添加し、攪拌し濾過器で凝集物を取り除き、微粒子分散液としストックする(図1と若干異なる)。調製された微粒子分散液はさらに何回か分散と濾過を繰り返してもよい。
【0086】
b)溶解釜中に有機溶媒と樹脂を加え、攪拌溶解して樹脂溶液とし、この樹脂溶液に微粒子を加えて、マントンゴーリンもしくはサンドミル等の分散機で分散し、それを送液ポンプで濾過器に送って凝集物を除き微粒子分散液とする(何回か同様な操作を繰り返し循環させてもよい)。そして微粒子分散液を切り替え弁からストックタンクに移送し、静置脱泡後、送液ポンプ(例えば加圧型定量ギヤポンプ)で移送し、濾過器で濾過して導管で移送する。
【0087】
微粒子分散液にはさらに可塑剤、紫線吸収剤、分散剤等も添加してもよい。
【0088】
本発明の上記のような微粒子分散液を調製する際に使用する分散機は、大きくはメディアレス分散機とメディア分散機とに分けられ、どちらも使用することができる。
【0089】
メディアレス分散機としては超音波型、遠心型、高圧型等があり、本発明においては高圧分散装置が好ましく用いられる。高圧分散装置は微粒子と溶媒を混合した組成物を細管中に高速通過させることで、高せん断や高圧状態等特殊な条件を作りだす装置である。高圧分散装置で処理することにより、例えば、管径1〜2000μmの細管中で装置内部の最大圧力条件が9.8×106Pa以上であることが好ましい。さらに好ましくは19.6×106Pa以上である。またその際、最高到達速度が100m/sec以上に達するもの、伝熱速度が100kcal/hr以上に達するものが好ましい。
【0090】
メディア分散機としては、ガラスビーズ、セラミックビーズ等のメディアの衝突力を利用して分散するタイプのボールミル、サンドミル、ダイノミル等が挙げられる。本発明では、特にメディア分散機が好ましく用いられる。
【0091】
このようにして調製された微粒子分散液は濾過により、凝集物や異物が除去される。得られた微粒子分散液を用いて、ドープが調製される。
【0092】
(2)セルロースエステル溶液調製工程
本発明では、上記の方法で予め調製された微粒子分散液と溶媒とセルロースエステルとを混合してドープが調製される。具体的には、溶解釜に溶媒の一部と微粒子分散液とを添加混合した後、ここに残りの溶媒とセルロースエステルとを攪拌しながら添加し溶解させることが好ましい。可塑剤等の添加剤は、先に溶解釜に添加していても、後から添加することもできる。
【0093】
あるいは、溶解釜中の溶媒にセルロースエステルや可塑剤等の添加剤を攪拌しながら添加し、セルロースエステルの溶解中にさらに前記微粒子分散液を添加してもよい。もしくは、溶媒とセルロースエステル及び可塑剤等の添加剤とを混合してセルロースエステル溶液を得て、ここに前記微粒子分散液を攪拌しながら添加することもできる。
【0094】
セルロースエステル溶液を調製する方法をさらに詳細に説明する。
【0095】
前述のセルロースエステルに対する良溶媒を主とする有機溶媒に溶解釜中でセルロースエステルや可塑剤等の添加剤を攪拌しながら溶解する。溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う高温溶解方法、冷却して溶解する冷却溶解方法、かなりの高圧で行う高圧溶解方法等種々の溶解方法があるが、本発明においては、高温溶解方法が好ましく用いられる。
【0096】
溶解釜の中で前記微粒子分散液とセルロースエステルと溶媒が混合されて得られたセルロースエステル溶液は、セルロースエステルが溶解した後、ポンプで濾過器に送液して濾過される。
【0097】
濾過は、このセルロースエステル溶液をフィルタープレス用の濾紙等の適当な濾材を用いて行うことが好ましい。本発明における濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さすぎると濾過材の目詰まりが発生しやすいという問題点があり、絶対濾過精度8μm以下の濾材が好ましく、1〜8μmの範囲の濾材がより好ましく、3〜6μmの範囲の濾材がさらに好ましい。
【0098】
濾過の濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材やステンレス等の金属製の濾材が繊維の脱落等がなく好ましい。濾過は通常の方法で行うことができるが、加圧下で、使用有機溶媒の常圧での沸点以上で、かつ有機溶媒が沸騰しない範囲の温度で加熱または保温しながら濾過する方法が、濾過材前後の差圧(以下、濾圧とすることがある)の上昇が小さく、好ましい。好ましい温度範囲は使用有機溶媒に依存はするが、45〜120℃であり、45〜70℃がより好ましく、45〜55℃の範囲であることがさらに好ましい。濾圧は小さい方が好ましく、0.3〜1.6MPaであることが好ましく、0.3〜1.2MPaであることがより好ましく、0.3〜1.0MPaであることがさらに好ましい。
【0099】
このようにして得られたドープはストックタンクに保管され、脱泡された後流延に用いられる。
【0100】
このようにドープ釜中で微粒子分散液とセルロースエステル溶液とを混合してドープを調製することが好ましい方法として挙げられるが、セルロースエステル溶液と微粒子分散液の一部もしくは全部をインラインで混合することもできる。例えば、図1ではインラインで微粒子分散液を添加する工程の一例を示している。微粒子分散液は、セルロースエステル溶液(もしくはドープ原液と称する場合がある)と、合流管20で合流される。合流管20の直前には、濾過器が配置されており、例えば濾材交換等に伴い経路から発生する、大きな異物などを、送液中の微粒子分散液あるいはドープ原液から除去することができる。ここでは、耐溶剤性を有する金属製の濾過器が好ましく用いられる。濾材としては、耐久性の観点から金属、特にステンレス鋼が好ましい。目詰まりの観点から60〜80%の空孔率を有していることが好ましい。最も好ましくは、絶対濾過精度30〜60μmであって、かつ空孔率60〜80%の金属製濾材で濾過することであり、これにより、長期に亘り、確実に粗大な異物を除くことができ好ましい。
【0101】
上記濾材の空孔率は60〜80%であることが好ましく、65〜75%がより好ましい。空孔率が大きい方が圧力損失が小さくなる点で好ましく、空孔率の小さい方が耐圧性に優れるため好ましい。空孔率を求めるには、まず濾材を表面張力の低い溶媒中に浸漬し、濾材中の空気を取り除き、溶媒の増加した量から濾材の空孔量を求め、濾材の体積で割れば、算出することができる。
【0102】
(3)インライン添加工程
溶解釜で、あらかじめ微粒子分散液とセルロースエステルと溶媒を混合してドープを調製する場合は、通常微粒子分散液をインライン添加する必要はない。しかしながら、必要に応じて、微粒子の全部もしくは一部をインラインで混合することができる。図1を用いてインライン添加工程を説明すると、セルロースエステル溶液(ドープ原液と称することがある)及び微粒子分散液それぞれを送液ポンプ5及び14により移送し濾過器6及び15で濾過し、導管8及び16中を移送し合流管20で両液を合流させる。合流した両液は導管内を層状で移送するためそのままでは混合しにくい。そこで、両液を合流後、インラインミキサーのような混合機21で十分に混合しながら次工程に移送する。
【0103】
(2)セルロースエステル溶液調整工程と(3)インライン添加工程とによって調製されたドープは、ドープ中の固形分濃度は15質量%以上に調整することが好ましく、特に18〜30質量%が好ましい。ドープ中の固形分濃度が高すぎるとドープの粘度が高くなりすぎ、流延時にシャークスキン等が生じてフィルム平面性が劣化する場合があるので、30質量%以下であることが望ましい。
【0104】
(4)流延工程
前工程までに調製されたドープをダイス30に送液し、無限に移送する無端の金属支持体31、例えばステンレスベルト、あるいは回転する金属ドラム等の金属支持体31上の流延位置に、ダイス30からドープを流延する工程である。金属支持体31の表面は鏡面となっている。ダイス30(例えば加圧型ダイス)は口金部分のスリット形状を調整でき、膜厚を均一にしやすいため好ましい。ダイス30には、コートハンガーダイスやTダイス等があるが、何れも好ましく用いられる。製膜速度を上げるためにダイスを金属支持体31上に2基以上設け、ドープ量を分割して重層してもよい。
ダイのスリット部の間隙は、狭すぎると送液圧力が高くなり過ぎるとともに微小な異物がドープに混入した場合にスリット内で引っかかり、その部分がフィルムで筋になってしまう。また膜厚制御が非常にシビアになる。また、間隙が広すぎても精密な膜厚制御がしづらくなることから、0.2〜3.0mmの範囲が好ましい。
また、ヘイズ上昇および切り粉の発生しやすさには、理由ははっきりとわかっていないが、ダイのスリット部をドープが流れるときのせん断時間およびせん断応力が効く。ヘイズおよび切り粉低減を両立させるためのスリット部の長さは、高速製膜で長いせん断時間が得られるよう、40〜250mmが好ましい。これより低いと、ヘイズおよび切り粉の低減効果が見られず、これより高いと、送液圧力が高くなり過ぎるとともに精密な膜厚制御がしづらくなる。せん断応力は、下式で求められる値が0.01〜0.4[MPa]の範囲であることが好ましい。これより低いと、ヘイズおよび切り粉の低減効果が見られず、これより高くしても効果は頭打ちになり、送液圧力が高くなり過ぎてしまう。
【0105】
τ=γ×η×10−6
ここで、
τ:せん断応力[MPa]
γ:せん断速度[/sec]
γ=6・Q×10/(W・H)
Q:ドープ流量[ml/sec]
η:せん断粘度[mPa・s](スリットSにおけるγの見掛け粘度)
W:スリットSの幅[mm]
H::スリットSの間隙[mm]
である。
【0106】
流延用の金属支持体の表面温度は10〜55℃、ドープの温度は25〜60℃、さらに溶液の温度を支持体の温度と同じまたはそれ以上の温度にすることが好ましく、5℃以上の温度に設定することがさらに好ましい。
【0107】
溶液温度、支持体温度は、高いほど溶媒の乾燥速度が速くできるので好ましいが、あまり高すぎると発泡したり、平面性が劣化する場合がある。
【0108】
支持体の温度のさらに好ましい範囲は、使用する有機溶媒に依存するが、20〜55℃、溶液温度のさらに好ましい範囲は、35〜45℃である。
【0109】
(5)溶媒蒸発工程
ウェブ(金属支持体上にドープを流延した以降のドープ膜の呼び方をウェブとする)32を金属支持体31上で加熱し金属支持体31からウェブ32が剥離可能になるまで溶媒を蒸発させる工程である。溶媒を蒸発させるには、ウェブ32側から風を吹かせる方法及び/または金属支持体31の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱の方法が乾燥効率がよく好ましい。またそれらを組み合わせる方法も好ましい。裏面液体伝熱の場合は、ドープ使用有機溶媒の主溶媒または最も低い沸点を有する有機溶媒の沸点以下で加熱するのが好ましい。
【0110】
(6)剥離工程
金属支持体31上で溶媒が蒸発したウェブ32を、剥離位置33で剥離する工程である。剥離されたウェブ32は次工程に送られる。剥離する時点でのウェブ32の残留溶媒量(後述の式)があまり大き過ぎると剥離し難かったり、逆に金属支持体31上で充分に乾燥させてから剥離すると、途中でウェブ32の一部が剥がれたりする。本発明において、薄手のウェブを金属支持体から剥離する際、平面性の劣化やつれがないように行うには、剥離張力として剥離できる最低張力から170N/m以内の力で剥離することが好ましく、140N/m以内の力がより好ましい。
【0111】
製膜速度を上げる方法(残留溶媒量ができるだけ多いうちに剥離するため製膜速度を上げることができる)としてゲル流延法(ゲルキャスティング)がある。それは、ドープ中にセルロースエステルに対する貧溶媒を加えて、ドープ流延後、ゲル化する方法、金属支持体の温度を低めてゲル化する方法等がある。金属支持体31上でゲル化させ剥離時の膜の強度を上げておくことによって、剥離を早め製膜速度を上げることができるのである。金属支持体31上でのウェブ32の乾燥が条件の強弱、金属支持体31の長さ等により5〜150質量%の範囲で剥離することができるが、残留溶媒量がより多い時点で剥離する場合、ウェブ32が柔らか過ぎると剥離時平面性を損なったり、剥離張力によるツレや縦スジが発生しやすく、経済速度と品質との兼ね合いで剥離の際の残留溶媒量が決められる。従って、本発明においては、該金属支持体31上の剥離位置における温度を10〜40℃、好ましくは15〜30℃とし、かつ該剥離位置におけるウェブ32の残留溶媒量を10〜120質量%とすることが好ましい。
【0112】
製造時のセルロースエステルフィルムが良好な平面性を維持するために、金属支持体から剥離する際の残留溶媒量を10〜150質量%とすることが好ましく、より好ましくは70〜150質量%であり、さらに好ましくは100〜130質量%である。残留溶剤中に含まれる良溶剤の比率は50〜90%が好ましく、さらに好ましくは、60〜90%であり、特に好ましくは、70〜80%である。
【0113】
本発明においては、残留溶媒量は下記の式で表すことができる。
【0114】
残留溶媒量(質量%)={(M−N)/N}×100
ここで、Mはウェブの任意時点での質量で、下記のガスクロマトグラフィーにより測定した質量であり、Nは該Mを110℃で3時間乾燥させた時の質量である。
【0115】
(7)乾燥工程
剥離後、一般には、ウェブ32を複数のロールに交互に通して搬送するロール乾燥装置35及びウェブ32の両端を把持して搬送するテンター装置34を用いてウェブ32を乾燥する。図1では、テンター装置34の後にロール乾燥装置35が配置されているがこの配置のみに限定されるものではない。乾燥の手段としてはウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウエーブを当てて加熱する手段もある。あまり急激な乾燥はでき上がりのフィルムの平面性を損ねやすい。全体を通して、通常乾燥温度は40〜250℃の範囲で行われる。使用する溶媒によって、乾燥温度、乾燥風量及び乾燥時間が異なり、使用溶媒の種類、組合せに応じて乾燥条件を適宜選べばよい。37はでき上がったセルロースエステルフィルムの巻き取りである。セルロースエステルフィルムの乾燥工程において、残留溶媒量を0.5質量%以下にすることが好ましく、0.1質量%以下にして巻き取ることがより好ましい。
【0116】
延伸工程についてさらに詳細に説明する。本発明のセルロースエステルフィルムを製造する際の延伸倍率は、製膜方向もしくは幅手方向に対して、1.01〜3倍であり、好ましくは1.5〜3倍である。2軸方向に延伸する場合、高倍率で延伸する側が、1.01〜3倍であり、好ましくは1.5〜3倍であり、もう一方の方向の延伸倍率は0.8〜1.5倍、好ましくは0.9〜1.2倍に延伸することができる。
【0117】
これにより、本発明のリターデーション値を有するセルロ−スエステルフィルムを好ましく得ることと共に、平面性の良好なセルロ−スエステルフィルムを得ることができる。製膜工程のこれらの幅保持あるいは横方向の延伸はテンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。
【0118】
本発明に係る光学補償フィルムを作製するための延伸工程(テンター工程ともいう)の一例を、図2を用いて説明する。
【0119】
図2において、工程Aでは、図示されていないフィルム搬送工程から搬送されてきたフィルムを把持する工程であり、次の工程Bにおいて、フィルムが幅手方向(フィルムの進行方向と直交する方向)に延伸され、工程Cにおいては、延伸が終了し、フィルムが把持したまま搬送される工程である。
【0120】
フィルム剥離後から工程B開始前及び/または工程Cの直後に、フィルム幅方向の端部を切り落とすスリッターを設けることが好ましい。特に、A工程開始直前にフィルム端部を切り落とすスリッターを設けることが好ましい。幅手方向に同一の延伸を行った際、特に工程B開始前にフィルム端部を切除した場合とフィルム端部を切除しない条件とを比較すると、前者がよりフィルムの幅手方向で光学遅相軸の分布(以下、配向角分布という)を改良する効果が得られる。これは、残留溶媒量の比較的多い剥離から幅手延伸工程Bまでの間での長手方向の意図しない延伸を抑制した効果であると考えられる。
【0121】
テンター工程において、配向角分布を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。
【0122】
なお、延伸操作は多段階に分割して実施してもよく、流延方向、幅手方向に二軸延伸を実施することが好ましい。また、二軸延伸を行う場合にも同時二軸延伸を行ってもよいし、段階的に実施してもよい。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。また、同時2軸延伸には、一方向に延伸し、もう一方を張力を緩和して収縮させる場合も含まれる。
【0123】
また、本発明における延伸方向とは、延伸操作を行う場合の直接的に延伸応力を加える方向という意味で使用する場合が通常であるが、多段階に二軸延伸される場合に、最終的に延伸倍率の大きくなった方の意味で使用される。
【0124】
セルロ−スエステルフィルムを幅手方向に延伸する場合には、配向角分布が悪くなることはよく知られている。厚さ方向リターデーションRthと面内リターデーションRoの値を一定比率とし、かつ、配向角分布を良好な状態で幅手延伸を行うため、工程A、B、Cで好ましいフィルム温度の相対関係が存在する。工程A、B、C終点でのフィルム温度をそれぞれTa℃、Tb℃、Tc℃とすると、Ta≦Tb−10であることが好ましい。また、Tc≦Tbであることが好ましい。Ta≦Tb−10かつ、Tc≦Tbであることがさらに好ましい。
【0125】
工程Bでのフィルム昇温速度は、配向角分布を良好にするために、0.5〜10℃/sの範囲が好ましい。
【0126】
工程Bでの延伸時間は、80℃、90%RH条件における寸法変化率を小さくするためには短時間である方が好ましい。但し、フィルムの均一性の観点から、最低限必要な延伸時間の範囲が規定される。具体的には1〜10秒の範囲であることが好ましく、4〜10秒がより好ましい。また、工程Bの温度は40〜180℃、好ましくは100〜160℃である。
【0127】
上記テンター工程において、熱伝達係数は一定でもよいし、変化させてもよい。熱伝達係数としては、41.9〜419×103J/m2hrの範囲の熱伝達係数を持つことが好ましい。さらに好ましくは、41.9〜209.5×103J/m2hrの範囲であり、41.9〜126×103J/m2hrの範囲が最も好ましい。
【0128】
80℃、90%RH条件下における寸法安定性を良好にするため、上記工程Bでの幅手方向への延伸速度は、一定で行ってもよいし、変化させてもよい。延伸速度としては、50〜500%/minが好ましく、さらに好ましくは100〜400%/min、200〜300%/minが最も好ましい。
【0129】
テンター工程において、雰囲気の幅手方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、テンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。上記温度分布を少なくすることにより、フィルムの幅手での温度分布も小さくなることが期待できる。
【0130】
工程Cに於いて、寸法変化を抑えるため幅方向に緩和することが好ましい。具体的には、前工程のフィルム幅に対して95〜99.5%の範囲になるようにフィルム幅を調整することが好ましい。
【0131】
テンター工程で処理した後、さらに後乾燥工程を設けるのが好ましい。50〜160℃で行うのが好ましい。さらに好ましくは、80〜150℃の範囲であり、最も好ましくは110〜150℃の範囲である。
【0132】
後乾燥工程で、フィルムの幅方向の雰囲気温度分布が少ないことは、フィルムの均一性を高める観点から好ましい。±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。
【0133】
後乾燥工程でのフィルム搬送張力は、ドープの物性、剥離時及びフィルム搬送工程での残留溶媒量、後乾燥工程での温度等に影響を受けるが、120〜200N/mが好ましく、140〜200N/mがさらに好ましい。140〜160N/mが最も好ましい。
【0134】
後乾燥工程での搬送方向へフィルムの伸びを防止する目的で、テンションカットロールを設けることが好ましい。乾燥終了後、巻き取り前にスリッター38を設けて端部を切り落とし、良好な巻姿を得る。
【0135】
(9)巻き取り工程
乾燥が終了したウェブをフィルムとして巻き取る工程である。乾燥を終了する残留溶媒量は、0.5質量%以下、好ましくは0.1質量%以下とすることにより寸法安定性の良好なフィルムを得ることができる。巻き取り方法は、一般に使用されているワインダーを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の張力をコントロールする方法があり、それらを使い分ければよい。
【0136】
セルロースエステルフィルムの膜厚は、使用目的によって異なるが、液晶表示装置の薄型化の観点から、仕上がりフィルムとして10〜150μmの範囲が好ましく、さらに30〜100μmの範囲がより好ましく、特に40〜80μmの範囲が好ましい。薄過ぎると例えば偏光板用保護フィルムとしての必要な強度が得られない場合がある。厚過ぎると従来のセルロースエステルフィルムに対して薄膜化の優位性がなくなる。膜厚の調節には、所望の厚さになるように、ドープ濃度、ポンプの送液量、ダイスの口金のスリット間隙、ダイスの押し出し圧力、金属支持体の速度等をコントロールするのがよい。また、膜厚を均一にする手段として、膜厚検出手段を用いて、プログラムされたフィードバック情報を上記各装置にフィードバックさせて調節するのが好ましい。
【0137】
溶液流延製膜法を通しての流延直後からの乾燥までの工程において、乾燥装置内の雰囲気を、空気とするのもよいが、窒素ガスや炭酸ガス等の不活性ガス雰囲気で行ってもよい。ただ、乾燥雰囲気中の蒸発溶媒の爆発限界の危険性は常に考慮されなければならないことはもちろんである。
【0138】
以下、本発明に係るセルロースエステルフィルム並びに、光学フィルム−Bの物性に関し下記に纏める。
【0139】
(セルロ−スエステルフィルムの透過率)
液晶表示装置の部材としては高い透過率が求められ、上述の添加剤を組み合せて添加し、製造されたセルロ−スエステルフィルムの500nm透過率は、85〜100%が好ましく、90〜100%がさらに好ましく、92〜100%が最も好ましい。400nm透過率は40〜100%が好ましく、50〜100%がさらに好ましく、60〜100%が最も好ましい。また、紫外線吸収性能が求められることがあり、その場合は、380nm透過率は0〜10%が好ましく、0〜5%がさらに好ましく、0〜3%が最も好ましい。
【0140】
(セルロ−スエステルフィルムの幅手方向の膜厚分布)
本発明のセルロ−スエステルフィルムは、幅手方向での膜厚分布R(%)を0≦R(%)≦5%であることが好ましく、さらに好ましくは、0≦R(%)≦3%であり、特に好ましくは、0≦R(%)≦1%である。
【0141】
(セルロ−スエステルフィルムのヘイズ値)
本発明のセルロースエステルフィルムは、ヘイズ値が、2%以内が好ましく、1.5%がより好ましく、1%以内が最も好ましい。
【0142】
(セルロ−スエステルフィルムの弾性率)
弾性率は1.5〜5GPaの範囲が好ましく、さらに好ましくは、1.8〜4GPaであり、特に好ましくは、1.9〜3GPaの範囲である。
【0143】
また、破断点応力が50〜200MPaの範囲であることが好ましく、70〜150MPaの範囲であることがさらに好ましく、80〜100MPaの範囲であることが最も好ましい。
【0144】
23℃、55%RHでの破断点伸度が20〜80%の範囲であることが好ましく、30〜60%の範囲であることがさらに好ましく、40〜50%の範囲であることが最も好ましい。
【0145】
また、吸湿膨張率が−1〜1%の範囲であることが好ましく、−0.5〜0.5%の範囲がさらに好ましく、0〜0.2%以下が最も好ましい。
【0146】
また、輝点異物が0〜80個/cm2であることが好ましく、0〜60個/cm2の範囲であることがさらに好ましく、0〜30個/cm2の範囲であることが最も好ましい。
【0147】
一般的にセルロ−スエステルフィルムを偏光板保護フィルムとして使用する場合、偏光子との接着性を良好なものにするため、アルカリ鹸化処理が行われる。アルカリ鹸化処理後のフィルムと偏光子とをポリビニルアルコール水溶液を接着剤として接着するため、セルロ−スエステルフィルムのアルカリ鹸化処理後の水との接触角が高いとポリビニルアルコールでの接着ができず偏光板保護フィルムとしては問題となる。
【0148】
このため、アルカリ鹸化処理後のセルロ−スエステルフィルムの接触角は0〜60°が好ましく、5〜55°がさらに好ましく、10〜30°が最も好ましい。
【0149】
(セルロ−スエステルフィルムの中心線平均粗さ(Ra))
セルロ−スエステルフィルムをLCD用部材として使用する際、フィルムの光漏れを低減するため高い平面性が要求される。中心線平均粗さ(Ra)は、JIS B 0601に規定された数値であり、測定方法としては、例えば、触針法もしくは光学的方法等が挙げられる。
【0150】
本発明のセルロ−スエステルフィルムの中心線平均粗さ(Ra)としては、20nm以下が好ましく、さらに好ましくは、10nm以下であり、特に好ましくは、4nm以下である。
【0151】
(偏光板)
本発明の偏光板、それを用いた本発明の液晶表示装置について説明する。
【0152】
偏光板は一般的な方法で作製することができる。アルカリ鹸化処理した本発明のセルロ−スエステルフィルムは、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面にも本発明のセルロ−スエステルフィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明のセルロ−スエステルフィルムに対して、もう一方の面に用いられる偏光板保護フィルムは市販のセルロースエステルフィルムを用いることができる。例えば、市販のセルロースエステルフィルムとして、KC8UX2M、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC8UY−HA、KC8UX−RHA(以上、コニカミノルタオプト(株)製)等が好ましく用いられる。あるいは、セルロースエステルフィルム以外の環状オレフィン樹脂、アクリル樹脂、ポリエステル、ポリカーボネート等のフィルムをもう一方の面の偏光板保護フィルムとして用いてもよい。この場合は、ケン化適性が低いため、適当な接着層を介して偏光板に接着加工することが好ましい。
【0153】
本発明の偏光板は、本発明のセルロ−スエステルフィルムを偏光子の少なくとも片側に偏光板保護フィルムとして使用したものである。その際、該セルロ−スエステルフィルムの遅相軸が偏光子の吸収軸に実質的に平行または直交するように配置されていることが好ましい。
【0154】
この偏光板が、横電界スイッチングモード型である液晶セルを挟んで配置される一方の偏光板として、本発明のセルロースエステルフィルム(特に好ましくは前述のセルロースエステルフィルムA)が液晶表示セル側に配置されることが好ましい。
【0155】
本発明の偏光板に好ましく用いられる偏光子としては、ポリビニルアルコール系偏光フィルムが挙げられ、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。ポリビニルアルコール系フィルムとしては、エチレンで変性された変性ポリビニルアルコール系フィルムが好ましく用いられる。偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光子の膜厚は5〜40μm、好ましくは5〜30μmであり、特に好ましくは5〜20μmである。該偏光子の面上に、本発明のセルロ−スエステルフィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。また、セルロースエステルフィルム以外の樹脂フィルムの場合は、適当な粘着層を介して偏光板に接着加工することができる。
【0156】
偏光子は一軸方向(通常は長手方向)に延伸されているため、偏光板を高温高湿の環境下に置くと延伸方向(通常は長手方向)は縮み、延伸に対して直交する方向(通常は幅方向)には伸びる。偏光板保護フィルムの膜厚が薄くなるほど偏光板の伸縮率は大きくなり、特に偏光子の延伸方向の収縮量が大きい。通常、偏光子の延伸方向は偏光板保護フィルムの流延方向(MD方向)と貼り合わせるため、偏光板保護フィルムを薄膜化する場合は、特に流延方向の伸縮率を抑えることが重要である。本発明のセルロ−スエステルフィルムは寸法安定に優れるため、このような偏光板保護フィルムとして好適に使用される。
【0157】
偏光板は、さらに該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成することができる。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。
【実施例】
【0158】
以下、本発明に係る光学フィルムの実施例を比較例とともに説明するが、本発明はこれらの実施例に限定されるものではない。
【0159】
【表1】

【0160】
実施例1〜16および比較例1〜12はダイのスリット部をドープが通過する時間(通過時間)と、そのときドープにかかるせん断応力が異なるのみであり、その他の製造工程およびドープの内容は共通である。まず、その共通部分を説明する。
(ドープの調製)
セルロースアセテートプロピオネート 100質量部
(アセチル基置換度1.9、プロピオニル基置換度0.8)
トリフェニルフォスフェート 8質量部
エチルフタリルエチルグリコレート 2質量部
メチレンクロライド 300質量部
エタノール 60質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液Bを調製した。製膜ライン中で日本精線(株)製のファインメットNFでドープ液Bを濾過した。
(二酸化珪素分散液)
アエロジル972V(日本アエロジル(株)製) 10質量部
(一次粒子の平均径16nm、見掛け比重90g/リットル)
エタノール 75質量部
以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。分散後の液濁度は200ppmであった。二酸化珪素分散液に75質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液を作製した。
(インライン添加液の作製)
メチレンクロライド 100質量部
チヌビン109(チバスペシャルティケミカルズ(株)製) 4質量部
チヌビン171(チバスペシャルティケミカルズ(株)製) 4質量部
チヌビン326(チバスペシャルティケミカルズ(株)製) 2質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、濾過した。これに二酸化珪素分散希釈液を20質量部、撹拌しながら加えて、さらに30分間撹拌した後、セルロースエステル(セルロースアセテートプロピオネート アセチル基置換度1.9、プロピオニル基置換度0.8)5質量部を撹拌しながら加えて、さらに60分間撹拌した後、アドバンテック東洋(株)のポリプロピレンワインドカートリッジフィルターTCW−PPS−1Nで濾過し、インライン添加液を調製した。
【0161】
インライン添加液のライン中で、日本精線(株)製のファインメットNFでインライン添加液を濾過した。濾過したドープ液を100質量部に対し、濾過したインライン添加液Bを4質量部加えて、インラインミキサー(東レ静止型管内混合機 Hi−Mixer、SWJ)で十分混合し、温水を循環して30℃に保温したダイを通して、ステンレスバンド支持体に均一に流延した。
【0162】
ステンレスバンド支持体の表裏両面に温風を吹きつけて残留溶剤量が100%になるまで溶媒を蒸発させ、ステンレスバンド支持体上からウェブを剥離した。剥離したセルロースエステルフィルムのウェブを40℃で残留溶剤量を20%まで溶媒を蒸発させた後、テンターでTD方向(フィルムの搬送方向と直交する方向)に130℃で1.3倍に延伸した。その後、120℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させた。
【0163】
そして、巻き取り前に、スリッタ38でフィルム両端を30mmずつスリットし、膜厚80μmのセルロースエステルフィルムを得た。スリッタ38は、フィルム幅方向の両端に、フィルムをはさむように配置された、一対のロータリ式裁断刃からなる。ロータリ式裁断刃の片方は円盤状の断裁刃、もう片方は断裁刃を受ける溝付ボトムロールであり、それぞれフィルム搬送方向に回転してフィルムを連続的に裁断する。
【0164】
実施例1〜4および比較例1〜12において、ダイのスリット内を流れるドープのせん断応力と通過時間の変更は、スリットの間隙や長さの異なるダイに交換するとともに、ドープの流量を変更することで行った。図3及び図4にスリットSの長さの異なるダイの例を示している。また、ステンレスベルトの走行速度は、ダイおよびドープ流量の変更に伴い、仕上がりフィルムの膜厚が80μmになるよう調整した。
【0165】
ダイのスリットSにおけるせん断応力τおよび通過時間θは、下式で求められる。
【0166】
τ=γ×η×10−6
θ=L/(Q×10/(W・H))
ここで、
γ=6・Q×10/(W・H)
τ:せん断応力[MPa]
γ:せん断速度[/sec]
Q:ドープ流量[ml/sec](幅Wのダイスリットから単位時間当たりに出てくるドープ体積)
η:せん断粘度[mPa・s](スリットSにおけるγの見掛け粘度)
W:スリットSの幅[mm]
H::スリットSの間隙[mm]
L:スリットSの長さ[mm](ドープ流動方向の長さ)
θ:スリットSの通過時間[sec]
である。
【0167】
ここで、せん断粘度ηは、株式会社メイテック社製の、圧力式見掛粘度試験機(25Z6−AD2型)を用い、JIS K2220、ASTM D1092に準拠した方法で測定した。
【0168】
以上のようにして製造した実施例1〜4及び比較例1〜12について、切り子の量及びヘイズを評価し、上記表1に合わせて示している。フィルムロールの状態では、100μm程度の微小な切り粉でも非常に見やすい。そこで、巻き取りが終わったフィルムロールを1周ゆっくり回して、目視にてその部分の個数をカウントし、1m当たりの個数に換算した。切り粉は、1個/m以上、ヘイズは3%以上あると、光学フィルムとして適さない。また、ヘイズはフィルムを3枚重ねて、ASTM−D1003−52に規定の方法に従って測定した。
【0169】
この結果から明らかなように、ダイのスリットにおけるドープの通過時間及びせん断応力を適切な範囲に設定することにより、切り子を減らし、ヘイズを小さくすることができる。これは、ドープがスリットを通過するときに、ドープ中のポリマー分子および添加されているマット剤等の粒子がせん断応力を受けるものである。すなわち、スリットを通過する間にポリマー分子および添加されているマット剤等の粒子がせん断応力を受けることにより流動するので、均一性が上昇するためであると思われる。従って、通過時間が短すぎたり、せん断応力が小さ過ぎたりすると、微粒子が十分に流動しないので、十分な効果を得ることができない。逆に、通過時間が長すぎたり、せん断応力が大きすぎたりすると、スリットに異物が引っかかるなど、かえって流動性が下がり、効果を得られなくなる。
【0170】
そのため、ダイのスリット間隙は、0.2〜3.0mmが好ましい。スリット間隙が狭すぎると送液圧力が高くなるとともに、微小な異物がドープに混入した場合にスリット内で引っかかり、その部分がフィルムで筋になってしまう。また、膜厚制御が非常にシビアになる。また、スリット間隙が広すぎても精密な膜厚制御がしづらくなる。また、スリット長さは、従来は20mm前後が一般的であったが、切り粉減少およびヘイズ低減のためには、40〜250mmが好ましい。即ち、図3に示すダイの方が、図4に示すダイよりも好ましい。このときのせん断応力が、0.01〜0.4[MPa]の範囲のときが最も切り粉減少およびヘイズ低減の効果が高かった。
【0171】
なお、以上の説明では溶液流延法の場合について説明したが、本発明は溶液流延法以外の製膜方法(例えば溶融流延法)にも適用できる。
【図面の簡単な説明】
【0172】
【図1】本発明に係わる溶液流延製膜法の製造工程を模式的に示した図である。
【図2】本発明に用いられるテンター工程の1例を示す概略図である。
【図3】ダイの一例の断面図である。
【図4】ダイの別の例の断面図である。
【図5】ダイの一例の正面図である。
【符号の説明】
【0173】
30 ダイス
31 金属支持体
38 スリッタ
L スリット長さ
H スリット間隙
S スリット部
W スリット部幅

【特許請求の範囲】
【請求項1】
熱可塑性樹脂をダイのスリットから金属支持体上に流延して光学フィルムを製膜する製造方法において、樹脂が前記スリットを流れるときのせん断応力を0.01〜0.4[MPa]、前記スリットを樹脂が通過する時間を0.1〜2.0[sec]の範囲にして製膜することを特徴とする製造方法。
【請求項2】
請求項1記載の製造方法により製造されたことを特徴とする光学フィルム。
【請求項3】
請求項2に記載の光学フィルムを少なくとも一方の面に有することを特徴とする偏光板。
【請求項4】
請求項3に記載の偏光板を、液晶セルの少なくとも一方の面に有することを特徴とする液晶表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2007−83397(P2007−83397A)
【公開日】平成19年4月5日(2007.4.5)
【国際特許分類】
【出願番号】特願2005−271246(P2005−271246)
【出願日】平成17年9月20日(2005.9.20)
【出願人】(303000408)コニカミノルタオプト株式会社 (3,255)
【Fターム(参考)】