説明

光学素子、照明光学系及び測定装置

【課題】高精度かつ高強度の球面波を得ることが可能な光学素子、照明光学系及び測定装置を提供する。
【解決手段】光を透過する基材10と、基材10の表面に形成された金属薄膜11と、金属薄膜11に形成されるとともに、基材10の内部から基材10の表面に向けて光を全反射条件で入射させたときに励起される表面プラズモンを球面波に変換して出射させる散乱部12と、を有することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学素子、照明光学系及び測定装置に関するものである。
【背景技術】
【0002】
近年、半導体素子、撮像素子、液晶表示素子、又は薄膜磁気ヘッド等のマイクロデバイスの製造においては、例えば、露光光としてArFエキシマレーザー(波長193nm)を用いる縮小投影型逐次露光装置が使用されている。この露光装置は、高精度な投影光学系を備えているため、この投影光学系の精度を保証するに当たり、投影光学系を構成する投影レンズ全体及び個々のレンズの収差を正確に測定する測定装置が必要となる。
【0003】
このような収差測定装置としては、例えば、波面測定干渉計がある。波面測定干渉計は、光の干渉を利用し、基準となる参照面からの反射光と被検面からの反射光とを重ね合わせ、その位相差から生じた干渉縞を観測して解析することにより、被検光学系において生じた波面収差を測定する。一方、シャックハルトマンセンサによる波面測定方法がある。この波面測定方法は、マイクロレンズアレイと二次元検出器とを用いて波面の位相分布を計測する。
【0004】
ところで、このような波面収差測定においては、擬似点光源としてピンホールが用いられる。例えば、特許文献1では、擬似点光源としてピンホールを用い、微小なピンホールに光を入射させることにより得られる高精度な球面波を用いて波面形状を計測する波面収差測定装置が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第03/029751号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0006】
ピンホールの径を小さくすることにより高精度な球面波が出射されるため、被検物や被検光学系の収差を精度よく測定できる。しかしながら、ピンホールの径を小さくしすぎると、測定に用いられる光がほとんど通過しなくなるため、球面波の強度が低下してしまう。このように、ピンホールの径の設定には制約があるため、高強度の球面波を得るには限界がある。その一方で、高速に高S/Nで波面測定を行うために高輝度点光源が要求されている。
【0007】
本発明はこのような事情に鑑みてなされたものであって、高精度かつ高強度の球面波を得ることが可能な光学素子、照明光学系及び測定装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記の課題を解決するため、本発明の光学素子は、光を透過する基材と、前記基材の表面に形成された金属薄膜と、前記金属薄膜に形成されるとともに、前記基材の内部から前記基材の表面に向けて前記光を全反射条件で入射させたときに励起される表面プラズモンを球面波に変換して出射させる散乱部と、を有することを特徴とする。
【0009】
本発明の照明光学系は、前述した本発明の光学素子と、前記光学素子に設けられた前記基材の内部から前記基材の表面に向けて、少なくとも一部の光が前記表面への入射角が全反射条件を満たすように光を入射させる光入射手段と、を備えることを特徴とする。
【0010】
本発明の測定装置は、前述した照明光学系と、前記照明光学系から出射した球面波を被検面に照射し、その反射光を検出する検出部と、前記反射光に基づいて前記被検面の波面収差を算出する算出手段と、を有することを特徴とする。
また、本発明の測定装置は、被検物に測定光を照射するための前述した照明光学系と、前記被検物を経由した測定光を検出する検出部と、前記検出部で検出された測定光に基づいて前記被検物の光学特性を算出する算出手段と、を有することを特徴とする。
【発明の効果】
【0011】
本発明によれば、金属薄膜に形成された散乱部によって、基材の内部から基材の表面に向けて光を全反射条件で入射させたときに励起される表面プラズモンが球面波に変換されるため、高精度かつ高強度の球面波が得られる。
【図面の簡単な説明】
【0012】
【図1】本発明の第1実施形態に係る測定装置の概略構成を示す模式図である。
【図2】本発明の第1実施形態に係る照明光学系の概略構成を示す模式図である。
【図3】本発明の第1実施形態に係る光学素子の表面状態を示す図である。
【図4】本発明の第2実施形態に係る照明光学系の概略構成を示す図である。
【図5】本発明の第2実施形態に係る光学素子の表面状態を示す図である。
【図6】測定装置の第1変形例を示す模式図である。
【発明を実施するための形態】
【0013】
以下、図面を参照して、本発明の実施の形態について説明する。かかる実施の形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等が異なっている。
【0014】
なお、以下の説明においては、図中にXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。XYZ直交座標系は、Y軸及びZ軸が紙面に対して平行となるように設定され、X軸が紙面に対して直交する方向に設定されている。図中のXYZ座標系は、実際にはXY平面が水平面に平行な面に設定され、Z軸が鉛直上方向に設定される。
【0015】
(第1実施形態)
図1は、本発明の第1実施形態に係る測定装置100の概略構成を示す模式図である。本実施形態の測定装置100は、波面収差を測定するための装置(波面収差測定装置)である。本実施形態では、一例としてフィゾー干渉計を挙げて説明する。
【0016】
図1に示すように、測定装置100は、擬似点光源として光学素子(図2参照)を有する照明光学系50と、照明光学系50から出射した球面波を被検面110aに照射し、その反射光を検出する検出部120と、前記反射光に基づいて被検面110aの波面収差を算出する算出手段130と、を有して構成されている。
【0017】
検出部120は、ビームスプリッター101と、コリメーターレンズ102と、基準板103と、リレーレンズ104と、撮像素子105と、を有して構成されている。また、基準板103から光が出射する側(+Y方向側)には、波面収差を測定する対象となる被検面110aを有するサンプル110が配置されている。なお、照明光学系50からは球面波が発生するようになっている。また、この球面波が発生するしくみについては後述する。
【0018】
ビームスプリッター101は、照明光学系50から発した+Y方向に進む球面波を透過させるとともに、コリメーターレンズ102を透過して参照面103aあるいは被検面110aで反射した−Y方向に進む光を−Z方向に反射する。照明光学系50から発した球面波は、ビームスプリッター101、コリメーターレンズ102を透過後に平行光となり、基準板103と呼ばれる高精度に研磨された平面ガラス板に到達する。基準板103に到達した光のうち一部の光は参照面103aで反射し、残りの光は基準板103を透過後サンプル110の被検面110aに到達して反射する。参照面103aで反射した光は参照光として用いられ、参照面103aを透過した光は測定光として用いられる。つまり、参照面103aが光の分割手段(振幅分割)であり、重ね合わせ手段となっている。参照面103aは非常に高精度に研磨されており、その面精度は、例えば光の波長の20分の1以下(30nm以下)の凹凸しかないものとなっている。
【0019】
参照面103aからの反射光と被検面110aからの反射光は元の光路を逆戻りし、干渉してビームスプリッター101によりリレーレンズ104を介して撮像素子105へと導かれ、干渉縞画像が得られる。この干渉縞画像から、波面収差(被検面110aの形状)が計算される。
【0020】
リレーレンズ104は、ビームスプリッター101で反射された光(参照光と測定光との干渉光)をリレーするレンズである。測定装置100に配置されたコリメーターレンズ102、基準板103、及びリレーレンズ104は、合成石英ガラスまたは蛍石(フッ化カルシウム)等の硝材を用いて形成されている。
【0021】
撮像素子105は、干渉光を検出するものであり、例えば二次元CCD(Charge Coupled Device)等の光電変換素子を用いることができる。撮像素子105で検出された干渉縞等の検出データは、算出手段130に出力される。
【0022】
算出手段130は、検出部120から出力された検出結果(干渉縞等の検出データ)を不図示のモニターに表示し、または検出結果を解析して被検面110aにおいて生ずる波面収差を数値的に求めて、得られた数値をモニターに表示する。
【0023】
フィゾー干渉計では、参照面103aと被検面110aとの間には空気間隔があるだけで、参照面103aよりも照明光学系50側の光路(−Y方向側の光路)は共通であり、参照面103aと被検面110aの差が干渉縞となって捉えられる。つまり、参照面103aは高精度な平面であるため、参照面103aと被検面110aの差は事実上被検面110aの形状となる。なお、参照面103aからの反射光と被検面110aからの反射光には、光の波長に比べて大きな光路差があるため、可干渉性に優れたレーザー光を使用することが必要となる。
【0024】
図2は、本発明の第1実施形態に係る照明光学系50の概略構成を示す模式図である。図2に示すように、照明光学系50は、光学素子1と、光入射手段20と、遮光部30と、を有して構成されている。なお、図2において符号Θ1は、基材10の表面(金属薄膜11が形成された側の面)に対する光の入射角である。表面プラズモンは、入射光の波長と基材10及び金属薄膜11のそれぞれの誘電率とによって一意に定まる特定の光線入射角において励起される。したがって、図2におけるΘ1は、表面プラズモンを励起可能な角度に設定されている。
【0025】
光学素子1は、光を透過する基材10と、基材10の表面に形成された金属薄膜11と、金属薄膜11に形成されるとともに基材10の内部から基材10の表面に向けて光を全反射条件で入射させたときに励起される表面プラズモンを球面波に変換して出射させる散乱部(開口部12)と、を有している。
【0026】
本実施形態では、基材10として、固体液浸レンズ(ソリッドイマージョンレンズ)を用いている。この固体液浸レンズは、半球状のレンズであり、例えば、高屈折率ガラスや人工ダイヤモンドなどの高屈折率材料によって形成されている。このため、固体液浸レンズに入射する光を金属薄膜11に形成された散乱部12の近傍に集光させることができる。
【0027】
また、光学素子1は、光が微小なピンホールを通過して球面波となる構成とはなっていない。このため、入射光のうち測定に用いられる光がピンホールを通過せず無駄になってしまうことがなく、入射光をすべて有効に活用することができる。
【0028】
金属薄膜11は、固体液浸レンズの平面部に形成されている。金属薄膜11の膜厚は、基材10の内部から基材10の表面(固体液浸レンズの平面部)に向けて光を全反射条件で入射させたときにエバネッセント波が金属薄膜11の表面に滲みだすような厚さになっている。具体的には、金属薄膜11の膜厚は、入射する光の波長の50分の1以上5分の1以下となっている。本実施形態では、金属薄膜11の膜厚が10nm〜100nm程度になっている。
【0029】
これにより、基材10の内部から基材10の表面に向けて光を全反射条件で入射させたときに金属薄膜11の表面にエバネッセント波が滲みだすようになる。このため、この滲みだしたエバネッセント波の位相速度を表面プラズモンの位相速度に一致させることができ、表面プラズモンを共鳴的に励起することができる。一方、金属薄膜11の膜厚が入射する光の波長の50分の1よりも小さいと、膜厚が薄すぎて金属薄膜11としての体を保つことが困難となり表面プラズモンを励起できないおそれがある。また、金属薄膜11の膜厚が入射する光の波長の5分の1よりも大きいと、膜厚が厚すぎて基材10の内部から基材10の表面に向けて光を全反射条件で入射させたときに金属薄膜11の表面にエバネッセント波が滲みださなくなり表面プラズモンを励起できないおそれがある。
【0030】
また、金属薄膜11は、金、銀、アルミニウムのいずれかによって形成されている。これらの金属はプラズモンを発現させる特性を有しているので、金属薄膜11の表面に表面プラズモンが励起されやすくなる。
【0031】
散乱部は、金属薄膜11表面における不連続部であり、金属薄膜11の中央部に形成された開口部12である。この開口部12の大きさは、入射する光の波長よりも小さくなっている。具体的には、開口部12の大きさは、入射する光の波長の100分の1以上2分の1以下となっている。本実施形態では、開口部12の大きさが100nm〜500nm程度になっている。ここで、開口部12の大きさとは、平面視において開口部12に線を引いたとき最も長く引ける線の距離である。例えば、開口部12が平面視円形のときは円の直径が開口部12の大きさとなり、開口部12が平面視矩形のときは矩形の対角線が開口部12の大きさとなる。
【0032】
これにより、開口部12によって表面プラズモンが光に変換されやすくなる。このため、その後、変換された光が干渉し合って高精度な球面波が容易に生成される。一方、開口部12の大きさが入射する光の波長の100分の1よりも小さいと、開口部12が小さすぎて開口部12が無い状態と等価となり表面プラズモンが光に変換されにくくなるおそれがある。また、開口部12の大きさが入射する光の波長の2分の1よりも大きいと、開口部12が大きすぎて表面プラズモンが光に変換されにくくなるおそれがある。
【0033】
光入射手段20は、円錐レンズ(アキシコンレンズ)21と、球面レンズ22と、対物レンズ23と、を有して構成されている。光入射手段20は、光学素子1に設けられた基材10の内部から基材10の表面に向けて、少なくとも一部の光が基材10の表面への入射角Θ1が全反射条件を満たすように光を入射させるものである。光入射手段20を構成する円錐レンズ21、球面レンズ22、及び対物レンズ23は、例えば合成石英ガラスまたは蛍石(フッ化カルシウム)等の硝材を用いて形成されている。
【0034】
円錐レンズ21は、不図示の光源から射出されるレーザー光線の焦点を合わせるとともに、球面レンズ22との組み合わせによりリング状の光線を形成する。なお、光源としては、例えばArFエキシマレーザー光源(波長193nm)を用いることができる。
【0035】
遮光部30は、球面レンズ22と対物レンズ23との間の光路上に配置されている。この遮光部30は、球面レンズ22を通過した光のうち基材10の表面への入射角が全反射条件を満たさない光の少なくとも一部を遮蔽する構造を有する。例えば、遮光部30は、クロム等によって輪帯形状の遮光帯を同心円状に形成したものである。遮光する範囲は、これにより遮光される光の基材10の表面に入射する角度が全反射臨界角よりも小さい範囲となるように決定される。ここで、全反射臨界角は基材10の材質によって異なるが、例えば基材10の形成材料がガラスのときの全反射臨界角は42〜43°程度である。
【0036】
これにより、基材10の表面に照射される光は、全反射条件を満たすもの(全反射臨界角よりも大きな入射角をもつもの)が主になる。このような光は、基材10の表面で全反射をおこし、金属薄膜11の表面にエバネッセント波を発生させる。
【0037】
図3は、本発明の第1実施形態に係る光学素子1の表面状態を示す図である。図3に示すように、金属薄膜11に形成された開口部12によって、基材10の内部から基材10の表面に向けて光を全反射条件で入射させたときに励起される表面プラズモンが球面波に変換される。具体的には、光入射手段20により所定の波長の光を基材10の内部から基材10の表面に向けて全反射条件で入射させる。本実施形態では、遮光部30によって基材10の表面に照射される光は、全反射条件を満たすもの(全反射臨界角よりも大きな入射角をもつもの)が主になっている。
【0038】
また、基材10の内部から基材10の表面に向けて入射する光は、開口部12の近傍に入射するように設定されている。この入射光の入射位置は、例えば上述した光入射手段20を構成する各種レンズの配置を適宜変更することにより設定可能である。本実施形態では、入射光束の幅は、基材10の表面において、開口部12を中心として直径5μm程度の範囲に集光されるように設定されている。このように開口部12に近接した金属薄膜11表面における連続部(金属薄膜11表面における不連続部(開口部12)を除いた領域)に光を選択的に入射させることができる。つまり、エバネッセント波が滲みだす厚さに形成された金属薄膜11のうち開口部12に近接した部分に光を選択的に入射させることができる。このため、金属薄膜11に入射する光のエネルギーを表面プラズモンの伝搬長以内の領域に集中させることができ、開口部12の近傍に表面プラズモンを励起するためのエネルギーとして、有効に利用することができる。
【0039】
また、金属薄膜11の外側の空気中に電磁波の浸透が発生する(これをエバネッセント場という)。これにともなって、金属薄膜11の表面に滲みだした境界面に沿って伝播する波(以下、エバネッセント波という)が発生する。金属薄膜11表面では、表面での境界条件を満たす表面電荷の集団振動が存在する(表面に局在化したプラズモンモード、以下、表面プラズモンという)。つまり、エバネッセント波を用いると、この位相速度を表面プラズモンの位相速度に一致させることができ、表面プラズモンを共鳴的に励起することができる。
【0040】
また、表面プラズモンの電界分布についてみると、エバネッセント波も表面プラズモンの電界と一致している必要がある。それは表面プラズモンの電界成分のある面を入射面とし、電界成分がその入射面に平行な入射光で実現できる。このような光はP偏光と呼ばれる直線偏光であり、表面プラズモンを励起するためにはP偏光を基材10の表面に入射させる必要がある。一方、P偏光に垂直な直線偏光はS偏光と呼ばれるが、このS偏光では表面プラズモンを励起することはできない。
【0041】
また、金属薄膜11の表面には、開口部12の近傍に所定の波長のP偏光を入射させると生じる正電荷と負電荷との振動に伴って電磁場の振動が誘起される。ここで、正電荷と負電荷はP偏光の波としての性質及び電磁場の振動モード等の要素によって、時間的な変化に応じてそれらの配置が切り替わるようになっている。例えば、開口部12の一端に生じる正電荷が経時的に負電荷に切り替わるとともに、開口部12の他端に生じる負電荷が経時的に正電荷に切り替わるようになっている。そして、この電磁場の振動は、電荷の振動に影響するため、両者の振動が結合した系である表面プラズモンが励起されることになる。この表面プラズモンの励起エネルギーは、開口部12近傍で例えばアンテナのように作用し、電磁波として空間に放射される。
【0042】
このようにして、表面プラズモンが励起されると、入射光のエネルギーは表面プラズモンの励起によって奪われ、その後、開口部12で表面プラズモンが球面波に変換される。
【0043】
本実施形態に係る光学素子1、照明光学系50、及び測定装置100によれば、金属薄膜11に形成された開口部12によって、基材10の内部から基材11の表面に向けて光を全反射条件で入射させたときに励起される表面プラズモンが球面波に変換されるため、高精度かつ高強度の球面波が得られる。具体的には、基材10の内部から基材10の表面に向けて光を全反射条件で入射させると、金属薄膜11の内部にエバネッセント場が発生する。これにともなって、金属薄膜11の表面に滲みだした境界面に沿ってエバネッセント波が発生する。金属薄膜11表面では、表面での境界条件を満たす表面電荷の集団振動である表面プラズモンが存在する。つまり、エバネッセント波を用いると、この位相速度を表面プラズモンの位相速度に一致させることができ、表面プラズモンを共鳴的に励起することができる。このようにして、表面プラズモンが励起されると、入射光のエネルギーは表面プラズモンの励起によって奪われ、その後、開口部12で球面波が生成される。また、光が微小なピンホールを通過して球面波となる構成とはなっていない。つまり、入射光のうち測定に用いられる光がピンホールを通過せず、無駄になってしまうことがない。したがって、高強度の球面波を得ることが可能な光学素子1、照明光学系50、及び測定装置100が得られる。
【0044】
また、この構成によれば、散乱部が開口部12であり、この開口部12の大きさが入射する光の波長よりも小さく、具体的には光の波長の100分の1以上2分の1以下になっているので、開口部12によって高精度な球面波が容易に生成される。一方、開口部12の大きさが入射する光の波長の100分の1よりも小さいと、開口部12が小さすぎて開口部12が無い状態と等価となり球面波が生成されにくくなるおそれがある。また、開口部12の大きさが入射する光の波長の2分の1よりも大きいと、開口部12が大きすぎて球面波が生成されにくくなるおそれがある。
【0045】
また、この構成によれば、金属薄膜11の膜厚は基材11の内部から基材10の表面に向けて光を全反射条件で入射させたときにエバネッセント波が金属薄膜11の表面に滲みだすような厚さになっており、具体的には光の波長の50分の1以上5分の1以下になっている。このため、基材10の内部から基材10の表面に向けて光を全反射条件で入射させたときに金属薄膜11の表面にエバネッセント波が滲みだすので、この滲みだしたエバネッセント波の位相速度を表面プラズモンの位相速度に一致させることができ、表面プラズモンを共鳴的に励起することができる。一方、金属薄膜11の膜厚が入射する光の波長の50分の1よりも小さいと、膜厚が薄すぎて金属薄膜11としての体を保つことが困難となり表面プラズモンを励起できないおそれがある。また、金属薄膜11の膜厚が入射する光の波長の5分の1よりも大きいと、膜厚が厚すぎて基材10の内部から基材10の表面に向けて光を全反射条件で入射させたときに金属薄膜の表面にエバネッセント波が滲みださなくなり表面プラズモンを励起できないおそれがある。
【0046】
また、この構成によれば、基材10が固体液浸レンズであるため、入射する光を金属薄膜11に形成された開口部12近傍に集光させることができる。つまり、集光した光のエネルギーを表面プラズモンの励起に活用することができる。したがって、高精度かつ高強度の球面波を確実に得ることが可能となる。
【0047】
また、この構成によれば、金属薄膜11がプラズモンを発現させる特性を有する金、銀、アルミニウムのいずれかによって形成されているので、表面プラズモンが励起されやすくなる。したがって、高精度かつ高強度の球面波を容易に得ることが可能となる。
【0048】
本実施形態に係る照明光学系50によれば、遮光部30を有するため、基材10の表面に照射される光は、全反射条件を満たすものが主になる。このような光は、基材10の表面で全反射をおこし、金属薄膜11の表面にエバネッセント波を発生させる。したがって、高精度かつ高強度の球面波を確実に得ることが可能となる。
【0049】
なお、本実施形態では、遮光部30が球面レンズ22と対物レンズ23との間の光路上に配置されているが、これに限らない。例えば、遮光部が固体液浸レンズの球面部の中央部分にクロムを蒸着することで配置されていてもよい。すなわち、遮光部は球面レンズを通過した光のうち基材の表面への入射角が全反射条件を満たさない光の少なくとも一部を遮蔽する構造を有していればよい。
【0050】
(第2実施形態)
図4は、本発明の第2実施形態に係る照明光学系60の概略構成を示す模式図である。図4に示すように、照明光学系60は、光学素子2と、光入射手段20と、遮光部30と、を有して構成されている。本実施形態の照明光学系60は、光学素子2の散乱部が凸部13である点で第1実施形態の照明光学系50と異なる。その他の点は第1実施形態の照明光学系50と同様であるので、その詳細な説明を省略する。なお、図4において符号Θ2は、基材10の表面に対する光の入射角である。
【0051】
光学素子2は、光を透過する基材10と、基材10の表面に形成された金属薄膜11と、金属薄膜11に形成されるとともに基材10の内部から基材10の表面に向けて光を全反射条件で入射させたときに励起される表面プラズモンを球面波に変換して出射させる散乱部(凸部13)と、を有している。
【0052】
散乱部は、金属薄膜11表面における不連続部であり、金属薄膜11の中央部に形成されるとともに金属薄膜11の表面に突出した金属の凸部13である。この凸部13の大きさは、入射する光の波長よりも小さくなっている。具体的には、凸部13の大きさは、入射する光の波長の100分の1以上2分の1以下となっている。本実施形態では、凸部13の大きさが30nm〜500nm程度になっている。ここで、凸部13の大きさとは、平面視において凸部13形成領域に線を引いたとき最も長く引ける線の距離、凸部13の高さ(金属薄膜表面と凸部13先端の間の距離)、のうちいずれか長いほうの距離である。例えば、凸部13が側面視半球形状のときは半球の直径が凸部13の大きさとなり、凸部13が側面視矩形のときは矩形の長手が凸部13の大きさとなる。
【0053】
これにより、凸部13によって高精度な球面波が容易に生成される。一方、凸部13の大きさが入射する光の波長の100分の1よりも小さいと、凸部13が小さすぎて凸部13が無い状態と等価となり球面波が生成されにくくなるおそれがある。また、凸部13の大きさが入射する光の波長の2分の1よりも大きいと、凸部13が大きすぎて球面波が生成されにくくなるおそれがある。
【0054】
また、凸部13は、金、銀、アルミニウムのいずれかによって形成されている。これらの金属はプラズモンを発現させる特性を有しているので、凸部13の表面に表面プラズモンが励起されやすくなる。
【0055】
図5は、本発明の第2実施形態に係る光学素子2の表面状態を示す図である。図5に示すように、金属薄膜11に形成された凸部13によって、基材10の内部から基材10の表面に向けて光を全反射条件で入射させたときに励起される表面プラズモンが球面波に変換される。具体的には、光入射手段20により所定の波長の光を基材10の内部から基材10の表面に向けて全反射条件で入射させる。本実施形態では、遮光部30によって基材10の表面に照射される光は、全反射条件を満たすもの(全反射臨界角よりも大きな入射角をもつもの)が主になっている。
【0056】
また、基材10の内部から基材10の表面に向けて入射する光は、凸部13の近傍に入射するように設定されている。この入射光の入射位置は、例えば上述した光入射手段20を構成する各種レンズの配置を適宜変更することにより設定可能である。本実施形態では、入射光束の幅は、基材10の表面において、凸部13を中心として直径5μm程度の範囲に集光されるように設定されている。このように凸部13に近接した金属薄膜11表面における連続部(金属薄膜11表面における不連続部(凸部13)を除いた領域)に光を選択的に入射させることができる。つまり、エバネッセント波が滲みだす厚さに形成された金属薄膜11のうち凸部13に近接した部分に光を選択的に入射させることができる。このため、金属薄膜11に入射する光のエネルギーを表面プラズモンの伝搬長以内の領域に集中させることができ、凸部13の近傍に表面プラズモンを励起するためのエネルギーとして、有効に利用することができる。
【0057】
また、金属薄膜11の表面に滲みだした境界面に沿って伝播するエバネッセント波が発生する。金属薄膜11表面では、表面での境界条件を満たす表面電荷の集団振動である表面プラズモンが存在する。つまり、エバネッセント波を用いると、この位相速度を表面プラズモンの位相速度に一致させることができ、表面プラズモンを共鳴的に励起することができる。
【0058】
金属薄膜11の表面には、凸部13の近傍に所定の波長のP偏光を入射させると生じる正電荷と負電荷との振動に伴って電磁場の振動が誘起される。ここで、正電荷と負電荷はP偏光の波としての性質及び電磁場の振動モード等の要素によって、時間的な変化に応じてそれらの配置が切り替わるようになっている。例えば、凸部13の一端に生じる正電荷が経時的に負電荷に切り替わるとともに、凸部13の他端に生じる負電荷が経時的に正電荷に切り替わるようになっている。そして、この電磁場の振動は、電荷の振動に影響するため、両者の振動が結合した系である表面プラズモンが励起されることになる。この表面プラズモンの励起エネルギーは、凸部13近傍で例えばアンテナのように作用し、電波として空間に放射される。
【0059】
このようにして、表面プラズモンが励起されると、入射光のエネルギーは表面プラズモンの励起によって奪われ、その後、凸部13で球面波が生成される。
【0060】
本実施形態によれば、散乱部が凸部13であり、この凸部13の大きさが入射する光の波長よりも小さく、具体的には光の波長の100分の1以上2分の1以下になっているので、凸部13によって高精度な球面波が容易に生成される。一方、凸部13の大きさが入射する光の波長の100分の1よりも小さいと、凸部13が小さすぎて凸部13が無い状態と等価となり球面波が生成されにくくなるおそれがある。また、凸部13の大きさが入射する光の波長の2分の1よりも大きいと、凸部13が大きすぎて球面波が生成されにくくなるおそれがある。
【0061】
また、この構成によれば、凸部13がプラズモンを発現させる特性を有する金、銀、アルミニウムのいずれかによって形成されているので、表面プラズモンが励起されやすくなる。したがって、高精度かつ高強度の球面波を容易に得ることが可能となる。
【0062】
(変形例1)
図6は、第1変形例の測定装置200の概略構成を示す模式図である。本変形例の測定装置200は、波面収差を測定するための装置(波面収差測定装置)である。本変形例では、一例としてマイケルソン干渉計を挙げて説明する。
【0063】
図6に示すように、測定装置200は、擬似点光源として光学素子を有する照明光学系50と、照明光学系50から出射した球面波を被検面210aに照射し、その反射光を検出する検出部220と、前記反射光に基づいて被検面210aの波面収差を算出する算出手段230と、を有して構成されている。
【0064】
検出部220は、コリメーターレンズ201と、ハーフミラー202と、補正板203と、参照ミラー204と、集光レンズ205と、リレーレンズ206と、撮像素子207と、を有して構成されている。また、ハーフミラー202から光が出射する+Y方向側には、波面収差を測定する対象となる被検面210aを有するサンプル210が配置されている。
【0065】
照明光学系50から発した+Y方向に進む球面波はコリメーターレンズ201により平行光となり、ハーフミラー202により2つの光路に分割される。2つに分かれた光のうち+Z方向に進む光は、補正板203を透過後に高精度に研磨された平面を有する参照ミラー204の参照面204aに到達して反射する。一方、2つに分かれた光のうち+Y方向に進む光は、サンプル210の被検面210aに到達して反射する。これらの光は元の光路を逆戻りしてハーフミラー202により重ね合わせられ、集光レンズ205、リレーレンズ206を経由して撮像素子207へと導かれ、干渉縞画像が得られる。この干渉縞画像から、波面収差(被検面110aの形状)が計算される。
【0066】
測定装置200に配置されたコリメーターレンズ201、補正板203、集光レンズ205、及びリレーレンズ206は、合成石英ガラスまたは蛍石(フッ化カルシウム)等の硝材を用いて形成されている。
【0067】
撮像素子207は、干渉光を検出するものであり、TVカメラを用いることができる。撮像素子207で検出された干渉縞等の検出データは、算出手段230に出力される。
【0068】
算出手段230は、検出部220から出力された検出結果(干渉縞等の検出データ)を不図示のモニターに表示し、または検出結果を解析して被検面210aにおいて生ずる波面収差を数値的に求めて、得られた数値をモニターに表示する。
【0069】
マイケルソン干渉計では、2つの光路長を波長オーダーで一致させることができるので、必ずしもレーザー光を使用する必要はなく、白色光や低コヒーレンス光を光源として用いることができる。ただし、白色光や低コヒーレンス光を用いる場合には、2つの光路長を正確に一致させる必要がある。この場合、レンズ面等からの反射光があってもノイズとならず、表面形状を正確に測定することができる。
【0070】
なお、上記実施形態では、光源がArFエキシマレーザー光源の場合を例に挙げて説明したが、これに限らない。例えば、光源としては、g線(波長436nm)、i線(波長365nm)を射出する超高圧水銀ランプ、またはKrFエキシマレーザー(波長248nm)、Fレーザー(波長157nm)、Krレーザー(波長146nm)、YAGレーザーの高周波発生装置、若しくは半導体レーザーの高周波発生装置を用いることができる。
【0071】
さらに、光源としてDFB半導体レーザーまたはファイバーレーザーから発振される赤外域、または可視域の単一波長レーザー光を、例えばエルビウム(またはエルビウムとイットリビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いてもよい。例えば、単一波長レーザーの発振波長を1.51〜1.59μmの範囲内とすると、発生波長が189〜199nmの範囲内である8倍高調波、または発生波長が151〜159nmの範囲内である10倍高調波が出力される。
【0072】
特に、発振波長を1.544〜1.553μmの範囲内とすると、発生波長が193〜194nmの範囲内の8倍高調波、すなわちArFエキシマレーザー光とほぼ同一波長となる紫外光が得られ、発振波長を1.57〜1.58μmの範囲内とすると、発生波長が157〜158nmの範囲内の10倍高調波、すなわちFレーザー光とほぼ同一波長となる紫外光が得られる。また、発振波長を1.03〜1.12μmの範囲内とすると、発生波長が147〜160nmの範囲内である7倍高調波が出力され、特に発振波長を1.099〜1.106μmの範囲内とすると、発生波長が157〜158μmの範囲内の7倍高調波、すなわちFレーザー光とほぼ同一波長となる紫外光が得られる。この場合、単一波長発振レーザーとしては例えばイットリビウム・ドープ・ファイバーレーザーを用いることができる。
【0073】
また、上記実施形態では、測定装置に配置されたコリメーターレンズ、基準板、及びリレーレンズ、並びに光入射手段を構成する円錐レンズ、球面レンズ、及び対物レンズ等の各種レンズは、合成石英ガラスまたは蛍石(フッ化カルシウム)等の硝材を用いる場合を例に挙げて説明したが、これに限らない。例えば、これら各種レンズは、光源から射出される光の波長に応じて、蛍石(フッ化カルシウム:CaF)、フッ化マグネシウム(MgF)、フッ化リチウム(LiF)、フッ化バリウム(BaF)、フッ化ストロンチウム(SrF)、LiCAF(コルキライト:LiCaAlF)、LiSAF(LiSrAlF)、LiMgAlF、LiBeAlF、KMgF、KCaF、KSrF等のフッ化物結晶またはこれらの混晶、またはフッ素や水素等の物質をドープした石英硝子等の真空紫外光を透過する化学材料から適宜選択される。
【0074】
また、上記実施形態では、反射光学素子の波面収差測定を例に挙げて説明したが、本発明の実施形態である測定装置はこれらの例に限定されない。本発明の態様の照明光学系は、透過光学素子の波面収差等を測定するための測定装置に用いることができる。また、本発明の態様の照明光学系は、たとえば特許文献1に記載されているような、光学系を被検物とする測定装置に適用することもできる。これらの場合、従来の測定装置のピンホールに代えて本発明の態様の照明光学系を用いれば良く、照明光学系から出射した球面波は測定光として被検物(光学系)に照射され、被検物(光学系)を経由した測定光は検出部に導かれ、検出結果に基づいて波面収差等の光学特性が測定される。本発明の態様の照明光学系は高精度かつ高強度な球面波を出射するので、透過光学素子や光学系の光学特性を測定する場合であっても、反射光学素子の場合と同様に、高精度でS/N比の高い測定結果を得ることができる。
【符号の説明】
【0075】
1,2…光学素子、10…基材、11…金属薄膜、12…開口部(散乱部)、13…凸部(散乱部)、20…光入射手段、30…遮光部(全反射条件を満たさない光の少なくとも一部を遮蔽する構造)、50,60…照明光学系、100,200…測定装置、120,220…検出部、130,230…算出手段

【特許請求の範囲】
【請求項1】
光を透過する基材と、
前記基材の表面に形成された金属薄膜と、
前記金属薄膜に形成されるとともに、前記基材の内部から前記基材の表面に向けて前記光を全反射条件で入射させたときに励起される表面プラズモンを球面波に変換して出射させる散乱部と、
を有することを特徴とする光学素子。
【請求項2】
前記散乱部が開口部であることを特徴とする請求項1に記載の光学素子。
【請求項3】
前記開口部の大きさが、前記光の波長よりも小さいことを特徴とする請求項2に記載の光学素子。
【請求項4】
前記開口部の大きさが、前記光の波長の100分の1以上2分の1以下であることを特徴とする請求項3に記載の光学素子。
【請求項5】
前記散乱部が前記金属薄膜の表面に突出した金属の凸部であることを特徴とする請求項1に記載の光学素子。
【請求項6】
前記凸部の大きさが、前記光の波長よりも小さいことを特徴とする請求項5に記載の光学素子。
【請求項7】
前記凸部の大きさが、前記光の波長の100分の1以上2分の1以下であることを特徴とする請求項6に記載の光学素子。
【請求項8】
前記凸部が金、銀、アルミニウムのいずれかによって形成されていることを特徴とする請求項5〜7のいずれか1項に記載の光学素子。
【請求項9】
前記金属薄膜の膜厚は、前記基材の内部から前記基材の表面に向けて前記光を全反射条件で入射させたときにエバネッセント波が前記金属薄膜の表面に滲みだすような厚さになっていることを特徴とする請求項1〜8のいずれか1項に記載の光学素子。
【請求項10】
前記金属薄膜の膜厚が、前記光の波長の50分の1以上5分の1以下であることを特徴とする請求項9に記載の光学素子。
【請求項11】
前記基材が固体液浸レンズであることを特徴とする請求項1〜10のいずれか1項に記載の光学素子。
【請求項12】
前記金属薄膜が金、銀、アルミニウムのいずれかによって形成されていることを特徴とする請求項1〜11のいずれか1項に記載の光学素子。
【請求項13】
請求項1〜12のいずれか1項に記載の光学素子と、
前記光学素子に設けられた前記基材の内部から前記基材の表面に向けて、少なくとも一部の光が前記表面への入射角が全反射条件を満たすように光を入射させる光入射手段と、
を備えることを特徴とする照明光学系。
【請求項14】
前記光のうち前記基材の表面への入射角が全反射条件を満たさない光の少なくとも一部を遮蔽する構造を有することを特徴とする請求項13に記載の照明光学系。
【請求項15】
請求項13または14に記載の照明光学系と、
前記照明光学系から出射した球面波を被検面に照射し、その反射光を検出する検出部と、
前記反射光に基づいて前記被検面の波面収差を算出する算出手段と、
を有することを特徴とする測定装置。
【請求項16】
被検物に測定光を照射する照明光学系と、
前記被検物を経由した測定光を検出する検出部と、
前記検出部で検出された測定光に基づいて前記被検物の光学特性を算出する算出手段と、
を有し、
前記照明光学系が請求項13または14に記載の照明光学系であることを特徴とする測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−186383(P2011−186383A)
【公開日】平成23年9月22日(2011.9.22)
【国際特許分類】
【出願番号】特願2010−54318(P2010−54318)
【出願日】平成22年3月11日(2010.3.11)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】