説明

吹付け施工装置、吹付け施工方法、及び不定形耐火物

【課題】 施工水の供給量を少なく抑えつつ、リバウンドロスや粉塵の発生を防止できる吹付け施工装置を提供する。
【解決手段】 粉体材料供給器7が、不定形耐火物10と搬送用ガスとを搬送ホース1内へ供給する。不定形耐火物10は、吹付ノズル3に向かって、搬送ホース1内を気流搬送される。搬送ホース1の途中に設けた施工水供給器6が、搬送ホース1内へ施工水を噴霧する。粉体材料供給器7から施工水供給器6までの搬送ホース1を、不定形耐火物10をプラスに摩擦帯電させうる材料で構成する一方、施工水供給器6内部には、施工水を静電現象によりマイナスに帯電させる帯電用電極を設けた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、粉体材料を施工対象面に吹付け、施工対象面に粉体材料よりなる施工体を形成する吹付け施工装置及び吹付け施工方法、並びに粉体材料として用いるに適した不定形耐火物に関する。
【背景技術】
【0002】
粉体材料として不定形耐火物を例に挙げて説明すると、従来から不定形耐火物を乾燥状態のまま気流搬送させ、搬送管先端の吹付ノズルにて施工水を添加して吹付ける乾式吹付け施工方法が知られている。この方法は、不定形耐火物を乾燥状態のまま気流搬送させるので、予め施工水で練り込んだスラリー状の不定形耐火物を圧送させる技術に比べると、搬送管の閉塞が起こりにくく、長距離の搬送が可能である等の利点がある。しかし反面、施工水を吹付ノズルにて添加するので、施工水と不定形耐火物との接触時間が短く、両者が充分に混ざり合いにくい等の欠点もある。
【0003】
そこで、従来の乾式吹付け施工方法の上記欠点を緩和しうる改良技術として、不定形耐火物が気流搬送される搬送経路の途中にて、不定形耐火物に施工水を添加するようにした吹付け施工方法が提案されている(特許文献1及び2等参照)。
【特許文献1】特開2002−220288号公報
【特許文献2】特開2003−254672号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
特許文献1及び2に記載の方法は、搬送管の途中で施工水を添加するため、搬送管先端の吹付ノズルで施工水を添加する乾式吹付け施工方法に比べると、施工水と不定形耐火物との接触時間を長く確保することができ、両者の混合不足を緩和し得ると考えられるが、この方法で実際に試験を行ったところ、施工対象面からの跳ね返りによる損失(以下、リバウンドロスという。)と粉塵の発生が見られ、施工水と不定形耐火物との混合効果を向上させることに関して未だ改善の余地を残していることが判明した。
【0005】
なお、搬送管内へ供給する施工水の量を増やせば、リバウンドロスや粉塵の発生を低減し得るものの、施工体の緻密化が阻害されるとともに、施工体の剥離やだれ落ち等の他の問題を招く原因となる。このような課題は、特に不定形耐火物の吹付け施工技術に限らず、コンクリート等の他の粉体材料の吹付け施工技術にもあてはまるものである。
【0006】
本発明の目的は、粉末材料に添加する施工液の供給量を増大させることなく、リバウンドロスや粉塵の発生等を防止することができる吹付け施工技術を提供することにある。本発明の他の目的は、品質の良好な施工体を形成することができる吹付け施工技術を提供することにある。本発明のさらに他の目的は、それらの吹付け施工技術に好ましく用いることができる粉体材料の一具体例としての不定形耐火物を提供することにある。
【課題を解決するための手段】
【0007】
第1の発明は、先端が吹出口とされた搬送管と、前記搬送管内を、吹出口に向かって粉体材料が気流搬送されるよう、粉体材料と該粉体材料の搬送用ガスとを搬送管内へ供給する粉体材料供給器と、前記粉体材料供給器から吹出口に至る前記搬送管に沿った搬送経路上における少なくとも一箇所にて、該搬送管内へ霧状化した施工液を供給する施工液供給器と、前記施工液供給器による霧状化施工液の供給箇所よりも上流側にて、前記粉体材料供給器により供給された粉体材料の各粒子を同一の極性に帯電させる粉体材料帯電手段と、前記施工液供給器により供給される霧状化施工液の各粒子を、前記粉体材料帯電手段により帯電される粉体材料の極性とは逆極性に帯電させる施工液帯電手段とを備えた吹付け施工装置である。
【0008】
第2の発明は、粉体材料を各粒子が同一の極性となるよう帯電させて供給する帯電化材料供給手段と、施工液を霧状化させ、かつ該霧状化施工液の各粒子を前記帯電化材料供給手段にて帯電される粉体材料の各粒子とは逆極性に帯電させて供給する帯電化施工液供給手段と、一端部が吹出口とされ、他端部が帯電化材料供給手段により供給された粉体材料、及び帯電化施工液供給手段により供給された霧状化施工液が導入される導入部とされ、該導入部より導入された粉体材料と施工液とを前記吹出口まで導く共通の搬送経路とを備えた吹付け施工装置である。帯電化材料供給手段は、前記共通の搬送経路の導入部に通じる粉体搬送管と、粉体搬送経管内にイオンを供給するイオン供給器とを有することが好ましい。帯電化材料供給手段は、前記共通の搬送経路の導入部に通じる粉体搬送管と、粉体搬送管の内面に形成された、フッ素樹脂よりなる帯電用コーティングとを有することが好ましい。帯電化施工液供給手段は、施工液を噴霧し又は吐出するノズルと、このノズルと共に、該ノズルから噴霧され又は吐出される施工液が通過する空間に電場を形成する帯電用電極と、直流電源に接続されて、前記ノズルと帯電用電極との間に電位差を生じさせ、前記電場の形成を実現させる電圧印加回路とを有することが好ましい。
【0009】
第3の発明は、(a)粉体材料と霧状化した施工液とを共通の搬送経路内に合流させる工程と、(b)合流させた粉体材料と施工液とを、前記共通の搬送経路内で接触させつつ搬送させて該共通の搬送経路端部の吹出口より施工対象面に吹付け、施工対象面に粉体材料よりなる施工体を形成する工程と、を有する吹付け施工方法において、前記工程(a)では、粉体材料と施工液との合流に先立ち、粉体材料の各粒子を同一の極性に帯電させておく一方、施工液を前記粉体材料の極性とは逆極性に帯電させておくことを特徴とした吹付け施工方法である。
【0010】
第4の発明は、第1〜第3の発明の実施に用いられる前記粉体材料としての不定形耐火物であって、粒径10μm未満のもの/粒径10μm以上75μm未満のものの質量比が0.25〜0.7となる条件で、粒径75μm未満のものを10〜60質量%有するよう粒度調整された耐火原料粉末に対し、結合剤を少なくとも添加し混合してなる不定形耐火物である。なお、本明細書において、「〜」の記号は両端点を含む意味で用いるものとする。
【0011】
第5の発明は、第1〜第3の発明の実施に用いられる前記粉体材料としての不定形耐火物であって、該吹付け施工方法により吹き付けた後、養生し110℃で24時間以上乾燥したときに、18〜30%の見掛け気孔率、及び100×10−5cm・cm/cm・cmHO・sec以上の通気率を有しうる不定形耐火物である。
【発明の効果】
【0012】
第1〜第3の発明によると、施工液の霧状粒子と粉体材料の粒子とを相互に逆極性に帯電させるので、両者の間にクーロン引力が作用することとなり、粉体材料への施工液の付着が促進される。また、施工液の霧状粒子どうしの極性、及び粉体材料の粒子どうしの極性はそれぞれ同じであるから、施工液の霧状粒子間及び粉体材料の粒子間にはそれぞれクーロン斥力が作用することとなり、各々の凝集を防止して均一に分散させる効果を高めることができる。このため、従来よりも少ない量の施工液を使用しながら、粉体材料をムラなく均一に湿潤させることができる。この結果、リバウンドロスや粉塵の発生を防止でき、品質の良好な施工体を形成できる。
【0013】
第4及び第5の発明によると、粉体材料として特定構成の不定形耐火物を用いたことにより、第1〜第3の発明により得られる上記効果がいっそう向上する。
【発明を実施するための最良の形態】
【0014】
図1は、本発明の一実施形態による吹付け施工装置の概略図である。搬送ホース1は、第1搬送ホース部1aの先端に、接続部4を介して第2搬送ホース部1bが接続されて構成される。第2搬送ホース部1bの先端には、混合配管2が接続され、混合配管2の先端に、吹付口3aを有する吹付ノズル3が接続されている。なお、本実施形態では、搬送ホース1、混合配管2、及び吹付ノズル3により、第1の発明の搬送管が構成される。また、混合配管2と吹付ノズル3とにより、第2及び第3の発明における粉体材料と施工液との共通の搬送経路が構成され、搬送ホース1により粉体搬送管が構成される。
【0015】
粉体材料供給器5が、第1搬送ホース部1aの後端に接続されている。粉体材料供給器5は、タンク6、第1圧縮空気導入ライン7、第2圧縮空気導入ライン8、及びテーブルフィーダ9を含んで構成される。気密構造をもつタンク6に、不定形耐火物10が蓄積されている。第1圧縮空気導入ライン7はタンク6に接続され、第2圧縮空気導入ライン8はテーブルフィーダ9に接続されている。タンク6の内圧を、第1圧縮空気導入ライン7より供給される圧縮空気で大気圧超に調整した状態で、テーブルフィーダ9を駆動させると、タンク6内の不定形耐火物10が、第2圧縮空気導入ライン8より供給される圧縮空気と共に第1搬送ホース部1a内へ供給される。供給された不定形耐火物10は、第1搬送ホース部1a内を吹付ノズル3に向かって気流搬送される。
【0016】
搬送ホース1は、取り回し性を考慮してフレキシブルな材料、具体的には合成ゴムで構成される。合成ゴムは、不定形耐火物10をプラスに摩擦帯電させ得る材料、即ち帯電序列で表して不定形耐火物10よりもマイナス側に配置された材料である。このため、次の作用が生じる。即ち、粉体材料供給器7より供給された不定形耐火物10は、搬送ホース1内を流れる過程で、搬送ホース1の内面と擦れ合ったり、搬送ホース1の内面に衝突したりする。その際、搬送ホース1が不定形耐火物10の粒子から電子を受け取り、不定形耐火物10の粒子をプラスに帯電させる。
【0017】
なお、第1搬送ホース部1aには、アース線1cが埋め込まれており、このアース線1cにより、第1搬送ホース部1aに蓄積された電荷を逃がすため、第1搬送ホース部1aから例えばテーブルフィーダ9側に電流が流れ込むことを防止でき、静電気に起因した粉体材料供給器5の故障を防止できる。一方、第2搬送ホース部1bには、アース線が埋め込まれていない。このため、粉体材料供給器5の故障は防止しつつ、第2搬送ホース部1bにて、第1搬送ホース部1aよりも効率的に不定形耐火物10を摩擦帯電させることができる。
【0018】
イオン放射ノズル11が、第2搬送ホース部1bの途中に接続されている。イオン放射ノズル11は、イオン供給管12を介して空気イオン発生器13に接続されている。空気イオン発生器13は、電源部14により給電されて作動し、圧縮空気供給ライン15から供給される圧縮空気をプラスイオン化させる。プラスイオン化された空気は、イオン供給管12、及びイオン放射ノズル11を介して、第2搬送ホース1b内を流れる不定形耐火物10に吹付けられる。プラスイオン化された空気の、搬送ホース1内への供給圧力は、0.5MPа程度以上である。なお、本実施形態では、上記イオン放射ノズル11、イオン供給管12、空気イオン発生器13、電源部14により本発明のイオン供給器が構成される。
【0019】
イオン放射ノズル11より吹付けられたプラスイオンは、イオン放射ノズル11よりも上流側の搬送ホース1内を流れる過程で既にプラスに帯電された不定形耐火物10の粒子には付着しにくいが、未帯電の不定形耐火物10の粒子に付着することで、その粒子をプラスに帯電させる。これにより、搬送ホース1内を流れる不定形耐火物10の粒子のうちプラスに帯電したものの存在割合を高めることができる。
【0020】
不定形耐火物10の粒子どうしを同極(ここではプラス)に帯電させるので、不定形耐火物10の粒子間にクーロン斥力が作用することとなり、不定形耐火物10の粒子の凝集を防止できる。この結果、搬送ホース1の詰まりを防止できる。なお、本実施形態では、搬送ホース1と空気イオン発生器13の各々により第1の発明の粉体材料帯電手段が構成され、これと粉体材料供給器5とにより第2の発明の帯電化材料供給手段が構成される。
【0021】
施工水供給器16が、第2搬送ホース部1bと混合配管2との境界部分に接続されている。以下、図2を参照して、施工水供給器16まわりの構成及び作用について説明する。
【0022】
図2は、施工水供給器16まわりの断面概略図である。搬送ホース1(図1の第2搬送ホース部1b)に取付けられた本体部20と、本体部20に保持された噴霧ノズル21と、噴霧ノズル21に接続された圧縮空気供給ライン22及び施工水供給ライン23によって図1の施工水供給器16が構成されている。
【0023】
本体部20には、空洞Kが形成されていて、この空洞Kが、搬送ホース1に形成された開口部を介して搬送ホース1内部と連通している。噴霧ノズル21は、自己の噴出口21aを空洞K内に臨ませた状態で本体部20に固定されている。空洞K内における噴出口21aと搬送ホース1の開口部との間に、リング状の帯電用電極24が設けられている。帯電用電極24も本体部20に固定されている。
【0024】
圧縮空気供給ライン22と施工水供給ライン23とからそれぞれ圧縮空気と施工水とを供給し、噴霧ノズル21内部で両者を衝突させることにより、施工水を霧状化させることができる。噴霧ノズル21は、施工水を平均粒子直径(体積平均粒子直径)が100μm以下となるように微粒子化することができる。ここでいう平均粒子直径は、例えばレーザドップラー法により測定できる。その測定装置としては、例えば米国TSI社の「AEROMETRICS」(商品名)がある。
【0025】
なお、圧縮空気供給ライン22からの圧縮空気、及び施工水供給ライン23からの施工水の圧力及び/又は流量を調整することにより、噴霧ノズル21から噴霧される施工水の平均粒子直径を調整することもできる。
【0026】
本体部20は、絶縁体、例えばプラスチックよりなり、噴霧ノズル21は、導体、例えばステンレス等の金属よりなる。そして、噴霧ノズル21と帯電用電極24とは、電圧印加回路25により電気的に接続されている。電圧印加回路25は、例えば24V程度の直流電源26に接続されている。電圧印加回路25及び直流電源26は、帯電用電極24がプラス極に、噴霧ノズル21がマイナス極になるように両者間に電位差を生じさせる。このため、帯電用電極24が、噴霧ノズル21と共に施工水が通過する空洞K内に電場を形成する。
【0027】
これにより、次の作用が生じる。即ち、噴霧ノズル21から噴霧された施工水は、プラス極である帯電用電極24からの静電誘導でマイナスに誘起される。マイナスに誘起された施工水は、リング状の帯電用電極24を通過した後、マイナス電荷を持った状態のまま、即ちマイナスに帯電したまま搬送ホース1内に進入する。なお、本実施形態では、帯電用電極24、電圧印加回路25、及び直流電源26により第1の発明の施工液帯電手段が構成され、それらと施工水供給器16とで第2の発明の帯電化施工液供給手段が構成される。
【0028】
施工水の霧状粒子27を、不定形耐火物の粒子28とは逆極性(ここではマイナス)に帯電させるので、両者27及び28間にクーロン引力が作用することとなる。このため両者27及び28の結合が促進される。しかも、噴霧ノズル21からは、搬送ホース1内の搬送圧力よりも高い圧力で霧状化施工水が圧入され得るので、その圧入に起因した乱流又は渦の形成等により、図1の混合配管2内においては両者27及び28を機械的に攪拌させる効果を得ることもでき、両者27及び28の結合の確率を高めることができる。
【0029】
この結果、従来よりも少ない量の施工水を使用しながら、例えば不定形耐火物の粒子28の各々を施工水で皮膜させた理想的な湿潤状態を発現させることができ、且つ不定形耐火物をムラなく均一に湿潤させることができる。発明者らの研究によると、不定形耐火物が粒径30μm以下の超微粉を含む場合、単に施工水を霧状化して添加するだけでは、特にその超微粉を充分に湿潤させることが困難であったが、両者27及び28を帯電させる場合は、粒径が小さなものほどクーロン力を効果的に発現させることができるため、超微粉に対する施工水のなじみを改善することができる。
【0030】
なお、空洞K内に形成される電場に基づく静電霧化現象により、噴霧ノズル21から噴霧された施工水の粒子がいっそう細分化され得る。ここで、静電霧化現象とは、液体表面に働く静電気力によって、液体が多数の霧状粒子に分裂する現象をいう。霧状化施工水の粒子を細かくし、その比表面積を大きくする程、霧状施工水の粒子27と不定形耐火物の粒子28との付着を促進することができる。かかる観点から、噴霧ノズル21のみの機能により、又は噴霧ノズル21の機能と上記静電霧化現象との共同作用により、霧状化施工水の平均粒子直径を、50μm以下とすることが好ましく、1μm〜50μmとすることがより好ましい。
【0031】
図1に戻って説明を続ける。混合配管2に、磁場発生器17が設けられている。磁場発生器17は、コイルで構成されており、実行値100V程度の交流電源18から交流電圧を供給されることにより、混合配管2内における不定形耐火物及び霧状化施工水の流れ方向と交差する方向に、交番磁場を生成する。これにより、混合配管2内では、不定形耐火物の粒子と施工水の霧状粒子との各々にローレンツ力が作用することとなり、両者の衝突の確率をより高めることができる。このため、磁場発生器17を設けない場合に比べると、使用する施工水の量をいっそう低減し得る。なお、交流電源18の周波数を可変とすることにより、交番磁場の強さを調整することもできる。
【0032】
混合配管2内で、施工水の霧状粒子と結合し、湿潤状態となった不定形耐火物10は、搬送用空気と共に吹付ノズル3先端の吹付口3aより施工対象面Sに吹付けられ、施工対象面Sに不定形耐火物10よりなる施工体19が形成される。
【0033】
以上説明した実施形態によると、例えば不定形耐火物の各粒子を施工水で皮膜させた理想的な湿潤状態を発現させることができ、且つ不定形耐火物10をムラなく均一に湿潤させることができるため、施工対象面Sからのリバウンドロスや粉塵の発生を防止して、付着歩留まり及び品質の良好な施工体19の形成が実現される。
【0034】
また、施工水の添加量を従来よりも低減できるため、混合配管2内面への、不定形耐火物10の付着を抑制することができ、混合配管2の詰まりを防止できるとともに、不定形耐火物10の噴出圧力の損失を低減することができる。
【0035】
また、施工体19中の施工水分量を必要最小限度に低減できるので、施工対象面Sが常温以上に加熱されている場合、例えば熱間施工又は温間施工に本実施形態を適用した場合にあっては、施工体19の水蒸気爆裂を防止できるといった効果も得られる。
【0036】
図3は、施工液供給器の変形例を示すもので、図2との相違は、図2の噴霧ノズル21に代えて、施工液を霧状化する機能を有しないノズル30を採用した点、図2の圧縮空気導入ライン22を省略した点、及び直流電源31の電圧を例えば300V程度と高電圧化した点である。ノズル30が、施工水を吐出する。吐出された施工水は、ノズル30と帯電用電極24との間に形成される電場に曝されることで、静電霧化現象により霧状化され且つマイナスに帯電される。
【0037】
この変形例では、静電気力を利用して施工水を霧状化させると同時にマイナスに帯電させるので、施工水を霧状化させる施工液供給器が、施工水を帯電させる施工液帯電手段を兼ねることとなり、施工水導入ライン23、帯電用電極24、電圧印加回路25、本体部20、ノズル30、及び直流電源31により、第2の発明の帯電化施工液供給手段が構成される。この変形例によると、ノズル30に施工液を霧状化する機能を持たせなくてよいとともに、図2の圧縮空気導入ライン22が不要になる分だけ、装置構成の簡素化が図られるという利点がある。
【0038】
図4は、施工液供給器のさらに他の変形例を示すもので、図2との相違は、図2の帯電用電極24、電圧印加回路25、直流電源26に代えて、先端を空洞Kに臨ませた針状電極40と、パルス電圧発生器41と、針状電極40及びパルス電圧発生器41を電気的に接続するパルス電圧印加回路42とを備えた点にある。パルス電圧発生器41で発生されたパルス電圧が、パルス電圧印加回路42を通して針状電極40に印加される。これにより、空洞K内の大気を仮想のプラス電極とみなして、針状電極40の先端から空洞K内に電子が放出される。放出された電子は、噴霧ノズル21から噴霧される霧状化施工水の粒子27と結合し、霧状化施工水の各粒子27をマイナスに帯電させる。
【0039】
なお、パルス電圧発生器41が生成するパルス電圧の繰り返し周波数を適宜に調整することで、施工水の帯電化率を調整できる。この変形例では、針状電極40、パルス電圧発生器41、及びパルス電圧印加回路42により、第1の発明の施工液帯電手段が構成される。
【0040】
図5は、粉体材料帯電手段の変形例を示すもので、搬送ホース1の内面に、帯電用コーティング50が形成されている。帯電用コーティング50は、搬送ホースを構成する材料(ここでは合成ゴム)よりも、不定形耐火物の粒子51をプラスに摩擦帯電させ易い材料、詳細には、帯電序列で表して合成ゴムよりもマイナス側に配置された材料としてのフッ素樹脂よりなる。ここでは、フッ素樹脂としてポリ四弗化エチレン(テフロン;米国デュポン社の登録商標)を用いた。帯電用コーティング50は、図1の搬送ホース1の長さ方向及び内周方向の全域にわたって設けることが好ましいが、搬送ホース1の取り回し性等を考慮して、搬送ホース1の一部だけに設けてもよい。
【0041】
帯電用コーティング50が、不定形耐火物の粒子51から電子を受け取り、不定形耐火物の粒子51をプラスに帯電させる。また、帯電用コーティング50の材料としてフッ素樹脂を採用したから、帯電用コーティング50は、搬送ホース1内の滑り性を向上させ、搬送圧力の損失を低減する効果等をも兼ねることができる。
【0042】
なお、ここでは帯電用コーティング50の材料としてフッ素樹脂を用いたが、これ以外にも、搬送ホース1の材料(ここでは合成ゴム)よりも摩擦によって不定形耐火物をプラスに帯電させ易い材料、即ち帯電序列で表して搬送ホース1の材料よりもマイナス側に配置された材料、例えばビニロン、ポリスチレン、サラン、ポリエチレン、セルロイド、セロファン、塩化ビニル等を用いることもできる。なお、帯電用コーティング50には、電荷が蓄積されてゆくこととなるので、これを常時あるいは適時に(例えば、作業終了時に)アースに逃がす接地回路52を設けておくことが好ましい。
【0043】
図6は、粉体材料帯電手段のさらに他の変形例を示すもので、この変形例では、コロナ放電により不定形耐火物の粒子67を帯電させる。即ち、搬送ホース1の内面に、針状をなしたコロナ電極61を複数備えた保持体62と、コロナ電極61と対向する対向電極63とを設けている。なお、図6では、説明のためにコロナ電極61の大きさ等を誇張して示している。コロナ電極61の磨耗を防止するために、コロナ電極61の先端が保持体62表面と同じレベルになるようにコロナ電極61を保持体62に埋没させてもよい。直流電源64に接続された電圧印加回路65が、コロナ電極61がプラス極に、対向電極63がマイナス極になるように両電極61及び63間に電圧を印加する。
【0044】
すると、コロナ電極61の付近で空気の部分的な絶縁破壊、即ちコロナ放電が生じ、この結果プラスイオン66が生成される。このプラスイオン66は、例えば(HO)(nは相対湿度に依存する。)と考えられる。生成されたプラスイオン66は、電気力線に沿って飛走し、不定形耐火物の粒子67に付着して、不定形耐火物の粒子67をプラスに帯電させる。この変形例によると、直流電源64の電圧を調整することにより、不定形耐火物の粒子のうち帯電したものの存在割合をより安定化できるといった利点がある。
【0045】
この変形例では、コロナ電極61、対向電極63、直流電源64、及び電圧印加回路65により、本発明のイオン供給器が構成される。なお、この変形例のように直流電源64を用いて不定形耐火物を帯電させる場合は、その直流電源を図2や図3の直流電源26又は31と共有してもよい。
【0046】
以上、実施形態による吹付け施工装置について説明したが、本発明はこれに限られない。例えば、上記実施形態では、不定形耐火物の粒子をプラスに帯電させ、施工水の霧状粒子をマイナスに帯電させたが、この逆であってもよい。不定形耐火物の粒子をマイナスに帯電させることは、例えば帯電序列で表して粉体材料よりもプラス側に配置された材料に不定形耐火物を接触させること、又は図6の直流電源64の極性を逆にしてコロナ電極61をマイナス極とし、対向電極63をプラス極とすることで実現できる。施工水の霧状粒子をプラスに帯電させることは、霧状化施工水にプラスイオンを付着させること等で実現できる。
【0047】
また、上記実施形態では、粉体材料供給器7から吹付ノズル3に至る搬送経路上に施工水供給器6を1つだけ設けた例を示したが、施工液供給器を、第1〜第n次のn個の施工液供給器(nは2以上の自然数とする。)によって構成し、それらを粉体材料の搬送経路上に長さ方向に関して離散的に分布させてもよい。この場合は、帯電用コーティングは、第1〜第nの施工液供給器のうち、最も粉体材料供給器7寄りに配置されているもの(第1次施工液供給器)と粉体材料供給器7との間の搬送経路に少なくとも設けるとよい。第1次施工液供給器からは、全施工水の10〜70質量%を供給することが好ましい。
【0048】
また、上記実施形態では、施工水供給器6からは、搬送ホース1内の圧力よりも高い圧力で、霧状化施工水を圧入することとしたが、施工水供給器6に、施工水の供給圧力を搬送ホース1内の圧力よりも低減させる減圧手段、例えば減圧用のオリフィス等を設けた構成とし、霧状化施工水を、吸引によって搬送ホース1内に供給することとしてもよい。この場合、混合配管2内における、施工水の霧状粒子と不定形耐火物の粒子との機械的な攪拌効果は、上記実施形態よりも低減するが、両者を帯電させるので、不定型耐火物の粒子をムラなく均一に湿潤させる効果は充分に得ることができる。
【0049】
以下、図1の不定形耐火物10について具体的に説明する。不定形耐火物10は、耐火原料粉末に、粉末状の結合剤等を添加したもので構成され、これに必要に応じて粉末状の分散剤、急結剤、繊維等も添加される。
【0050】
耐火原料粉末は、例えば金属酸化物、金属炭化物、金属窒化物、炭素類、及び金属等の1種以上で構成される。より具体的には、耐火原料粉末の材料として、アルミナ、マグネシア、スピネル、マグネシア−カルシア、ばん土けつ岩、ボーキサイト、ムライト、パイロフィライト、ろう石、シャモット、アンダルサイト、ケイ石、クロム鉱、ボーキサイト、シリマナイト、ジルコン、ジルコニア、炭化珪素、炭化硼素、硼素チタン、硼素ジルコニウム、粘土、チタニア、仮焼アルミナ、窒化珪素、窒化アルミニウム、揮発シリカ等が挙げられる。
【0051】
結合剤は、粉末の粒子同士を結び付けて強度を付与するもので、これの具体例として例えば、アルミナセメント、マグネシアセメント、リン酸塩、珪酸塩、フェノール樹脂やフラン樹脂等の熱硬化性有機樹脂等が挙げられる。
【0052】
分散剤は、耐火原料粉末の分散を促進させ、流動性を向上させるもので、これの具体例として例えば、トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ホウ酸ソーダ、炭酸ソーダ、ポリメタリン酸塩などの無機塩、クエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ、ポリカルボン酸塩、β−ナフタレンスルホン酸塩類、ナフタリンスルフォン酸、カルボキシル基含有ポリエーテル系分散剤等が挙げられる。
【0053】
急結剤は、施工水の存在下で結合剤と反応し、不定型耐火物の硬化を促進させるもので、これの具体例として例えば、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸塩、アルミン酸ナトリウム、アルミン酸カリウム、アルミン酸カルシウム等のアルミン酸塩、アルミン酸ソーダ、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の炭酸塩、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム等の硫酸塩、CaO・Al、12CaO・7Al、CaO・2Al、3CaO・Al、3CaO・3Al・CaF、11CaO・7Al・CaF等のカルシウムアルミネート類、消石灰、酸化カルシウム、水酸化カルシウム、塩化カルシウム等のカルシウム塩、活性マグネシア等が挙げられる。
【0054】
繊維としては、例えばビニロン、ナイロン、PVA、ポリビニル、ポリスチレン、ポリプロピレン、炭素等が挙げられる。繊維の添加により、搬送管内面への不定形耐火物の付着を低減する効果を高めることができる。また、繊維が有機質よりなる場合は特に、熱間で繊維が焼失することで水蒸気の通気経路が形成されるから、施工体の爆裂防止効果のさらなる向上が図られる。
【0055】
不定形耐火物10が、炭素類、特に炭化珪素を含む場合、より具体的には、例えば粒径75μm以下の炭化珪素微粉を5〜30質量%有する場合等には、本発明の吹付け施工方法を適用する意義が大きい。炭化珪素は施工水に濡れ難い材料であるため、従来は搬送管内で施工水と馴染ませるのが困難であったが、本発明によると、例えば炭化珪素が多孔質構造をもつ場合であっても、クーロン引力によりその多孔質構造の気孔内に霧状化施工水の粒子を進入させうる。このため、炭化珪素に対する施工水の濡れ難さが緩和される。なお、炭化珪素を含む不定形耐火物としては、例えばアルミナ−炭化珪素質のものがある。
【0056】
不定形耐火物10が、消化しうる材料、例えばマグネシアを含む場合にも、本発明の吹付け施工方法を適用する意義が大きい。マグネシアは、施工水との反応で消化し、施工体を脆弱化させる原因となっていたが、本発明によると、施工水の量を低減化できるため、消化の発生を抑制でき、施工体の強度低下を緩和できる。なお、マグネシアを含む不定形耐火物としては、マグネシア質、マグネシア−カルシア質、マグネシア−カーボン質、又はアルミナ−マグネシア質のものがある。
【0057】
不定形耐火物10が、アルミナ−マグネシア質である場合、例えばマグネシア微粉を1〜30質量%有し、残部がアルミナを主体として構成される場合にも、本発明の施工方法を適用する意義が大きい。本発明によると、施工水の量を低減でき、施工体を緻密化できるため、アルミナ粒子とマグネシア粒子との接触面積を大きく確保できる。この結果、アルミナとマグネシアとの反応によるスピネル生成が促進され、スピネル自身による耐スラグ性向上と、スピネルボンド形成による強度向上とが得られる。
【0058】
表1に、図1の吹付け施工装置を用いた場合におけるアルミナ−炭化珪素質不定形耐火物の構成と得られた施工体の特性との関係を示す。使用した不定形耐火物は、粒径75μm未満の多孔質構造の炭化珪素を10質量%含み、残部がアルミナよりなる耐火原料粉末に、それぞれ粉末状の結合剤、急結剤、及び分散剤、並びに繊維を添加し混合したものである。リバウンドロスを殆ど発生させない条件で、施工水の添加量を可能な限り絞り、常温の施工対象面に対して吹付け施工を行った。参考例1〜4においても、図1の吹付け施工装置を用いたことにより、充分に低水分で緻密な施工体を得ることができたが、実施例1〜8によると、いっそう低水分で緻密な施工体を得ることができた。
【0059】
実施例1〜8では、粒径10μm未満のもの/粒径10μm以上75μm未満のものの質量比が0.25〜0.7となる条件で、粒径75μm未満のものを25〜60質量%有するように粒度調整した耐火原料粉末を用いたが、参考例1〜4ではそのように粒度調整された耐火原料粉末を用いていない。このことから、特に、常温〜600℃程度の施工対象面に吹付ける温間施工用不定形耐火物としては、上述のように粒度調整されたものを用いると、より品質の良好な施工体が得られるといえる。このメカニズムは、必ずしも定かでないが、上記粒度構成を採用すると、不定形耐火物と施工水との馴染みが得に向上することによると推定される。
【0060】
なお、残部の粒度域に着目すると、実施例1〜8の耐火原料粉末は、粒径1mm以上5mm未満のものを20〜45質量%、粒径75μm以上1mm未満のものを10〜40質量%有するように粒度調整している。このため、残部の粒度域はこのように粒度調整することが好ましいといえる。なお、表1では結合剤としてアルミナセメントを用いたが、結合剤として、アルミナセメント、マグネシアセメント、リン酸塩、及びケイ酸塩からなる群より選ばれる1種以上のものを用いても、同様の効果が得られることが確認された。結合剤の添加量は、耐火原料粉末100質量%に対する外掛けで1〜7質量%であることが好ましい。
【表1】

【0061】
表2に、図1の吹付け施工装置を用いた場合におけるアルミナ−マグネシア質不定形耐火物の構成と得られた施工体の特性との関係を示す。使用した不定形耐火物は、粒径75μm以下のマグネシアを10質量%含み、残部がアルミナよりなる耐火原料粉末に、それぞれ粉末状の結合剤及び急結剤を添加し混合したものである。リバウンドロスを殆ど発生させない条件で、施工水の添加量を可能な限り絞り、600℃超の施工対象面に対して吹付け施工を行った。参考例5〜8でも、図1の吹付け施工装置を用いたことにより、充分に低水分で緻密な施工体を得ることができたが、実施例9〜16によると、いっそう低水分で緻密な施工体を得ることができた。
【0062】
実施例9〜16では、粒径10μm未満のもの/粒径10μm以上75μm未満のものの質量比が0.25〜0.7となる条件で、粒径75μm未満のものを10〜45質量%有するように粒度調整した耐火原料粉末を用いたが、参考例5〜8ではそのように粒度調整された耐火原料粉末を用いていない。このことから、特に600℃を超える施工対象面に吹付ける熱間施工用不定形耐火物としては、上述のように粒度調整されたものを用いると、より品質の良好な施工体が得られるといえる。このメカニズムは、必ずしも定かではないが、本発明の方法を用いる場合には、上記粒度構成を採用すると、不定形耐火物と施工水との馴染みが特に向上することによると推定される。
【0063】
また、残部の粒度域に着目すると、実施例9〜16の耐火原料粉末は、粒径1mm以上5mm未満のものを20〜45質量%、粒径75μm以上1mm未満のものを20〜45質量%有するように粒度調整している。このため、残部の粒度域はこのように粒度調整することが好ましいといえる。なお、表2では結合剤として珪酸塩を用いたが、結合剤として、熱硬化性有機樹脂、リン酸塩、及び珪酸塩からなる群より選ばれる1種以上の結合剤を用いても、同様の効果が得られることが確認された。結合剤の添加量は、耐火原料粉末100質量%に対する外掛けで1〜7質量%であることが好ましい。
【表2】

【0064】
表3に、図1の吹付け施工装置を用いた場合におけるマグネシア質不定形耐火物の構成と得られた施工体の特性との関係を示す。使用した不定形耐火物は、粒径75μm以下のマグネシアを10質量%含み、残部がマグネシアクリンカーよりなる耐火原料粉末に、結合剤としてのフェノール樹脂を添加し混合したものである。リバウンドロスを殆ど発生させない条件で、施工水の添加量を可能な限り絞り、600℃超の施工対象面に対して吹付け施工を行った。参考例9〜12でも、図1の吹付け施工装置を用いたことにより、充分に低水分で緻密な施工体を得ることができたが、実施例17〜22によると、いっそう低水分で緻密な施工体を得ることができた。
【0065】
実施例17〜22では、粒径10μm未満のもの/粒径10μm以上75μm未満のものの質量比が0.25〜0.7となる条件で、粒径75μm未満のものを10〜45質量%有するように粒度調整した耐火原料粉末を用いたが、参考例9〜12ではそのように粒度調整された耐火原料粉末を用いていない。このことから、特に600℃を超える施工対象面に吹付ける熱間施工用不定形耐火物としては、上述のように粒度調整された耐火原料粉末を用いると、より品質の良好な施工体が得られるといえる。このメカニズムは、必ずしも定かではないが、上記粒度構成を採用すると、不定形耐火物と施工水との馴染みが特に向上することによると推定される。
【表3】

【0066】
ところで、本発明の方法を用いると、施工水の添加量を低減できるため、緻密な施工体が得られる。一方、必ずしも定かでないが、施工体が過度に緻密になると、施工体内部の施工水が蒸発するための通気経路が施工体内に確保されにくくなることも考えられる。このため、施工体の過度の緻密化は、かえって施工体の品質向上を阻害する原因となりかねないとも考えられる。そこで、同じ緻密さ、即ち同じかさ比重や見掛け気孔率をもつ施工体であっても、通気性の高いもの程、品質が良好になると考えられる。
【0067】
施工体の通気性を良好にするには、不定形耐火物自体の構成を改善することが必要である。表1〜3に掲げた各実施例では、施工体の見掛け気孔率を18〜30%程度に抑えながら、その通気率を100×10−5cm・cm/cm・cmHO・sec以上、好ましくは150×10−5cm・cm/cm・cmHO・sec以上とすることができた。ここでいう見掛け気孔率及び通気率は、常温の施工対象面に吹付け施工した施工体を、養生後110℃で24時間以上乾燥した状態で測定した。この程度の通気率を有しうるものであれば、施工体の乾燥工程時や熱間吹付けの際にも、施工体内部の施工水を速やかに蒸発させることができ、施工体の品質をいっそう良好にできる。
【0068】
施工体の見掛け気孔率を18〜30%程度に抑えながら、通気率を100×10−5cm・cm/cm・cmHO・sec以上とすることは、表1〜3に掲げた耐火原料粉末の粒度構成に着目すると、例えば75μm以下の粒度構成を調整することにより得られると考えられる。より具体的には、粒径10μm未満のもの/粒径10μm以上75μm未満のものの質量比を0.25〜0.7の範囲とすることで得られうると考えられる。このメカニズムは必ずしも定かではないが、かかる粒度構成を採用することにより、施工体内部に閉じ込められた密閉気孔の割合を減らし、外気に通じる開孔気孔の割合を増やせることによると推定される。
【0069】
以上、本発明の実施形態について説明したが、本発明はこれに限られない。表1〜3には、不定形耐火物として特に好ましいものを掲げたが、本発明の吹付け施工装置及び吹付け施工方法は、不定形耐火物の構成に限られずに、その効果を発揮できる。また、上記実施形態では、施工液として水を採用したが、施工水は、急結剤や分散剤等の添加剤を溶かし込んだものであってもよい。本明細書において、施工水とは、水に急結剤や分散剤等の添加剤を溶かし込んだものをも含む概念とする。また、採用する粉体材料によっては水以外の液体も施工液として採用され得る。また、上記実施形態では、粉体材料の搬送用ガスとして空気を用いたが、窒素等の他のガスも採用され得る。
【産業上の利用可能性】
【0070】
本発明は、例えば不定形耐火物の吹付け施工に利用できる。不定形耐火物の吹付け施工は、例えば高炉、樋、混銑車、転炉、取鍋、2次精錬炉、タンデッィシュ、セメントロータリーキルン、廃棄物溶融炉、焼却炉、又は非鉄金属容器等の各種金属容器や窯炉の構築や補修に際して行われる。さらに本発明は、不定形耐火物に限らず、コンクリート、砂、グリッド、又は鉄粉等の他の粉体材料の吹付け施工に対しても広く利用され得る。
【図面の簡単な説明】
【0071】
【図1】実施形態による吹付け施工装置の全体構成図。
【図2】施工水供給器まわりの断面概略図。
【図3】施工水供給器の他の具体例を示す断面概略図。
【図4】施工水供給器のさらに他の具体例を示す断面概略図。
【図5】粉体材料帯電手段の他の具体例を示す断面概略図。
【図6】粉体材料帯電手段のさらに他の具体例を示す断面概略図。
【符号の説明】
【0072】
1…搬送ホース、1a…第1搬送ホース部、1b…第2搬送ホース部、1c…アース線、2…混合配管、3…吹付ノズル、3a…吹付口、4…接続部、5…粉体材料供給器、7…第1圧縮空気導入ライン、8…第2圧縮空気導入ライン、9…テーブルフィーダ、10…不定形耐火物、11…イオン放射ノズル、13…空気イオン発生器、14…電源部、15…圧縮空気供給ライン、16…施工水供給器、19…施工体、S…施工対象面、50…帯電用コーティング。

【特許請求の範囲】
【請求項1】
先端が吹出口とされた搬送管と、
前記搬送管内を、吹出口に向かって粉体材料が気流搬送されるよう、粉体材料と該粉体材料の搬送用ガスとを搬送管内へ供給する粉体材料供給器と、
前記粉体材料供給器から吹出口に至る前記搬送管に沿った搬送経路上における少なくとも一箇所にて、該搬送管内へ霧状化した施工液を供給する施工液供給器と、
前記施工液供給器による霧状化施工液の供給箇所よりも上流側にて、前記粉体材料供給器により供給された粉体材料の各粒子を同一の極性に帯電させる粉体材料帯電手段と、
前記施工液供給器により供給される霧状化施工液の各粒子を、前記粉体材料帯電手段により帯電される粉体材料の極性とは逆極性に帯電させる施工液帯電手段と
を備えた吹付け施工装置。
【請求項2】
前記粉体材料帯電手段が、前記搬送管内にイオンを供給し、該イオンを粉体材料の粒子に付着させるイオン供給器を含んで構成される請求項1に記載の吹付け施工装置。
【請求項3】
前記粉体材料帯電手段が、前記搬送管の内面に形成された、フッ素樹脂よりなる帯電用コーティングを含んで構成される請求項1又は2に記載の吹付け施工装置。
【請求項4】
前記施工液帯電手段が、前記施工液供給器と共に該施工液供給器から供給される霧状化施工液が通過する空間に電場を形成する帯電用電極と、直流電源に接続されて、前記施工液供給器と前記帯電用電極との間に電位差を生じさせ、前記電場の形成を実現させる電圧印加回路とを含んで構成される請求項1〜3のいずれかに記載の吹付け施工装置。
【請求項5】
粉体材料を各粒子が同一の極性となるよう帯電させて供給する帯電化材料供給手段と、
施工液を霧状化させ、かつ該霧状化施工液の各粒子を前記帯電化材料供給手段にて帯電される粉体材料の各粒子とは逆極性に帯電させて供給する帯電化施工液供給手段と、
一端部が吹出口とされ、他端部が帯電化材料供給手段により供給された粉体材料、及び帯電化施工液供給手段により供給された霧状化施工液が導入される導入部とされ、該導入部より導入された粉体材料と施工液とを前記吹出口まで導く共通の搬送経路と
を備えた吹付け施工装置。
【請求項6】
(a)粉体材料と霧状化した施工液とを共通の搬送経路内に合流させる工程と、
(b)合流させた粉体材料と施工液とを、前記共通の搬送経路内で接触させつつ搬送させて該共通の搬送経路端部の吹出口より施工対象面に吹付け、施工対象面に粉体材料よりなる施工体を形成する工程と、を有する吹付け施工方法において、
前記工程(a)では、粉体材料と施工液との合流に先立ち、粉体材料の各粒子を同一の極性に帯電させておく一方、施工液を前記粉体材料の極性とは逆極性に帯電させておくことを特徴とした吹付け施工方法。
【請求項7】
前記工程(a)では、イオンを粉体材料の粒子に付着させることで、粉体材料を帯電させる請求項6に記載の吹付け施工方法。
【請求項8】
前記工程(a)では、帯電序列で表して前記粉体材料よりもプラス側又はマイナス側に配置された材料に、該粉体材料を接触させることで、該粉体材料を帯電させる請求項6又は7に記載の吹付け施工方法。
【請求項9】
前記工程(a)では、施工液を電場が形成された空間領域を通過させることで帯電させる請求項6〜8のいずれかに記載の吹付け施工方法。
【請求項10】
請求項6〜9のいずれかに記載の吹付け施工方法に前記粉体材料として用いられる不定形耐火物であって、粒径10μm未満のもの/粒径10μm以上75μm未満のものの質量比が0.25〜0.7となる条件で、粒径75μm未満のものを10〜60質量%有するよう粒度調整された耐火原料粉末に対し、結合剤を少なくとも添加し混合してなる不定形耐火物。
【請求項11】
請求項6〜9のいずれかに記載の吹付け施工方法に前記粉体材料として用いられる不定形耐火物であって、前記吹付け施工方法により吹付けた後、養生し110℃で24時間以上乾燥したときに、18〜30%の見掛け気孔率、及び100×10−5cm・cm/cm・cmHO・sec以上の通気率を有しうる不定形耐火物。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2007−152237(P2007−152237A)
【公開日】平成19年6月21日(2007.6.21)
【国際特許分類】
【出願番号】特願2005−351442(P2005−351442)
【出願日】平成17年12月6日(2005.12.6)
【出願人】(000170716)黒崎播磨株式会社 (314)
【Fターム(参考)】