説明

回転電機の固定子コイルの非線形抵抗測定方法、および、非線形抵抗測定装置

【課題】固定子コイルエンドに施す電界緩和層の特性を、従来よりも精度良く推定する技術を提供する。
【解決手段】回転電機に取り付ける固定子コイルの非線形抵抗測定装置であって、固定子コイルの端部24には、導体41の外周に巻回されて電界緩和層44が配置され、電界緩和層44が当該端部24に配置された状態で、電界緩和層44の複数地点(n〜n)で表面電位を測定する測定手段と、測定された表面電位のうち所定の2つの地点(例えば、n、n)で測定された表面電位を用いて、電界緩和層44の電流電圧特性を推定する推定手段と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転電機の固定子コイルの非線形抵抗測定方法、および、非線形抵抗測定装置に関する。
【背景技術】
【0002】
回転力を電力に変換する回転電機(例えば、大容量タービン発電機など)には、固定子コイルを備えているものがある。
【0003】
固定子コイルの端部(以下では「固定子コイルエンド」という)は、直接発電に寄与する部分ではないためコンパクト化が求められている。そのため、固定子コイルエンドにおけるハーフターンコイル同士の結線部には、インボリュート形状が採用されている。ここで、インボリュート形状とは、ハーフターンコイルが3次元的に曲げられた(湾曲された)形状を指す。
【0004】
そして、固定子コイルエンドに対して絶縁被覆等の端末処理が行われ、U、V、Wの三層巻線コイルが製作される。
【0005】
上記の固定子コイルの製造プロセスに係る技術には、例えば、(1)絶縁材が被覆されたハーフターンコイルを予め樹脂含浸および成型プレス硬化した後、固定子コア(鉄心)に配置して全てを組み立てる技術、(2)絶縁材が被覆されたハーフターンコイルを先に固定子コアに配置し、固定子コア内外での組み立てを完了した後に、真空脱気、熱硬化性樹脂の加圧含浸および乾燥硬化を行う技術、などがある。
【0006】
ところで、固定子コイルは、コイル導体にマイカを主成分とする絶縁層が施される。そして、この絶縁層が固定子コアの側面(スロット側面)に面する部分では、放電が発生する場合がある。このような放電を防ぐために、放電が発生しやすい部分(固定子コイルの直線部)には低抵抗層が施される。
【0007】
また、コイル導体に電圧が印加されると、コイル導体と低抵抗層とがそれぞれ電極となる構成となる。かかる場合、この電極間で生じる等電位線は、コイル導体、および低抵抗層に対して略並行となる。一方、等電位線は、低抵抗層よりも外側のコイルエンドでは、主絶縁層の厚み方向、および、コイルエンド表面を貫き分布する。低抵抗層終端よりも外側のコイルエンド表面では、主絶縁層とコイル周辺空間の比誘電率の相違や、コイルエンド表面の抵抗率に依存し、主絶縁層の交差する等電位線が密に分布するため、コイルエンド表面では電位傾度が大きくなり、コイルエンド沿面方向の電界が集中する。
【0008】
特に、低抵抗層の端部(端面)においては、電位傾度が著しく大きくなり、部分放電、或いは、沿面放電が発生しやすくなる。したがって、低抵抗層の端部で発生する部分放電、或いは、沿面放電を防ぐために、絶縁層表面には、電位傾度を緩やかにするための電界緩和層が施される。
【0009】
このような電界緩和層の設計においては、電界緩和層に用いる素材(例えば、SiCを主材とする電界緩和テープ)の特性(性能)を正確に把握しておく必要がある。
【0010】
そこで、電界緩和テープの製造元(或いは販売元)では、電界緩和テープの特性(例えば、電流−電圧特性)を、販売前に測定しておき、その測定結果を示すデータシートを購入者に提供している。そして、購入者は、製造元から提供されたデータシートの性能を確認し、電界緩和に必要な諸量を、測定および解析により求めて、固定子コイルエンドに施す電界緩和層を設計する。
【0011】
電界緩和テープの解析方法には、従来から、様々な方法が提案されている。例えば、固定子コイルエンドの等価回路を用いて、電界緩和層の非線形抵抗特性を解析する方法が提案されている(非特許文献1)。また、固定子コイルエンドに電界緩和層を施した状態で表面電位を測定し、電界緩和に必要な実行長を解析する方法も提案されている(特許文献1)。
【先行技術文献】
【特許文献】
【0012】
【非特許文献1】電気学会論文誌A(基礎・材料・共通部門誌)Vol.104, No.9, 53-60(1984)
【特許文献1】特開2000−134877号
【発明の概要】
【発明が解決しようとする課題】
【0013】
しかし、以上のような測定、および解析結果を用いて設計しても、電界緩和層の非線形抵抗特性は、電界緩和テープの保管状況や、コイル製作条件に影響を受け、コイル製作後の当該非線形抵抗特性が設計値から乖離する可能性がある。
【0014】
本発明は、固定子コイルエンドに施した電界緩和層の非線形抵抗特性を、従来よりも精度良く推定する技術を提供することを目的とする。
【課題を解決するための手段】
【0015】
上記課題を解決するための本願発明は、回転電機の固定子コイルの非線形抵抗測定方法であって、前記固定子コイルの低抵抗層端部より外側のコイルエンドには、導体の外周に巻回されて電界緩和層が配置され、前記電界緩和層が前記端部から設計値に基づき電界緩和に必要な所定の長さ分だけ配置された状態で、前記電界緩和層の複数地点で表面電位を測定する測定ステップと、測定された前記表面電位のうち所定の2つの地点で測定された表面電位を用いて、前記電界緩和層の電流電圧特性を推定する推定ステップと、を有する。
【0016】
さらに、前記推定ステップでは、表面電位が前記導体の電位に略到達する到達地点で測定された第1の表面電位と、表面電位が前記導体の電位に到達しておらず、前記複数地点のうち前記到達地点に最も近い地点で測定された第2の表面電位と、を前記電流電圧特性の推定に用いる表面電位として選択するようにしてもよい。
【0017】
さらに、前記推定ステップでは、前記2地点で測定された表面電位の差分から、前記電界緩和層における前記2つの地点間の電位差を算出し、前記導体と前記電界緩和層の間に介在する絶縁層に流れる電流値から、前記電界緩和層における前記2つの地点間に流れる電流値を算出し、算出した前記電位差と、算出した前記電流値と、から得られる前記2つの地点間における電流電圧特性を、前記電界緩和層全体の電流電圧特性として推定するようにしてもよい。
【図面の簡単な説明】
【0018】
【図1】本発明の一実施形態が適用されたタービン発電機の構造を示す図である。
【図2】固定子コイルエンドの拡大図である。
【図3】固定子コイル端部(コイルエンド)の断面、及び、その表面電位を測定する測定システムの構成を示す図である。
【図4】情報処理装置及び表面電位計の機能構成を示す図である。
【図5】固定子コイル端部の等価回路モデルを示す図である。
【図6】固定子コイル端部の表面電位の測定結果、固定子コイル端部の等価回路モデルをともに示す図である。
【図7】n、nで測定された表面電位(V、V)、その電位差Vn4−3、nとnの間に流入する電流値In4−3、の時間波形を示すグラフである。
【図8】(A)従来の方法により得られる電界緩和層の電流−電圧特性を示すグラフである。(B)本願発明の方法により得られる電界緩和層の電流−電圧特性を示すグラフである。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態の一例を図面を参照して説明する。
【0020】
図1は、本発明の一実施形態が適用されたタービン発電機1の構造を示す図である。
【0021】
図示するように、タービン発電機1は、固定子枠10と、固定子枠10に固定された固定子20と、固定子20の内部に配置されて回転する回転子30と、を備える。
【0022】
固定子20は、回転子30の径方向外側に所定間隔をもって配置された固定子コア21と、固定子コア21の内周縁に沿って所定間隔をもって形成されたスロット(各スロットは軸方向に連通している)内に収納される固定子コイル22と、固定子コア21の軸方向端部に配置されるエンドプレート23と、固定子コイルエンド24で固定子コイル22を支える固定子コイルサポートリング25と、固定子コイルサポートリング25をエンドプレート23に固定するリング支え26と、を備える。
【0023】
また、回転子30は、回転軸(不図示)とともに回転する回転子コア(不図示)と、回転子コアに巻回された回転子コイル(不図示)と、を備える。
【0024】
図2は、固定子コイルエンド24の拡大図である。
【0025】
図示するように、固定子コイルエンド24には、上述したインボリュート形状が採用される。
【0026】
また、固定子コイル22は、複数のハーフターンコイルを結線して製作される。具体的には、各スロット内に収納されるハーフターンコイル同士が、固定子コア21の外(固定子コイルエンド24の終端部)で結線される。そして、それぞれのハーフターンコイルは、コイル導体(後述するコイル導体41)の外周に対地絶縁テープ(後述する主絶縁層42)、低抵抗テープ(後述する低抵抗層43)、電界緩和テープ(後述する電界緩和層44)、等が巻回される。すなわち、ハーフターンコイル自体の絶縁被覆、ハーフターンコイル同士の電気的な接続、その接続部の絶縁被覆、等の処理が行われ、U、V、Wの三相巻線コイル(固定子コイル22)が製作される。
【0027】
図3は、固定子コイルエンド24の断面、及び、その表面電位を測定する測定システム2の構成を示す図である。
【0028】
図示するように、測定システム2は、固定子コイルエンド24の表面電位を測定する表面電位計200と、表面電位計200で測定された表面電位を用いて電界緩和テープ(電界緩和層44)の特性を推定する情報処理装置(PC)100と、固定子コイルエンド24に高電圧の試験電圧(交流電圧)を印加する電源装置50と、を備える。
【0029】
固定子コイルエンド24(固定子コイル22の端部)には、コイル導体41の外周に、マイカを主成分とする主絶縁層(対地絶縁テープ)42が施されている。
【0030】
また、主絶縁層42が固定子コア21のスロット壁面に面する部分で発生する部分放電を防ぐために、固定子コア21近傍の固定子コイルエンド24に至る直線部に低抵抗層43が施されている。ここで、低抵抗層43は、固定子コア21のスロット内部に密着固定され、固定子コア21とともに接地される。なお、低抵抗層43の終端は、数十ミリ程度、固定子コア21の外に出るように配置されている。
【0031】
また、コイル導体41に電圧(後述する電源装置50から出力される交流電圧)が印加されると、コイル導体41と低抵抗層43とがそれぞれ電極となる構成となる。かかる場合、この電極間で生じる等電位線は、コイル導体41、および低抵抗層43に対して略並行となる。一方、等電位線は、低抵抗層43よりも外側のコイルエンド24では、主絶縁層42の厚み方向、および、コイルエンド24表面を貫き分布する。低抵抗層43終端よりも外側のコイルエンド24表面では、主絶縁層42とコイル周辺空間の比誘電率の相違や、コイルエンド24表面の抵抗率に依存し、主絶縁層42の交差する等電位線が密に分布するため、コイルエンド24表面では電位傾度が大きくなり、コイルエンド24沿面方向の電界が集中する。
【0032】
特に、低抵抗層43の端部(端面)においては、電位傾度が著しく大きくなり、部分放電、或いは、沿面放電が発生しやすくなる。したがって、低抵抗層43の端部で発生する部分放電、或いは、沿面放電を防ぐために、主絶縁層42表面には、電位傾度を緩やかにするための電界緩和層44が施されている。ここで、電界緩和層44は、低抵抗層43端の一部をラップするように巻回される。なお、本実施形態では、電界緩和層44の素材には、非線形電界緩和特性を有するシリコンカーバイド(SiC)が用いられる。
【0033】
表面電位計200は、電界緩和層44の複数地点で表面電位を測定する。表面電位計200には、一般に供試物に接触、或いは、被接触させて測定する方法がある。何れの場合でも表面電位計200は、固定子コイルエンド24に試験電圧が印加されている状態において、測定対象の地点にプローブ51を接触、或いは、接近させ、当該地点の表面電位を測定する。
【0034】
例えば、表面電位計200は、電界緩和層44と低抵抗層43のラップ部(ラップしている部分)を基準点nとして、固定子コア21から離れる方向に、順次、電界緩和層44の表面電位を測定する。図示する例では、所定の7つの地点(n〜n)で表面電位を測定する。この場合、表面電位を測定する各地点の間隔は、電界緩和層44の特性を示すデータシートなどに基づいて決めるものとする。
【0035】
なお、上記構成では、各地点の表面電位を順次測定するようにしているが、各地点の表面電位を同時に計測する構成にしてもよい。
【0036】
また、表面電位計200は、電源装置50が固定子コイルエンド24に印加(出力)している電圧値(時間の経過とともに変化する電圧値)を取得する。
【0037】
情報処理装置100は、固定子コイルエンド24の表面電位と、電源装置50が固定子コイルエンド24に印加している電圧値と、を表面電位計200から取得する。そして、情報処理装置100は、取得したデータを用いて、電界緩和層44の電流−電圧特性を推定する。なお、ここでの電流−電圧特性の推定方法については後述する。
【0038】
このような情報処理装置100の構成要素は、主制御装置であるCPUと、プログラム等が記録されたROMと、メインメモリーとしてデータ等を一時的に格納するRAMと、表面電位計200等との通信を行う通信装置と、ユーザーからの指示を受け付ける入力装置(キーボード、マウス等)と、各種画面を表示する出力装置(ディスプレイ等)と、各構成要素間の通信経路となるシステムバスと、を備えた一般的なコンピューターにより達成することができる。
【0039】
また、表面電位計200と情報処理装置100は、例えば、ケーブル150によって通信可能に接続されている。
【0040】
電源装置50は、固定子コイルエンド24のコイル導体41に、高電圧の試験電圧(交流電圧)を印加する。
【0041】
図4は、情報処理装置100及び表面電位計200の機能構成図である。
【0042】
図示するように、表面電位計200は、測定部210と、通信部220と、を有する。
【0043】
測定部210は、固定子コイルエンド24に配置された状態の電界緩和層44について表面電位を測定する制御を行う。具体的には、測定部210は、電源装置50に対して、固定子コイルエンド24への試験電圧の印加を指示する。それから、測定部210は、測定対象の地点(すなわち、プローブが接触、或いは、接近している地点)のうち、1つの地点(例えば、n)の表面電位について、所定時間(例えば、1s)測定する。そして、測定部210は、他の地点(例えば、地点n、n、n、n、n、nの順に)の表面電位についても所定時間ずつ測定する。これにより、測定部210は、各地点(n〜n)における表面電位の時間的変化を示すグラフを得ることができる。
【0044】
なお、測定対象の地点(n〜n)については、任意に変更することが可能である。例えば、測定対象の地点数を増加あるいは減少させてもよい。また、測定対象の各地点(n〜n)の間隔についても任意に変更することが可能である。例えば、各地点の間隔を、電界緩和層44の有する性質(例えば、厚さ、おおよその誘電率、等)に応じて変更してもよい。
【0045】
また、測定部210は、電界緩和層44について表面電位を測定するとともに、電源装置50の出力電圧(時間波形)についても測定を行う。
【0046】
通信部220は、情報処理装置200とのデータのやり取りを行う。例えば、通信部220は、測定部210で測定された表面電位(データ)、電源装置50の出力電圧(データ)、などを、ケーブル150を介して情報処理装置200に送信する。
【0047】
また、情報処理装置100は、演算部110と、記憶部120と、通信部130と、を有する。
【0048】
通信部130は、表面電位計200とのデータのやり取りを行う。例えば、通信部130は、表面電位計200から送信された表面電位(データ)、電源装置50の出力電圧(データ)を受信する。
【0049】
記憶部120は、表面電位計200で測定された表面電位(データ)、電源装置50の出力電圧(データ)、演算部110による演算の演算結果(データ)、等を記憶する。
【0050】
演算部110は、表面電位計200で測定された表面電位を用いて、電界緩和層44の特性を推定する。
【0051】
具体的には、演算部110は、表面電位計200で測定された表面電位のうち所定の2つの地点で測定された表面電位を用いて、電界緩和層44の電流−電圧特性を推定する。ここで、電流−電圧特性を推定するために用いる表面電位には、コイル導体41の電位に略到達する到達地点(例えば、n)で測定された表面電位と、表面電位がコイル導体41に到達しておらず、到達地点に最も近い地点(例えば、n)で測定された表面電位と、が選択される。
【0052】
なお、ここで、表面電位の到達とは、表面電位の最大電圧(振幅)が、電源装置50から出力される電圧の最大電圧(振幅)に略一致すること、或いは、表面電位の時間的変化(時間波形)が、電源装置50から出力される電圧の時間的変化(時間波形)に略一致することをいう。
【0053】
従って、演算部110は、到達地点(例えば、n)とその到達地点に最も近い地点(例えば、n)の表面電位を選択するために、例えば、表面電位(データ)とともに、電源装置50の出力電圧V(データ)を記憶部120から読み出して比較する。そして、出力電圧Vの最大電圧(振幅)に略一致する表面電位(データ)を、到達地点(例えば、n)の表面電位(データ)として選択する(記憶部120から読み出す)。また、表面電位が出力電圧Vの最大電圧(振幅)より低く、到達地点に最も近い地点で測定された表面電位(データ)を、到達地点に最も近い地点(例えば、n)の表面電位として選択する(記憶部120から読み出す)。
【0054】
次に、演算部110は、上記の2つの地点で測定された表面電位を、固定子コイルエンド24の等価回路モデルに代入し、電界緩和層44の電流−電圧特性を求める。
【0055】
図5は、固定子コイルエンド24(固定子コイル端)の等価回路モデルの一例を示す図である。図示するように、等価回路モデルは、固定子コイルエンド24の等価回路モデルとして一般的なR−Cラダー回路である。ここで、Cは主絶縁層42の単位体積当たりの静電容量を表す。また、Cは低抵抗層43の単位体積当たりの静電容量を表す。また、Rは電界緩和層44の非線形抵抗を表す。また、Rは低抵抗層43の非線形抵抗を表す。そして、主絶縁層42(Cのコンデンサー)に電源装置50が接続している部位(配線)がコイル導体41に相当する。
【0056】
また、図6は、固定子コイルエンド24の等価回路モデルと、電界緩和層44の各地点(n〜n)における表面電位を示すグラフと、を示す図である。グラフ上の黒点は、各地点(n〜n)における表面電位を示す。
【0057】
以下に、図6を参照して、電界緩和層44の電流−電圧特性を推定する処理について説明する。
【0058】
まず、演算部110は、2地点(n、n)で測定された表面電位の電圧降下V(n4−3)を算出する。具体的には、演算部110は、下記の数式1に従って、電圧降下V(n4−3)を算出する。
【0059】
(n4−3)=Vn4−Vn3 ・・・(数式1)
ここで、Vn4は地点nで測定された表面電位であり、Vn3は地点nで測定された表面電位である。また、図示する等価回路モデルにおいて、電圧降下V(n4−3)は、地点nと地点nの間の電界緩和層44における非線形抵抗Rにかかる電圧の値である。なお、参考までに、Vn4「実線」、Vn3「破線」、V(n4−3)「一点鎖線」の時間変化(時間波形)を図7に示しておく。
【0060】
また、地点nで測定された表面電位Vn4は、上述した通り、コイル導体41の電位に略収束している。そのため、次式(数式2)が成立するものとみなせる。
【0061】
n4=Vn5=Vn6 ・・・(数式2)
ここで、Vn5は地点nで測定された表面電位であり、Vn6は地点nで測定された表面電位である。
【0062】
また、キルヒホッフの法則により、次式(数式3)が成立する。
【0063】
(n4−3)=(n5−4)+I ・・・(数式3)
ここで、I(n4−3)は、電界緩和層44の地点nと地点nの間に流れる電流の値であり、I(n5−4)は、電界緩和層44の地点nと地点nの間に流れる電流の値である。また、Iは、地点n直下の主絶縁層42の充電電流の大きさである。
【0064】
上記の数式2が成立している場合には、電界緩和層44の地点nと地点nの間に電流は流れない。そのため、I(n5−4)=0となり、次式(数式4)が成立する。
【0065】
(n4−3)= ・・・(数式4)
そして、地点n直下の主絶縁層42の充電電流の大きさIは、次式(数式5)で表すことができる(コンデンサーの電荷Qと電圧Vの関係式「Q=CV」から一般的に導くことができる)。
【0066】
=C×{d(V−Vn4)/dt} ・・・(数式5)
ここで、Vは電源装置50の出力電圧(試験電圧)であり、tは時間を表す。なお、参考までに、I(n4−3)「点線」の時間変化(時間波形)を図7に示しておく。
【0067】
以上より、数式5の演算結果を数式4に代入することによって、電界緩和層44の地点nと地点nの間に流れる電流の値I(n4−3)を算出することができる。
【0068】
すなわち、演算部110は、以上の等価回路モデルに基づき、電源装置50の出力電圧Vcと、地点nで測定された表面電位Vn4と、所定のCと、を記憶部120から読み出し、数式5に代入してI(n4−3)を算出する。
【0069】
そして、演算部110は、同時刻tのV(n4−3)とI(n4−3)について対応表を生成する(例えば、記憶部120に記憶する)。これにより、演算部110は、V(n4−3)に応じて変化するI(n4−3)をグラフ化して、ディスプレイ等の表示装置に表示することができる。
【0070】
以上より、演算部110は、固定子コイルエンド24に配置された状態における電界緩和層44全体の電流−電圧特性を推定することができる。
【0071】
図8(A)、(B)は、演算部110によって推定される、電界緩和層44の電流−電圧特性を示すグラフである。図8(A)は、従来の方法により推定した電流−電圧特性を示すグラフである。図8(B)は、本願の上記実施形態の方法により推定した電流−電圧特性を示すグラフである。
【0072】
図8(A)において、図示する実線は、固定子コイルエンド24に電界緩和層44を配置する前(製作前)に推定した電流−電圧特性(推定値)を示すグラフである。また、図示する点線は、固定子コイルエンド24に電界緩和層44が配置された状態(製作後)で実測した電流−電圧特性(実測値)を示すグラフである。ここでは、製作前と製作後の電流−電圧特性に有意差をもたせるために、あえて電界緩和テープの保管状況や、製作条件などを従来の管理条件に対して極端に変更している。図示するように、従来の方法では、実測値と推定値が乖離してしまう場合がある。
【0073】
一方、図8(B)において、図示する実線は、上記の数式1、数式5(数式4)を用いて、固定子コイルエンド24に電界緩和層44を配置した後(製作後)に推定した電流−電圧特性(推定値)を示すグラフである。また、図示する点線は、固定子コイルエンド24に電界緩和層44が配置された状態(製作後)で実測した電流−電圧特性(実測値)を示すグラフである。図示するように、本実施形態の方法によれば、電界緩和層44の電流−電圧特性を精度良く推定できる。
【0074】
以上のように固定子コイル製作後の電界緩和層44の電流−電圧特性を精度良く推定することにより、固定子コイルエンド24に配置すべき電界緩和層44の設計(例えば、電界緩和層44の長さd)等、最適化することができる。その結果、信頼度の高い回転電機を製作することができるようになる。
【0075】
なお、上記した各構成要素は、情報処理装置100および表面電位計200の構成を理解容易にするために、主な処理内容に応じて分類したものである。構成要素の分類の仕方やその名称によって、本願発明が制限されることはない。情報処理装置100および表面電位計200の構成は、処理内容に応じて、さらに多くの構成要素に分類することもできる。また、1つの構成要素がさらに多くの処理を実行するように分類することもできる。
【0076】
また、各機能部は、ハードウエア(ASICなど)により構築されてもよい。また、各機能部の処理が一つのハードウエアで実行されてもよいし、複数のハードウエアで実行されてもよい。
【0077】
なお、上記の実施形態は、本発明の要旨を例示することを意図し、本発明を限定するものではない。多くの代替物、修正、変形例は当業者にとって明らかである。
【0078】
例えば、上記実施形態では、情報処理装置200が電界緩和層44の電流−電圧特性を推定している。しかし、本発明はこれに限定しない。例えば、上記実施形態の演算部110と記憶部120の機能は、表面電位計200で実現されてもよい。
【0079】
この場合、表面電位計200は、測定装置、記憶装置、比較器、演算装置を備える。
【0080】
測定装置は、電界緩和層44の表面電位(時間波形)と、電源装置50の出力電圧(時間波形)を同時に測定するためのプローブを少なくとも2つ有している。そして、測定装置は、上記実施形態と同様に、固定子コア21から離れる方向(nからnまで)に、順次、電界緩和層44の表面電位を測定する。また、測定装置は、測定した表面電位と出力電圧を所定のサンプリング周波数で数値化し、記憶装置に記憶する。従って、記憶装置には、測定装置で測定された表面電位と、電源装置50の出力電圧と、が数値化されたデータとして記憶される。
【0081】
比較器は、測定された表面電位、および、電源装置50の出力電圧が記憶装置から入力されると、両データ(例えば、最大電圧)が一致するか否かを判別し、その判別結果を演算装置に出力する。なお、表面電位(データ)が比較器に入力される順序は、測定装置で測定された順序で入力される。
【0082】
そして、演算装置は、比較器で両データが初めて一致すると判定された場合に、その表面電位(データ)を、到達地点で測定された表面電位(データ)として選択する。また、演算装置は、上記実施形態と同様に、到達地点に最も近い地点で測定された表面電位(データ)を、到達地点に最も近い地点(例えば、n)の表面電位として選択する。
【0083】
その後、演算装置は、上記実施形態と同様に、選択された2地点の表面電位を用いて、電界緩和層44の電流−電圧特定を推定する。
【0084】
以上のような構成により、固定子コイルエンド24に配置された状態における電界緩和層44の電流−電圧特性を、上記実施形態よりも高速に推定することができる。
【0085】
また、上記のように、測定した表面電位を、所定のサンプリング周波数で数値化するだけでは、各測定地点(n〜n)で測定された表面電位の時間波形に位相のずれが生じる場合がある。そのため、測定装置に、この位相のずれを補正する機能をもたせてもよい。この場合、測定装置は、各測定地点(n〜n)で測定された表面電位の数値データを読み出して、表面電位の正確な位相の基準点を特定する。そして、測定装置は、特定した基準点に基づいて、各測定地点(n〜n)の表面電位の位相のずれを補正する。
【0086】
また、上記のように位相のずれを補正する代わりに、あらかじめ位相のずれが生じないように、電界緩和層44の表面電位を測定(取得)してもよい。この場合、測定装置は、電源装置50から出力される試験電圧(交流電圧)を監視して、試験電圧波形のゼロクロス点をトリガ信号として特定する(トリガ信号機能)。そして、測定装置は、そのゼロクロス点を特定したタイミングで、電界緩和層44の表面電位を一定時間測定し(所定のサンプリング周波数で数値化し)、記憶装置に記憶する。これにより、各測定地点(n〜n)で測定された表面電位の時間波形には位相のずれが生じない。
【0087】
また、電源装置50の出力電圧が高電圧である場合には、高電圧試験に対する安全に配慮する必要がある。そのため、電界緩和層44の表面電位を測定する測定部210と、電界緩和層44の電流−電圧特性を推定する演算部110は、電気的に切り離されていた方がよい。従って、上記実施形態のケーブル150には、例えば、熱の発生等しにくい光ファイバケーブルを用いるのが好適である。この場合、情報処理装置100の通信部130と、表面電位計200の通信部220は、光ファイバケーブルを用いた通信を可能とするIOポート(光電圧変換器)を備える。
【符号の説明】
【0088】
1・・・タービン発電機、2・・・測定システム、10・・・固定子枠、20・・・固定子、21・・・固定子コア、22・・・固定子コイル、23・・・エンドプレート、24・・・固定子コイルエンド、25・・・固定子コイルサポートリング、26・・・リング支え、30・・・回転子、41・・・コイル導体、42・・・主絶縁層、43・・・低抵抗層、44・・・電界緩和層、50・・・電源装置、51・・・プローブ、100・・・情報処理装置(PC)、110・・・演算部、120・・・記憶部、130・・・通信部、150・・・ケーブル、200・・・表面電位計、210・・・測定部、220・・・通信部。

【特許請求の範囲】
【請求項1】
回転電機の固定子コイルの非線形抵抗測定方法であって、
前記固定子コイルの端部には、導体の外周に巻回されて電界緩和層が配置され、
前記電界緩和層が前記端部に配置された状態で、前記電界緩和層の複数地点で表面電位を測定する測定ステップと、
測定された前記表面電位のうち所定の2つの地点で測定された表面電位を用いて、前記電界緩和層の電流電圧特性を推定する推定ステップと、を有する、
ことを特徴とする非線形抵抗測定方法。
【請求項2】
請求項1に記載される非線形抵抗測定方法であって、
前記推定ステップでは、
表面電位が前記導体の電位に略到達する到達地点で測定された第1の表面電位と、
表面電位が前記導体の電位に到達しておらず、前記複数地点のうち前記到達地点に最も近い地点で測定された第2の表面電位と、
を前記電流電圧特性の推定に用いる表面電位として選択する、
ことを特徴とする非線形抵抗測定方法。
【請求項3】
請求項1又は2に記載される非線形抵抗測定方法であって、
前記推定ステップでは、
前記2つの地点で測定された表面電位の差分から、前記電界緩和層における前記2つの地点間の電位差を算出し、
前記導体と前記電界緩和層の間に介在する絶縁層に流れる電流値から、前記電界緩和層における前記2つの地点間に流れる電流値を算出し、
算出した前記電位差と、算出した前記電流値と、から得られる前記2つの地点間における電流電圧特性を、前記電界緩和層全体の電流電圧特性として推定する、
ことを特徴とする非線形抵抗測定方法。
【請求項4】
回転電機に取り付ける固定子コイルの非線形抵抗測定装置であって、
前記固定子コイルの端部には、導体の外周に巻回されて電界緩和層が配置され、
前記電界緩和層が前記端部に配置された状態で、前記電界緩和層の複数地点で表面電位を測定する測定手段と、
測定された前記表面電位のうち所定の2つの地点で測定された表面電位を用いて、前記電界緩和層の電流電圧特性を推定する推定手段と、を備える、
ことを特徴とする非線形抵抗測定装置。
【請求項5】
請求項4に記載の非線形抵抗測定装置であって、
前記推定手段は、
表面電位が前記導体の電位に略到達する到達地点で測定された第1の表面電位と、
表面電位が前記導体の電位に到達しておらず、前記複数地点のうち前記到達地点に最も近い地点で測定された第2の表面電位と、
を前記電流電圧特性の推定に用いる表面電位として選択する、
ことを特徴とする非線形抵抗測定装置。
【請求項6】
請求項5に記載の非線形抵抗測定装置であって、
前記測定手段は、
電源装置から前記固定子コイルの端部に試験用の交流電圧が印加されると、前記電界緩和層の表面電位を測定し、
前記推定手段は、
前記電界緩和層で測定された前記表面電位の時間波形と、前記電源装置から出力される交流電圧の時間波形と、を比較して、両時間波形が略等価となる地点を、前記到達地点として選択する、
ことを特徴とする非線形抵抗測定装置。
【請求項7】
請求項6に記載の非線形抵抗測定装置であって、
前記推定手段は、
前記第1の表面電位の時間波形と、前記第2の表面電位の時間波形と、の差分を算出することにより、前記電界緩和層における前記2つの地点間の電位差を算出する、
ことを特徴とする非線形抵抗測定装置。
【請求項8】
請求項7に記載の非線形抵抗測定装置であって、
前記推定手段は、
前記電源装置から出力される交流電圧の時間波形と、前記到達地点で測定された表面電位の時間波形と、の差分を求め、
求めた前記差分値を時間微分して、前記導体と前記電界緩和層の間に介在する絶縁層の前記2つの地点間における静電容量を乗じることにより、前記電界緩和層における前記2つの地点間に流れる電流値を算出する、
ことを特徴とする非線形抵抗測定装置。
【請求項9】
請求項6乃至8のいずれか1項に記載の非線形抵抗測定装置であって、
前記測定手段は、
前記電源装置から出力される交流電圧をトリガ信号として、前記電界緩和層の表面電位を一定時間測定する、
ことを特徴とする非線形抵抗測定装置。
【請求項10】
請求項4乃至9のいずれか1項に記載の非線形抵抗測定装置であって、
前記測定手段と、前記推定手段と、を電気的に切り離すための光電圧変換器を備える、
ことを特徴とする非線形抵抗測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−22007(P2011−22007A)
【公開日】平成23年2月3日(2011.2.3)
【国際特許分類】
【出願番号】特願2009−167342(P2009−167342)
【出願日】平成21年7月16日(2009.7.16)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】