説明

固体高分子形燃料電池発電システム

【課題】原料ガスを高効率で利用しながらもシステム全体の電力効率を向上させる。
【解決手段】燃料電池110を構成するすべてのセルのうち、第二のサブスタック111及び第三のサブスタック113がそれぞれ25%以下の同数のセルを有し、第一のサブスタック111の燃料ガス排出口を第二,三のサブスタック112,113の燃料ガス受入口に三方型のバルブ102,103を介してそれぞれ接続し、第二のサブスタック112の燃料ガス排出口を第三のサブスタック113の燃料ガス受入口に前記バルブ103を介して接続し、第三のサブスタック113の燃料ガス排出口を第二のサブスタック112の燃料ガス受入口に前記バルブ102を介して接続し、運転時間に基づいて、第二,三のサブスタック112,113の一方を水素ガス1の流通方向最下流側に位置させるように制御装置140でバルブ102,103を切り換えるようにした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体高分子形燃料電池発電システムに関し、特に、水素ガスを燃料ガスとして用いる場合や、酸素ガスを酸化ガスとして用いる場合に適用すると、極めて有効である。
【背景技術】
【0002】
固体高分子形燃料電池は、プロトン伝導性を有する固体高分子電解質膜を導電性及びガス透過性を有する燃料極及び酸化極で挟んだセルと、水素ガスを含有する燃料ガスの流路及び酸素ガスを含有する酸化ガスの流路をそれぞれ形成されると共に導電性を有するセパレータとを交互に複数積層して積層方向両端側を一対の集電板及びエンドフランジで挟み込んで構成されている。
【0003】
このような固体高分子形燃料電池を備えた固体高分子形燃料電池発電システムにおいては、固体高分子形燃料電池の上記エンドフランジに形成された燃料ガス受入口及び酸化ガス受入口から燃料ガス及び酸化ガスをそれぞれ供給すると、当該燃料ガス及び当該酸化ガスが各上記セパレータの各上記流路内をそれぞれ流通して、前記水素ガス及び前記酸素ガスが上記セルで電気化学的に反応し、上記集電板から電力を取り出すことができるようになっている。
【0004】
そして、使用済みの上記燃料ガス及び上記酸化ガスは、上記電気化学反応に伴って生じた生成水と共に各上記流路を流通して、上記エンドフランジに形成された燃料ガス排出口及び酸化ガス排出口から外部へそれぞれ排出されるようになっている。
【0005】
なお、このような固体高分子形燃料電池発電システムにおいて、例えば、水素ガスそのものを燃料ガスとして使用する場合には、上記燃料ガス排出口にドレントラップを介してブロアやエジェクタ等のガス循環装置のガス受入口を接続すると共に、当該ガス循環装置のガス送出口を上記燃料ガス受入口に接続することにより、上記生成水と上記電気化学反応に供されなかった水素ガスとを燃料ガス排出口から排出させてドレントラップで分離させた後、当該水素ガスを燃料ガス受入口に戻して新たな水素ガスと共に再び供給するようにして、水素ガスを有効利用するようにしている。
【0006】
【特許文献1】特開2003−031248号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、前述したような従来の固体高分子形燃料電池発電システムにおいて、水素ガスそのものを燃料ガスとして使用する場合には、水素ガスを有効利用するために前述したようなガス循環装置を利用することから、当該ガス循環装置を駆動するための電力が必要となってしまい、発電システム全体の電力効率が悪くなってしまっていた。
【0008】
このような問題は、酸素ガスそのものを酸化ガスとして使用する場合に、上記酸化ガス排出口にドレントラップを介してブロアやエジェクタ等のガス循環装置のガス受入口を接続すると共に、当該ガス循環装置のガス送出口を上記酸化ガス受入口に接続することにより、上記生成水と上記電気化学反応に供されなかった酸素ガスとを酸化ガス排出口から排出させてドレントラップで分離させた後、当該酸素ガスを酸化ガス受入口に戻して新たな酸素ガスと共に再び供給するようにして、酸素ガスを有効利用するときであっても、同様にして生じることであった。
【0009】
このようなことから、本発明は、水素ガスや酸素ガス等の原料ガスを高効率で利用しながらもシステム全体の電力効率を向上させることができる固体高分子形燃料電池発電システムを提供することを目的とする。
【課題を解決するための手段】
【0010】
前述した課題を解決するための、第一番目の発明に係る固体高分子形燃料電池発電システムは、固体高分子電解質膜を燃料極及び酸化極で挟んだセルと燃料ガス及び酸化ガスの流路を形成されたセパレータとを積層した固体高分子形燃料電池と、前記固体高分子形燃料電池に燃料ガスを供給する燃料ガス供給手段と、前記固体高分子形燃料電池に酸化ガスを供給する酸化ガス供給手段とを備えている固体高分子形燃料電池発電システムにおいて、前記固体高分子形燃料電池が、前記セルと前記セパレータとを積層した第一のサブスタックと、前記セルと前記セパレータとを積層した第二のサブスタックと、前記セルと前記セパレータとを積層した第三のサブスタックとを備え、前記固体高分子形燃料電池を構成するすべての前記セルのうち、前記第二のサブスタック及び前記第三のサブスタックが、それぞれ25%以下の同数の前記セルを備え、前記第一のサブスタックが、残りの前記セルを備えると共に、前記第一のサブスタックの燃料ガス受入口が、前記燃料ガス供給手段に接続され、前記第一のサブスタックの燃料ガス排出口が、前記第二のサブスタックの燃料ガス受入口及び前記第三のサブスタックの燃料ガス受入口に接続され、前記第二のサブスタックの燃料ガス排出口が、前記第三のサブスタックの燃料ガス受入口に接続され、前記第三のサブスタックの燃料ガス排出口が、前記第二のサブスタックの燃料ガス受入口に接続されており、前記固体高分子形燃料電池の接続する前記サブスタック同士の間の前記燃料ガスの流通経路にそれぞれ配設された燃料ガス用気液分離手段と、前記第一のサブスタックの前記燃料ガス排出口と前記第二のサブスタックの前記燃料ガス受入口及び前記第三のサブスタックの前記燃料ガス受入口との間をそれぞれ切断又は接続する燃料ガス用第一の切換手段と、前記第二のサブスタックの前記燃料ガス排出口と前記第三のサブスタックの前記燃料ガス受入口との間及び前記第三のサブスタックの前記燃料ガス排出口と前記第二のサブスタックの前記燃料ガス受入口との間をそれぞれ切断又は接続する燃料ガス用第二の切換手段と、運転時間、前記燃料ガス供給手段からの前記燃料ガスの送給量、前記固体高分子形燃料電池の前記サブスタックに流れた電流量、前記固体高分子形燃料電池の前記サブスタックの前記セルの電圧値、前記固体高分子形燃料電池の前記サブスタック内の水分量、前記固体高分子形燃料電池の前記サブスタック内の圧損値、前記固体高分子形燃料電池の前記サブスタックの前記燃料ガスの排出口部分の圧力値、のうちの少なくとも一つを計測する燃料ガス用切換時期確認手段と、前記燃料ガス用切換時期確認手段からの情報に基づいて、前記第二のサブスタック及び前記第三のサブスタックの一方を前記燃料ガスの流通方向最下流側に位置させるように前記燃料ガス用第一の切換手段及び前記燃料ガス用第二の切換手段を制御する制御手段とを備えていることを特徴とする。
【0011】
第二番目の発明に係る固体高分子形燃料電池発電システムは、固体高分子電解質膜を燃料極及び酸化極で挟んだセルと燃料ガス及び酸化ガスの流路を形成されたセパレータとを積層した固体高分子形燃料電池と、前記固体高分子形燃料電池に燃料ガスを供給する燃料ガス供給手段と、前記固体高分子形燃料電池に酸化ガスを供給する酸化ガス供給手段とを備えている固体高分子形燃料電池発電システムにおいて、前記固体高分子形燃料電池が、前記セルと前記セパレータとを積層した第一のサブスタックと、前記セルと前記セパレータとを積層した第二のサブスタックと、前記セルと前記セパレータとを積層した第三のサブスタックとを備え、前記固体高分子形燃料電池を構成するすべての前記セルのうち、前記第二のサブスタック及び前記第三のサブスタックが、それぞれ25%以下の同数の前記セルを備え、前記第一のサブスタックが、残りの前記セルを備えると共に、前記第一のサブスタックの酸化ガス受入口が、前記酸化ガス供給手段に接続され、前記第一のサブスタックの酸化ガス排出口が、前記第二のサブスタックの酸化ガス受入口及び前記第三のサブスタックの酸化ガス受入口に接続され、前記第二のサブスタックの酸化ガス排出口が、前記第三のサブスタックの酸化ガス受入口に接続され、前記第三のサブスタックの酸化ガス排出口が、前記第二のサブスタックの酸化ガス受入口に接続されており、前記固体高分子形燃料電池の接続する前記サブスタック同士の間の前記酸化ガスの流通経路にそれぞれ配設された酸化ガス用気液分離手段と、前記第一のサブスタックの前記酸化ガス排出口と前記第二のサブスタックの前記酸化ガス受入口及び前記第三のサブスタックの前記酸化ガス受入口との間をそれぞれ切断又は接続する酸化ガス用第一の切換手段と、前記第二のサブスタックの前記酸化ガス排出口と前記第三のサブスタックの前記酸化ガス受入口との間及び前記第三のサブスタックの前記酸化ガス排出口と前記第二のサブスタックの前記酸化ガス受入口との間をそれぞれ切断又は接続する酸化ガス用第二の切換手段と、運転時間、前記酸化ガス供給手段からの前記酸化ガスの送給量、前記固体高分子形燃料電池の前記サブスタックに流れた電流量、前記固体高分子形燃料電池の前記サブスタックの前記セルの電圧値、前記固体高分子形燃料電池の前記サブスタック内の水分量、前記固体高分子形燃料電池の前記サブスタック内の圧損値、前記固体高分子形燃料電池の前記サブスタックの前記酸化ガスの排出口部分の圧力値、のうちの少なくとも一つを計測する酸化ガス用切換時期確認手段と、前記酸化ガス用切換時期確認手段からの情報に基づいて、前記第二のサブスタック及び前記第三のサブスタックの一方を前記酸化ガスの流通方向最下流側に位置させるように前記酸化ガス用第一の切換手段及び前記酸化ガス用第二の切換手段を制御する制御手段とを備えていることを特徴とする。
【0012】
第三番目の発明に係る固体高分子形燃料電池発電システムは、第一番目の発明において、前記第一のサブスタックの酸化ガス受入口が、前記酸化ガス供給手段に接続され、前記第一のサブスタックの酸化ガス排出口が、前記第二のサブスタックの酸化ガス受入口及び前記第三のサブスタックの酸化ガス受入口に接続され、前記第二のサブスタックの酸化ガス排出口が、前記第三のサブスタックの酸化ガス受入口に接続され、前記第三のサブスタックの酸化ガス排出口が、前記第二のサブスタックの酸化ガス受入口に接続されており、前記固体高分子形燃料電池の接続する前記サブスタック同士の間の前記酸化ガスの流通経路にそれぞれ配設された酸化ガス用気液分離手段と、前記第一のサブスタックの前記酸化ガス排出口と前記第二のサブスタックの前記酸化ガス受入口及び前記第三のサブスタックの前記酸化ガス受入口との間をそれぞれ切断又は接続する酸化ガス用第一の切換手段と、前記第二のサブスタックの前記酸化ガス排出口と前記第三のサブスタックの前記酸化ガス受入口との間及び前記第三のサブスタックの前記酸化ガス排出口と前記第二のサブスタックの前記酸化ガス受入口との間をそれぞれ切断又は接続する酸化ガス用第二の切換手段と、運転時間、前記酸化ガス供給手段からの前記酸化ガスの送給量、前記固体高分子形燃料電池の前記サブスタックに流れた電流量、前記固体高分子形燃料電池の前記サブスタックの前記セルの電圧値、前記固体高分子形燃料電池の前記サブスタック内の水分量、前記固体高分子形燃料電池の前記サブスタック内の圧損値、前記固体高分子形燃料電池の前記サブスタックの前記酸化ガスの排出口部分の圧力値、のうちの少なくとも一つを計測する酸化ガス用切換時期確認手段とを備え、前記制御手段が、さらに、前記酸化ガス用切換時期確認手段からの情報に基づいて、前記第二のサブスタック及び前記第三のサブスタックの一方を前記酸化ガスの流通方向最下流側に位置させるように前記酸化ガス用第一の切換手段及び前記酸化ガス用第二の切換手段を制御するものであることを特徴とする。
【0013】
第四番目の発明に係る固体高分子形燃料電池発電システムは、第一番目又は第三番目の発明において、前記制御手段が、前記第一のサブスタックからの前記燃料ガスを前記第二のサブスタック及び前記第三のサブスタックの両方に一旦供給してから、当該燃料ガスの流通方向最下流側に位置させる前記サブスタックを切り換えるように前記燃料ガス用第一の切換手段及び前記燃料ガス用第二の切換手段を制御するものであることを特徴とする。
【0014】
第五番目の発明に係る固体高分子形燃料電池発電システムは、第二番目又は第三番目の発明において、前記制御手段が、前記第一のサブスタックからの前記酸化ガスを前記第二のサブスタック及び前記第三のサブスタックの両方に一旦供給してから、当該酸化ガスの流通方向最下流側に位置させる前記サブスタックを切り換えるように前記酸化ガス用第一の切換手段及び前記酸化ガス用第二の切換手段を制御するものであることを特徴とする。
【0015】
第六番目の発明に係る固体高分子形燃料電池発電システムは、第一,三,四番目の発明のいずれかにおいて、前記燃料ガス供給手段と前記固体高分子形燃料電池の前記第一のサブスタックの前記燃料ガス受入口との間に配設され、前記燃料ガス用気液分離手段で分離された水を貯留すると共に、前記燃料ガスと当該水とを接触させる貯水槽を備えていることを特徴とする。
【0016】
第七番目の発明に係る固体高分子形燃料電池発電システムは、第二,三,五番目の発明のいずれかにおいて、前記酸化ガス供給手段と前記固体高分子形燃料電池の前記第一のサブスタックの前記酸化ガス受入口との間に配設され、前記酸化ガス用気液分離手段で分離された水を貯留すると共に、前記酸化ガスと当該水とを接触させる貯水槽を備えていることを特徴とする。
【0017】
第八番目の発明に係る固体高分子形燃料電池発電システムは、第一,三,四,六番目の発明のいずれかにおいて、前記固体高分子形燃料電池の前記サブスタックの前記燃料ガス排出口から排出された前記燃料ガス中の水によって、当該サブスタックの前記燃料ガス供給口へ供給する前記燃料ガスを加湿する膜加湿器を備えていることを特徴とする。
【0018】
第九番目の発明に係る固体高分子形燃料電池発電システムは、第二,三,五,七番目の発明のいずれかにおいて、前記固体高分子形燃料電池の前記サブスタックの前記酸化ガス排出口から排出された前記酸化ガス中の水によって、当該サブスタックの前記酸化ガス供給口へ供給する前記酸化ガスを加湿する膜加湿器を備えていることを特徴とする。
【0019】
第十番目の発明に係る固体高分子形燃料電池発電システムは、第一,三,四,六,八番目の発明のいずれかにおいて、前記燃料ガス用気液分離手段の内部のガスを系外へリークさせるガスリーク手段を備えていることを特徴とする。
【0020】
第十一番目の発明に係る固体高分子形燃料電池発電システムは、第二,三,五,七,九番目の発明のいずれかにおいて、前記酸化ガス用気液分離手段の内部のガスを系外へリークさせるガスリーク手段を備えていることを特徴とする。
【0021】
第十二番目の発明に係る固体高分子形燃料電池発電システムは、第一,三,四,六,八,十番目の発明のいずれかにおいて、前記燃料ガス供給手段が、濃度99%以上の水素ガスを供給するものであることを特徴とする。
【0022】
第十三番目の発明に係る固体高分子形燃料電池発電システムは、第二,三,五,七,九,十一番目の発明のいずれかにおいて、前記酸化ガス供給手段が、濃度99%以上の酸素ガスを供給するものであることを特徴とする。
【発明の効果】
【0023】
本発明に係る固体高分子形燃料電池発電システムによれば、第二のサブスタック及び第三のサブスタックの一方を原料ガスの流通方向最下流側に位置させるように切り換えることができることから、ブロアやエジェクタ等のガス循環装置がなくても、最下流側に位置するサブスタックの流路内から生成水を排出することができると同時に、送給された原料ガスをほとんどすべて発電に使用することができるので、原料ガスを高効率で利用しながらも、システム全体の電力効率を向上させることができる。
【0024】
また、第二のサブスタック及び第三のサブスタックが、それぞれ25%以下の同数のセルを備え、第一のサブスタックが、残りのすべてのセルを備えていることから、原料ガスの流通方向最下流側に位置する上記サブスタックの原料ガス流路内に水が滞留して、当該流通方向最下流側に位置する当該サブスタックの発電性能が低下したとしても、当該低下を最大でも25%以下に抑えることができるので、システム全体の電力効率の向上をより確実に図ることができる。
【発明を実施するための最良の形態】
【0025】
本発明に係る固体高分子形燃料電池発電システムの実施形態を図面に基づいて以下に説明するが、本発明は、図面に基づいて説明する以下の実施形態に限定されるものではない。
【0026】
[第一番目の実施形態]
本発明に係る固体高分子形燃料電池発電システムの第一番目の実施形態を図1,2に基づいて説明する。図1は、固体高分子形燃料電池発電システムの主要部の概略構成図、図2は、図1の固体高分子形燃料電池発電システムの作動説明図である。
【0027】
図1に示すように、固体高分子形燃料電池110は、プロトン伝導性を有する固体高分子電解質膜を導電性及びガス透過性を有する燃料極及び酸化極で挟んだセルと、燃料ガスの流路及び酸化ガスの流路をそれぞれ形成されると共に導電性を有するセパレータとを積層して、積層方向両端側を一対の集電板及びエンドフランジで挟み込んで構成された複数(本実施形態では3つ)の第一〜三のサブスタック111〜113からなっている。
【0028】
前記固体高分子形燃料電池110は、すべての前記サブスタック111〜113を構成するすべての前記セルのうち、前記第二のサブスタック112及び第三のサブスタック113が、それぞれ25%以下(好ましくは10%以下、さらに好ましくは5%以下、最も好ましくは1枚の単セル)の同数の前記セルを備え、前記第一のサブスタック111が、残りの前記セルを備えるように構成されている。
【0029】
前記第一のサブスタック111のエンドフランジに形成された燃料ガス受入口には、燃料ガスである濃度99%以上の水素ガス1の供給手段である水素ガスボンベ130が電磁式の二方型のバルブ101を介して接続している。
【0030】
前記第一のサブスタック111のエンドフランジに形成された燃料ガス排出口は、前記第二のサブスタック112のエンドフランジに形成された燃料ガス受入口及び前記第三のサブスタック113のエンドフランジに形成された燃料ガス受入口へ燃料ガス用気液分離手段であるドレントラップ121を介して接続している。前記ドレントラップ121と前記第二のサブスタック112の燃料ガス受入口との間は、電磁式の三方型のバルブ102を介在して連絡している。前記ドレントラップ121と前記第三のサブスタック113の燃料ガス受入口との間は、電磁式の三方型のバルブ103を介在して連絡している。
【0031】
前記第二のサブスタック112のエンドフランジに形成された燃料ガス送出口は、燃料ガス用気液分離手段であるドレントラップ122を介して前記バルブ103の残りの口に接続している。前記第三のサブスタック113のエンドフランジに形成された燃料ガス送出口は、燃料ガス用気液分離手段であるドレントラップ123を介して前記バルブ102の残りの口に接続している。
【0032】
前記ドレントラップ121〜123の下部には、気液分離した生成水2を外部へ排出する電磁式の二方型のバルブ104〜106が設けられている。
【0033】
前記バルブ101〜106は、制御手段である制御装置140の出力部に電気的に接続されており、当該制御装置140は、燃料ガス用切換時期確認手段である内蔵された図示しないタイマからの情報(運転時間)に基づいて、当該バルブ101〜106の開閉を制御することができるようになっている(詳細は後述する)。
【0034】
このような本実施形態では、前記バルブ102,103等により燃料ガス用第一の切換手段と燃料ガス用第二の切換手段とを兼ねるように構成している。
【0035】
なお、本実施形態においては、図面の煩雑化を避けるため、図1において、固体高分子形燃料電池発電システム100の酸化ガス供給手段等の酸化ガス系統や温調水流通手段等の温調水系統等の記載を省略し、燃料ガス系統等の主要部のみを記載しているが、これら酸化ガス系統や温調水系統等も従来の場合と同様にして備えられている。
【0036】
このような構造をなす本実施形態に係る固体高分子形燃料電池発電システム100の作動を次に説明する。
【0037】
前記制御装置140を作動させると、当該制御装置140は、前記バルブ101〜106を制御して、前記バルブ104〜106を閉鎖すると共に、前記バルブ101を開放する一方、前記第一のサブスタック111の燃料ガス送出口と前記第二のサブスタック112の燃料ガス受入口との間のみを接続するように前記バルブ102を切り換え、前記第二のサブスタック112の燃料ガス送出口と前記第三のサブスタック113の燃料ガス受入口との間のみを接続するように前記バルブ103を切り換える(図2A参照)。
【0038】
これにより、水素ガスボンベ130内の水素ガス1が、前記バルブ101を経由して第一のサブスタック111の燃料ガス受入口へ送給されて、各前記セパレータの各前記流路内を流通し、当該第一のサブスタック111において、図示しない酸化ガス系統から供給された酸化ガス中の酸素と前記セルで電気化学的に反応し、前記集電板から電力が取り出されると共に、使用済みの水素ガス1(当該サブスタック111のセルで消費された残り)が、当該電気化学反応に伴って生じた生成水2と共に各上記流路を流通して、燃料ガス排出口から排出され、ドレントラップ121で当該生成水2を分離された後、前記バルブ102を経由して第二のサブスタック112の燃料ガス受入口へ送給され、前記セパレータの前記流路内を流通し、当該第二のサブスタック112において、前記酸化ガス中の酸素と前記セルで電気化学的に反応し、前記集電板から電力が取り出されると共に、使用済みの水素ガス1(当該サブスタック112のセルでさらに消費された残り)が、当該電気化学反応に伴って生じた生成水2と共に上記流路を流通して、燃料ガス排出口から排出され、ドレントラップ122で当該生成水2を分離された後、前記バルブ103を経由して第三のサブスタック113の燃料ガス受入口へ送給され、前記セパレータの前記流路内を流通し、当該第三のサブスタック113において、前記酸化ガス中の酸素と前記セルで電気化学的に反応し、前記集電板から電力が取り出されるようになる。
【0039】
このとき、前記第三のサブスタック113においては、送給された水素ガス1のほとんどが消費されて、燃料ガス排出口から排出されるガスがほとんどないので、上記電気化学反応に伴って生じた生成水2が、前記流路内に次第に滞留し始め、発電性能が低下するようになる。
【0040】
ここで、前記制御装置140は、前記タイマからの情報に基づいて、予め設定された運転時間が経過すると、前記バルブ102,103を制御して、前記第一のサブスタック111の燃料ガス送出口と前記第三のサブスタック113の燃料ガス受入口との間のみを接続するように前記バルブ103を切り換えると共に、前記第三のサブスタック113の燃料ガス送出口と前記第二のサブスタック112の燃料ガス受入口との間のみを接続するように前記バルブ102を切り換える(図2B参照)。
【0041】
つまり、前記制御装置140は、第二のサブスタック112を水素ガス1の流通方向最下流側に新たに位置させるように、当該流通方向最下流側に位置していた第三のサブスタック113から切り換えるのである。
【0042】
これにより、前記第一のサブスタック111の燃料ガス排出口から排出されて前記ドレントラップ121で生成水2を分離された使用済みの水素ガス1(当該サブスタック111のセルで消費された残り)は、前記バルブ103を経由して第三のサブスタック113の燃料ガス受入口へ送給され、前記セパレータの前記流路内を流通し、当該第三のサブスタック113において、前記酸化ガス中の酸素と前記セルで電気化学的に反応し、前記集電板から電力が取り出されると共に、使用済みの水素ガス1(当該サブスタック113のセルでさらに消費された残り)が、当該電気化学反応に伴って生じた生成水2と共に上記流路を流通して、燃料ガス排出口から排出され、ドレントラップ123で当該生成水2を分離された後、前記バルブ102を経由して第二のサブスタック112の燃料ガス受入口へ送給され、前記セパレータの前記流路内を流通し、当該第二のサブスタック112において、前記酸化ガス中の酸素と前記セルで電気化学的に反応し、前記集電板から電力が取り出されるようになる。
【0043】
このとき、前記第三のサブスタック113においては、前記第一のサブスタック111のセルで消費された残りの水素ガス1が供給されるようになるので、前記流路内に滞留している生成水2が押し出されて、電気化学反応に伴って新たに生じた生成水2と共に排出されることから、発電性能の低下が防止されるようになるものの、今度は、新たに、前記第二のサブスタック112において、送給された水素ガス1のほとんどが消費されて、燃料ガス排出口から排出されるガスがほとんどなくなるので、上記電気化学反応に伴って生じた生成水2が、前記流路内に次第に滞留し始め、発電性能が低下するようになる。
【0044】
ここで、前記制御装置140は、前記タイマからの情報に基づいて、予め設定された運転時間がさらに経過すると、前記バルブ102,103を制御して、前記第一のサブスタック111の燃料ガス送出口と前記第二のサブスタック112の燃料ガス受入口との間のみを接続するように前記バルブ102を切り換えると共に、前記第二のサブスタック112の燃料ガス送出口と前記第三のサブスタック113の燃料ガス受入口との間のみを接続するように前記バルブ103を切り換える(図2A参照)。
【0045】
つまり、前記制御装置140は、第三のサブスタック112を水素ガス1の流通方向最下流側に新たに位置させるように、当該流通方向最下流側に位置していた第二のサブスタック113から切り換える、すなわち、当初の状態に戻すのである。
【0046】
以下、前記制御装置140は、上述した前記バルブ102,103の制御を繰り返す。これにより、固体高分子形燃料電池110は、水素ガス1の流通方向最下流側に位置する前記サブスタック112,113が運転経過時間に対応して順次切り換え制御される。
【0047】
なお、前記ドレントラップ121〜123内に回収された生成水2は、前記制御装置140が、前記タイマからの情報に基づいて、予め設定された運転時間経過毎に前記バルブ104〜106の開閉を行うことにより、系外へ適宜排出される。
【0048】
このため、固体高分子形燃料電池110は、ブロアやエジェクタ等のガス循環装置がなくても、前記流路内から生成水2を排出することができると同時に、水素ガスボンベ130から送給された水素ガス1をほとんどすべて発電に使用することができるようになる。
【0049】
したがって、本実施形態によれば、水素ガス1を高効率で利用しながらも、システム100全体の電力効率を向上させることができる。
【0050】
また、前記第二のサブスタック112及び第三のサブスタック113が、それぞれ25%以下(好ましくは10%以下、さらに好ましくは5%以下、最も好ましくは1枚の単セル)の同数の前記セルを備え、前記第一のサブスタック111が、残りのすべての前記セルを備えるように構成されていることから、上述したように、水素ガス1の流通方向最下流側に位置する前記サブスタック112,113の前記流路内に前記生成水2が滞留して、当該流通方向最下流側に位置する当該サブスタック112,113の発電性能が低下したとしても、当該低下を最大でも25%以下(好ましい場合には最大でも10%以下、さらに好ましい場合には最大でも5%以下、最も好ましい場合には最小)に抑えることができるので、システム100全体の電力効率の向上をより確実に図ることができる。
【0051】
[第二番目の実施形態]
本発明に係る固体高分子形燃料電池発電システムの第二番目の実施形態を図3に基づいて説明する。図3は、固体高分子形燃料電池発電システムの主要部の概略構成図である。ただし、前述した第一番目の実施形態の場合と同様な部分については、前述した第一番目の実施の形態の説明で用いた符号と同様な符号を用いることにより、前述した第一番目の実施形態での説明と重複する説明を省略する。
【0052】
図3に示すように、前記ドレントラップ121〜123の前記バルブ104〜106は、生成水2中の金属イオン等の不純物を除去して当該生成水2を精製するイオン交換樹脂を内装した精製器251の上方へ接続している。精製器251の下方は、精製された生成水2を貯留する貯水槽252の上方へ接続している。貯水槽252の下方には、バルブ201が連結されている。
【0053】
前記貯水槽252は、前記バルブ101と前記第一のサブスタック111の燃料ガス受入口との間に介在するように連結されおり、下方側に上記バルブ101側(水素ガスボンベ130側)が接続され、上方側に上記第一のサブスタック111側が接続されている。
【0054】
前記バルブ201は、制御手段である制御装置240の出力部に電気的に接続されており、当該制御装置240は、燃料ガス用切換時期確認手段である内蔵された図示しないタイマからの情報(運転時間)に基づいて、前記バルブ101〜106と共に当該バルブ201の開閉を制御することができるようになっている(詳細は後述する)。
【0055】
このような本実施形態に係る固体高分子形燃料電池発電システム200においては、前記制御装置240を作動させると、前述した第一番目の実施形態の場合と同様に、当該制御装置240が前記バルブ101〜103を制御することにより、前述した第一番目の実施形態の場合と同様に、水素ガス1を高効率で利用しながら全体の電力効率を向上させつつ発電運転を行うことができる。
【0056】
このような発電運転を行っているとき、前記制御装置240は、前述した第一番目の実施形態の場合と同様に、前記タイマからの情報に基づいて、予め設定された運転時間経過毎に前記バルブ104〜106の開閉を行って、前記ドレントラップ121〜123内から生成水2を適宜排出する。上記ドレントラップ121〜123内から排出された生成水2は、精製器251内を流通して、わずかにでも存在する金属イオン等の不純物が除去された後、貯水槽252内に貯留される。
【0057】
このため、前記水素ガスボンベ130から送出された水素ガス1は、貯留槽252内の上記生成水2中でバブリングされることにより、加湿されてから前記第一のサブスタック111へ送給されるようになる。
【0058】
なお、前記貯留槽252内に貯留する上記生成水2は、運転していくにしたがって、次第に増えていくため、前記制御装置240が、前記タイマからの情報に基づいて、予め設定された運転時間経過毎に前記バルブ201の開閉を行うことにより、系外へ適宜排出される。
【0059】
つまり、前述した第一番目の実施形態に係る固体高分子形燃料電池発電システム100においては、前記サブスタック111〜113から送出されて前記ドレントラップ121〜123で回収した生成水2を前記バルブ104〜106から系外へ排出するようにしたが、本実施形態に係る固体高分子形燃料電池発電システム200においては、前記サブスタック111〜113から送出されて前記ドレントラップ121〜123で回収した生成水2を前記バルブ104〜106から系外へ排出することなく前記貯水槽252に一旦貯留して、前記水素ガスボンベ130から前記第一のサブスタック111へ供給する水素ガス1の加湿に利用するようにしたのである。
【0060】
このため、本実施形態に係る固体高分子形燃料電池発電システム200では、水素ガスボンベ130からの水素ガス1を前記第一のサブスタック111に供給する前に前記生成水2を利用して予め加湿することができるので、水素ガスボンベ130からの水素ガス1を前記第一のサブスタック111に供給する前に加湿する専用の加湿水や加湿器を別途用意しなくても済むようになる。
【0061】
したがって、本実施形態に係る固体高分子形燃料電池発電システム200によれば、前述した第一番目の実施形態の場合と同様な効果を得ることができるのはもちろんのこと、水素ガスボンベ130から前記第一のサブスタック111に供給する水素ガス1の加湿に前記生成水2を有効に利用することができるので、前述した第一番目の実施形態の場合よりも、システム全体の効率の向上及びコンパクト化をさらに図ることができる。
【0062】
また、前記サブスタック111〜113の温度調整を行う温調水を利用して前記貯水槽252も温調して、当該貯水槽252中の前記生成水2を温調するようにすれば、システム全体の効率を向上させながら前記水素ガス1の加湿効率をさらに向上させることができる。
【0063】
[第三番目の実施形態]
本発明に係る固体高分子形燃料電池発電システムの第三番目の実施形態を図4に基づいて説明する。図4は、固体高分子形燃料電池発電システムの主要部の概略構成図である。ただし、前述した第一,二番目の実施形態の場合と同様な部分については、前述した第一,二番目の実施の形態の説明で用いた符号と同様な符号を用いることにより、前述した第一,二番目の実施形態での説明と重複する説明を省略する。
【0064】
図4に示すように、前記第二,三のサブスタック112,113に接続する前記ドレントラップ122,123の上側には、ガスリーク手段であるバルブ301,302の一端側がそれぞれ連結されている。これらバルブ301,302の他端側は、系外へ連絡している。
【0065】
前記バルブ301,302は、制御手段である制御装置340の出力部にそれぞれ電気的に接続されており、当該制御装置340は、燃料ガス用切換時期確認手段である内蔵された図示しないタイマからの情報(運転時間)に基づいて、前記バルブ101〜106と共に当該バルブ301,302の開閉を制御することができるようになっている(詳細は後述する)。
【0066】
このような本実施形態に係る固体高分子形燃料電池発電システム300においては、前記制御装置340を作動させると、前述した第一番目の実施形態の場合と同様に、当該制御装置340が前記バルブ101〜103を制御することにより、前述した第一番目の実施形態の場合と同様に、水素ガス1を高効率で利用しながら全体の電力効率を向上させつつ発電運転を行うことができる。
【0067】
このようにして発電運転を行っているとき、前記制御装置340は、前記タイマからの情報に基づいて、予め設定された運転時間経過毎に、前記水素ガス1の流通方向最下流側に位置する前記サブスタック112,113(例えば、第三のサブスタック113)に接続するドレントラップ122,123(例えば、ドレントラップ123)に連結する前記バルブ301,302(例えば、バルブ302)のみを所定時間開放し、当該ドレントラップ122,123(例えば、ドレントラップ123)内の水素ガス1を所定量だけ系外へリークさせる。
【0068】
つまり、水素ガスボンベ130中の水素ガス1は、前記第二,三のサブスタック112,113内で循環使用されると、僅かに含んでいる不純ガスが当該第二,三のサブスタック112,113内で発電反応に関与することなくそのまま残留して次第に高濃度になり、当該第二,三のサブスタック112,113の発電効率を低下させてしまうことから、予め設定された運転時間経過毎に、水素ガス1の流通方向最下流側に位置する当該第二,三のサブスタック112,113(例えば、第三のサブスタック113)に接続するドレントラップ122,123(例えば、ドレントラップ123)に連結する前記バルブ301,302(例えば、バルブ302)のみを所定時間開放して、当該ドレントラップ122,123(例えば、ドレントラップ123)内の水素ガス1と共に上記不純ガスを系外へリークすることにより、当該第二,三のサブスタック112,113内に残留する上記不純ガスの高濃度化を抑制するようにしたのである。
【0069】
したがって、本実施形態に係る固体高分子形燃料電池発電システム300によれば、前述した第一番目の実施形態の場合と同様な効果を得ることができるのはもちろんのこと、前記第二,三のサブスタック112,113内に残留する前記不純ガスの高濃度化を抑制することができるので、発電効率の低下をさらに抑制することができる。
【0070】
[他の実施形態]
なお、前述した第二番目の実施形態では、前記サブスタック111〜113から送出されて前記ドレントラップ121〜123で回収した生成水2を前記貯水槽252に一旦貯留して、前記水素ガスボンベ130から前記第一のサブスタック111へ供給する水素ガス1の加湿に利用するようにした固体高分子形燃料電池発電システム200の場合について説明したが、他の実施形態(第四番目の実施形態)として、例えば、図5に示すように、固体高分子形燃料電池110の第一〜三のサブスタック111〜113の燃料ガス排出口から各々排出された水素ガス1と当該サブスタック111〜113の燃料ガス供給口へ供給する水素ガス1とを、ガスを透過させることなく水分のみを透過させる膜を介して接触させることで、上記サブスタック111〜113の燃料ガス排出口から各々排出された上記水素ガス1中の生成水2によって、当該サブスタック111〜113の燃料ガス供給口へ供給する上記水素ガス1を各々加湿するようにした膜加湿器453を備えた固体高分子形燃料電池発電システム400とすることも可能である。
【0071】
また、前述した各実施形態では、前記第一のサブスタック111から送給される水素ガス1の送給方向最下流側とその上流側とに位置させる前記第二,三のサブスタック112,113の切り換えを略同時に行うように前記バルブ102,103を前記制御装置140,240,340で制御するようにしたが、他の実施形態として、例えば、前記バルブ102,103のすべての口を一旦完全に開放して、前記第一のサブスタック111からの前記水素ガス1を前記第二,三のサブスタック112,113の両方に一旦供給してから、当該水素ガス1の流通方向最下流側とその上流側とに位置させる当該第二,三のサブスタック112,113を切り換えるように前記バルブ102,103を制御手段で制御することも可能である。
【0072】
このようにして前記バルブ102,103を制御するようにすれば、当該バルブ102,103の切換時でも水素ガス1が前記第二,三のサブスタック112,113内に常に送給されるようになることから、当該バルブ102,103の切換のタイムラグによって生じる可能性のある水素ガス1の無給状態における当該第二,三のサブスタック112,113の水素ガス1の消費に伴う内圧の急激な低下を確実に抑制することができ、当該バルブ102,103の切換時でも当該第二,三のサブスタック112,113内を水素ガス1の供給時の圧力近傍で維持することができるので、前記バルブ102,103の切り換えに伴う前記第二,三のサブスタック112,113内の圧力変動による前記セルへの衝撃を抑制することができ、前記セルの機械的劣化を抑制することができる。
【0073】
また、前述した各実施形態では、三方型のバルブ102,103等により燃料ガス用第一の切換手段と燃料ガス用第二の切換手段とを兼ねるように構成して前記第二,三のサブスタック112,113への水素ガス1の供給流路を切り換えるようにしたが、他の実施形態として、例えば、二方型のバルブやロータリ式のバルブ等により燃料ガス用第一の切換手段と燃料ガス用第二の切換手段とをそれぞれ個別に構成して前記第二,三のサブスタック112,113への水素ガス1の供給流路を切り換えるようにすることも可能である。
【0074】
また、前述した各実施形態では、水素ガス1そのものを燃料ガスとして使用し、酸素を含有するガス(例えば空気等)を酸化ガスとして使用する場合について説明したが、酸素ガスそのものを酸化ガスとして使用する場合には、酸化ガス系統も前述した各実施形態に係る上述した燃料ガス系統と同様にして構成する、すなわち、例えば、前記燃料ガス供給手段と同様にして、酸化ガスである濃度99%以上の酸素ガスを供給する酸素ガスボンベ等の酸化ガス供給手段を構成し、前記燃料ガス用気液分離手段と同様にして酸化ガス用気液分離手段を構成し、前記燃料ガス用第一の切換手段と同様にして前記酸化ガス用第一の切換手段を構成し、前記燃料ガス用第二の切換手段と同様にして前記酸化ガス用第二の切換手段を構成し、前記燃料ガス用切換時期確認手段と同様にして前記酸化ガス用切換時期確認手段を構成し、前記貯水槽や前記膜加湿器や前記ガスリーク手段と同様な貯水槽や膜加湿器やガスリーク手段を設けること等により、酸化ガス系統においても前述した各実施形態での説明と同様な作用効果を得ることができる。
【0075】
また、前述した各実施形態では、燃料ガス用切換時期確認手段等として、運転時間を計測する前記タイマを設け、前記制御装置140,240,340が、当該タイマからの情報に基づいて、予め設定された運転時間の経過により、前記バルブ101〜106,201,301,302を制御するようにしたが、他の実施形態として、例えば、以下のようにすること等によっても、前述した各実施形態の場合と同様な作用効果を得ることができる。
【0076】
(1)燃料ガス用切換時期確認手段や酸化ガス用切換時期確認手段として、燃料ガス供給手段からの燃料ガスの送給量や酸化ガス供給手段からの酸化ガスの送給量を計測するガス流量計測手段(例えば、マスフローメータやオリフィス式ガス流量計等)を設け、制御手段が、当該ガス流量計測手段からの情報に基づいて、燃料ガスや酸化ガスの送給量の積算値により、前記バルブ等の位置切換手段やガスリーク手段を制御するようにする。
【0077】
(2)燃料ガス用切換時期確認手段や酸化ガス用切換時期確認手段として、前記サブスタックに流れる電流量を計測する電流量計測手段を設け、制御手段が、当該電流量計測手段からの情報に基づいて、前記サブスタックに流れた電流量の積算値により、前記バルブ等の位置切換手段やガスリーク手段を制御するようにする。
【0078】
(3)燃料ガス用切換時期確認手段や酸化ガス用切換時期確認手段として、前記セルの電圧を計測するセル電圧計測手段を設け、制御手段が、当該セル電圧計測手段からの情報に基づいて、予め設定されたセル電圧基準値よりも小さくなったときに、前記バルブ等の位置切換手段やガスリーク手段を制御するようにする(例えば、特開2002−151125号公報等に記載されている技術の応用)。
【0079】
(4)燃料ガス用切換時期確認手段や酸化ガス用切換時期確認手段として、前記サブスタックの前記ガス流通方向下流側の水分量を計測するセル水分計測手段を設け、制御手段が、当該セル水分計測手段からの情報に基づいて、前記ガス流通方向最下流側に位置する前記サブスタックの、前記ガス流通方向下流側の水分量が、予め設定された水分量基準値よりも大きくなったときに、前記バルブ等の位置切換手段やガスリーク手段を制御するようにする。
【0080】
(5)燃料ガス用切換時期確認手段や酸化ガス用切換時期確認手段として、前記サブスタック内の圧損値を計測する圧損計測手段を設け、制御手段が、当該圧損計測手段からの情報に基づいて、前記ガス流通方向最下流側に位置する前記サブスタック内の圧損が、予め設定された圧損基準値よりも大きくなったときに(前記流路内の滞留水が多くなると圧力損失が大きくなる)、前記バルブ等の位置切換手段やガスリーク手段を制御するようにする。
【0081】
(6)燃料ガス用切換時期確認手段や酸化ガス用切換時期確認手段として、前記サブスタックの前記ガス排出口部分の圧力を計測する排出口圧力計測手段を設け、制御手段が、当該排出口圧力計測手段からの情報に基づいて、前記ガス流通方向最下流側に位置する前記サブスタックの前記ガス排出口部分の圧力が、予め設定された圧力基準値よりも小さくなったときに(前記流路内の滞留水が多くなると圧力が小さくなる)、前記バルブ等の位置切換手段やガスリーク手段を制御するようにする。
【0082】
また、前述した各実施形態においては、前記制御装置140,240,340が、前記タイマからの情報に基づいて、予め設定された運転時間経過毎に前記バルブ104〜106,201の開閉を行うことにより、前記生成水2の送出を行うようにしたが、他の実施形態として、例えば、前記ドレントラップ121〜123や前記貯水槽252内の水位を計測する水位計測手段を設け、当該ドレントラップ121〜123や当該貯水槽252内の水位が規定値を超えると、制御手段が、当該水位計測手段からの情報に基づいて、前記バルブ104〜106,201の開閉を行うことにより、前記生成水2の送出を行うようにすることや、前記サブスタック112,113に流れる電流量を計測する電流量計測手段を設け、制御手段が、当該電流量計測手段からの情報に基づいて、当該サブスタック112,113に流れた電流量の積算値により、前記バルブ104〜106,201の開閉を行うことにより、当前記生成水2の送出を行うようにすることも可能である。
【0083】
また、前述した各実施形態において、例えば、前記ガスの流通方向最下流側に位置する前記サブスタックのみの電力取り出し量を少なくする(供給する水素ガスや酸素ガス等の原料ガスの供給量も併せて少なくする)ように運転すれば、当該最下流側に位置する上記サブスタックの前記流路内に滞留する生成水の単位時間当たりの発生量を少なくすることができるので、前記サブスタックの上述した切り換え間隔を長く設定することが可能となる。
【0084】
また、前述した各実施形態においては、単一構造からなる第一のサブスタック111を適用した場合について説明したが、本発明はこれに限らず、他の実施形態として、例えば、複数の分割サブスタックを接続して第一のサブスタックを構成することも可能である。ここで、第一のサブスタックは、各分割サブスタックのセルの積層枚数を同一にするように構成することはもちろんのこと、原料ガスの流通方向下流側に位置する分割サブスタックほど、セルの積層枚数を少なくするように構成することも可能である。このとき、上記分割サブスタック同士の間の燃料ガスの流通経路や酸化ガスの流通経路に前記燃料ガス用気液分離手段や前記酸化ガス用気液分離手段をそれぞれ配設すると好ましい。
【0085】
また、前述した各実施形態においては、単一構造からなる第二のサブスタック112及び第三のサブスタック113をそれぞれ適用した場合について説明したが、本発明はこれに限らず、他の実施形態として、例えば、複数の分割サブスタックを接続して第二のサブスタックや第三のサブスタックをそれぞれ構成することも可能である。ここで、第二,三のサブスタックにおいては、各分割サブスタックのセルの積層枚数を同一にするように、すなわち、各分割サブスタックの発電能力を同一にするように、それぞれ構成することはもちろんのこと、原料ガスの流通方向下流側に位置する分割サブスタックほど、セルの積層枚数を少なくするように、すなわち、発電能力が小さくなるように、それぞれ構成することも可能である。このとき、上記分割サブスタック同士の間の燃料ガスの流通経路や酸化ガスの流通経路に前記燃料ガス用気液分離手段や前記酸化ガス用気液分離手段をそれぞれ配設すると好ましい。
【0086】
なお、第二,三のサブスタックは、1枚のセルのみを備える、すなわち、発電能力が最も小さくなる単一構造からなるようにそれぞれ構成されると、原料ガスの流通方向最下流側に位置する上記サブスタックのガス流路内に滞留した水による固体高分子形燃料電池の発電性能の低下を最も少なく抑えることができるので、最も好ましい。
【産業上の利用可能性】
【0087】
本発明に係る固体高分子形燃料電池発電システムは、原料ガスを高効率で利用しながらも、システム全体の電力効率を向上させることができるので、各種産業において、極めて有益に利用することができる。
【図面の簡単な説明】
【0088】
【図1】本発明に係る固体高分子形燃料電池発電システムの第一番目の実施形態の主要部の概略構成図である。
【図2】図1の固体高分子形燃料電池発電システムの作動説明図である。
【図3】本発明に係る固体高分子形燃料電池発電システムの第二番目の実施形態の主要部の概略構成図である。
【図4】本発明に係る固体高分子形燃料電池発電システムの第三番目の実施形態の主要部の概略構成図である。
【図5】本発明に係る固体高分子形燃料電池発電システムの第四番目の実施形態の主要部の概略構成図である。
【符号の説明】
【0089】
1 水素ガス
2 生成水
3 酸素ガス
100 固体高分子形燃料電池発電システム
101〜106 バルブ
110 固体高分子形燃料電池
111〜113 サブスタック
121〜123 ドレントラップ
130 水素ガスボンベ
140 制御装置
200 固体高分子形燃料電池発電システム
201 バルブ
240 制御装置
251 精製器
252 貯水槽
300 固体高分子形燃料電池発電システム
301,302 バルブ
340 制御装置
400 固体高分子形燃料電池発電システム
453 膜加湿器

【特許請求の範囲】
【請求項1】
固体高分子電解質膜を燃料極及び酸化極で挟んだセルと燃料ガス及び酸化ガスの流路を形成されたセパレータとを積層した固体高分子形燃料電池と、
前記固体高分子形燃料電池に燃料ガスを供給する燃料ガス供給手段と、
前記固体高分子形燃料電池に酸化ガスを供給する酸化ガス供給手段と
を備えている固体高分子形燃料電池発電システムにおいて、
前記固体高分子形燃料電池が、
前記セルと前記セパレータとを積層した第一のサブスタックと、
前記セルと前記セパレータとを積層した第二のサブスタックと、
前記セルと前記セパレータとを積層した第三のサブスタックと
を備え、
前記固体高分子形燃料電池を構成するすべての前記セルのうち、
前記第二のサブスタック及び前記第三のサブスタックが、それぞれ25%以下の同数の前記セルを備え、
前記第一のサブスタックが、残りの前記セルを備えると共に、
前記第一のサブスタックの燃料ガス受入口が、前記燃料ガス供給手段に接続され、
前記第一のサブスタックの燃料ガス排出口が、前記第二のサブスタックの燃料ガス受入口及び前記第三のサブスタックの燃料ガス受入口に接続され、
前記第二のサブスタックの燃料ガス排出口が、前記第三のサブスタックの燃料ガス受入口に接続され、
前記第三のサブスタックの燃料ガス排出口が、前記第二のサブスタックの燃料ガス受入口に接続されており、
前記固体高分子形燃料電池の接続する前記サブスタック同士の間の前記燃料ガスの流通経路にそれぞれ配設された燃料ガス用気液分離手段と、
前記第一のサブスタックの前記燃料ガス排出口と前記第二のサブスタックの前記燃料ガス受入口及び前記第三のサブスタックの前記燃料ガス受入口との間をそれぞれ切断又は接続する燃料ガス用第一の切換手段と、
前記第二のサブスタックの前記燃料ガス排出口と前記第三のサブスタックの前記燃料ガス受入口との間及び前記第三のサブスタックの前記燃料ガス排出口と前記第二のサブスタックの前記燃料ガス受入口との間をそれぞれ切断又は接続する燃料ガス用第二の切換手段と、
運転時間、前記燃料ガス供給手段からの前記燃料ガスの送給量、前記固体高分子形燃料電池の前記サブスタックに流れた電流量、前記固体高分子形燃料電池の前記サブスタックの前記セルの電圧値、前記固体高分子形燃料電池の前記サブスタック内の水分量、前記固体高分子形燃料電池の前記サブスタック内の圧損値、前記固体高分子形燃料電池の前記サブスタックの前記燃料ガスの排出口部分の圧力値、のうちの少なくとも一つを計測する燃料ガス用切換時期確認手段と、
前記燃料ガス用切換時期確認手段からの情報に基づいて、前記第二のサブスタック及び前記第三のサブスタックの一方を前記燃料ガスの流通方向最下流側に位置させるように前記燃料ガス用第一の切換手段及び前記燃料ガス用第二の切換手段を制御する制御手段と
を備えていることを特徴とする固体高分子形燃料電池発電システム。
【請求項2】
固体高分子電解質膜を燃料極及び酸化極で挟んだセルと燃料ガス及び酸化ガスの流路を形成されたセパレータとを積層した固体高分子形燃料電池と、
前記固体高分子形燃料電池に燃料ガスを供給する燃料ガス供給手段と、
前記固体高分子形燃料電池に酸化ガスを供給する酸化ガス供給手段と
を備えている固体高分子形燃料電池発電システムにおいて、
前記固体高分子形燃料電池が、
前記セルと前記セパレータとを積層した第一のサブスタックと、
前記セルと前記セパレータとを積層した第二のサブスタックと、
前記セルと前記セパレータとを積層した第三のサブスタックと
を備え、
前記固体高分子形燃料電池を構成するすべての前記セルのうち、
前記第二のサブスタック及び前記第三のサブスタックが、それぞれ25%以下の同数の前記セルを備え、
前記第一のサブスタックが、残りの前記セルを備えると共に、
前記第一のサブスタックの酸化ガス受入口が、前記酸化ガス供給手段に接続され、
前記第一のサブスタックの酸化ガス排出口が、前記第二のサブスタックの酸化ガス受入口及び前記第三のサブスタックの酸化ガス受入口に接続され、
前記第二のサブスタックの酸化ガス排出口が、前記第三のサブスタックの酸化ガス受入口に接続され、
前記第三のサブスタックの酸化ガス排出口が、前記第二のサブスタックの酸化ガス受入口に接続されており、
前記固体高分子形燃料電池の接続する前記サブスタック同士の間の前記酸化ガスの流通経路にそれぞれ配設された酸化ガス用気液分離手段と、
前記第一のサブスタックの前記酸化ガス排出口と前記第二のサブスタックの前記酸化ガス受入口及び前記第三のサブスタックの前記酸化ガス受入口との間をそれぞれ切断又は接続する酸化ガス用第一の切換手段と、
前記第二のサブスタックの前記酸化ガス排出口と前記第三のサブスタックの前記酸化ガス受入口との間及び前記第三のサブスタックの前記酸化ガス排出口と前記第二のサブスタックの前記酸化ガス受入口との間をそれぞれ切断又は接続する酸化ガス用第二の切換手段と、
運転時間、前記酸化ガス供給手段からの前記酸化ガスの送給量、前記固体高分子形燃料電池の前記サブスタックに流れた電流量、前記固体高分子形燃料電池の前記サブスタックの前記セルの電圧値、前記固体高分子形燃料電池の前記サブスタック内の水分量、前記固体高分子形燃料電池の前記サブスタック内の圧損値、前記固体高分子形燃料電池の前記サブスタックの前記酸化ガスの排出口部分の圧力値、のうちの少なくとも一つを計測する酸化ガス用切換時期確認手段と、
前記酸化ガス用切換時期確認手段からの情報に基づいて、前記第二のサブスタック及び前記第三のサブスタックの一方を前記酸化ガスの流通方向最下流側に位置させるように前記酸化ガス用第一の切換手段及び前記酸化ガス用第二の切換手段を制御する制御手段と
を備えていることを特徴とする固体高分子形燃料電池発電システム。
【請求項3】
請求項1に記載の固体高分子形燃料電池発電システムにおいて、
前記第一のサブスタックの酸化ガス受入口が、前記酸化ガス供給手段に接続され、
前記第一のサブスタックの酸化ガス排出口が、前記第二のサブスタックの酸化ガス受入口及び前記第三のサブスタックの酸化ガス受入口に接続され、
前記第二のサブスタックの酸化ガス排出口が、前記第三のサブスタックの酸化ガス受入口に接続され、
前記第三のサブスタックの酸化ガス排出口が、前記第二のサブスタックの酸化ガス受入口に接続されており、
前記固体高分子形燃料電池の接続する前記サブスタック同士の間の前記酸化ガスの流通経路にそれぞれ配設された酸化ガス用気液分離手段と、
前記第一のサブスタックの前記酸化ガス排出口と前記第二のサブスタックの前記酸化ガス受入口及び前記第三のサブスタックの前記酸化ガス受入口との間をそれぞれ切断又は接続する酸化ガス用第一の切換手段と、
前記第二のサブスタックの前記酸化ガス排出口と前記第三のサブスタックの前記酸化ガス受入口との間及び前記第三のサブスタックの前記酸化ガス排出口と前記第二のサブスタックの前記酸化ガス受入口との間をそれぞれ切断又は接続する酸化ガス用第二の切換手段と、
運転時間、前記酸化ガス供給手段からの前記酸化ガスの送給量、前記固体高分子形燃料電池の前記サブスタックに流れた電流量、前記固体高分子形燃料電池の前記サブスタックの前記セルの電圧値、前記固体高分子形燃料電池の前記サブスタック内の水分量、前記固体高分子形燃料電池の前記サブスタック内の圧損値、前記固体高分子形燃料電池の前記サブスタックの前記酸化ガスの排出口部分の圧力値、のうちの少なくとも一つを計測する酸化ガス用切換時期確認手段と
を備え、
前記制御手段が、さらに、前記酸化ガス用切換時期確認手段からの情報に基づいて、前記第二のサブスタック及び前記第三のサブスタックの一方を前記酸化ガスの流通方向最下流側に位置させるように前記酸化ガス用第一の切換手段及び前記酸化ガス用第二の切換手段を制御するものである
ことを特徴とする固体高分子形燃料電池発電システム。
【請求項4】
請求項1,3のいずれか一項に記載の固体高分子形燃料電池発電システムにおいて、
前記制御手段が、前記第一のサブスタックからの前記燃料ガスを前記第二のサブスタック及び前記第三のサブスタックの両方に一旦供給してから、当該燃料ガスの流通方向最下流側に位置させる前記サブスタックを切り換えるように前記燃料ガス用第一の切換手段及び前記燃料ガス用第二の切換手段を制御するものである
ことを特徴とする固体高分子形燃料電池発電システム。
【請求項5】
請求項2,3のいずれか一項に記載の固体高分子形燃料電池発電システムにおいて、
前記制御手段が、前記第一のサブスタックからの前記酸化ガスを前記第二のサブスタック及び前記第三のサブスタックの両方に一旦供給してから、当該酸化ガスの流通方向最下流側に位置させる前記サブスタックを切り換えるように前記酸化ガス用第一の切換手段及び前記酸化ガス用第二の切換手段を制御するものである
ことを特徴とする固体高分子形燃料電池発電システム。
【請求項6】
請求項1,3,4のいずれか一項に記載の固体高分子形燃料電池発電システムにおいて、
前記燃料ガス供給手段と前記固体高分子形燃料電池の前記第一のサブスタックの前記燃料ガス受入口との間に配設され、前記燃料ガス用気液分離手段で分離された水を貯留すると共に、前記燃料ガスと当該水とを接触させる貯水槽を備えている
ことを特徴とする固体高分子形燃料電池発電システム。
【請求項7】
請求項2,3,5のいずれか一項に記載の固体高分子形燃料電池発電システムにおいて、
前記酸化ガス供給手段と前記固体高分子形燃料電池の前記第一のサブスタックの前記酸化ガス受入口との間に配設され、前記酸化ガス用気液分離手段で分離された水を貯留すると共に、前記酸化ガスと当該水とを接触させる貯水槽を備えている
ことを特徴とする固体高分子形燃料電池発電システム。
【請求項8】
請求項1,3,4,6のいずれか一項に記載の固体高分子形燃料電池発電システムにおいて、
前記固体高分子形燃料電池の前記サブスタックの前記燃料ガス排出口から排出された前記燃料ガス中の水によって、当該サブスタックの前記燃料ガス供給口へ供給する前記燃料ガスを加湿する膜加湿器を備えている
ことを特徴とする固体高分子形燃料電池発電システム。
【請求項9】
請求項2,3,5,7のいずれか一項に記載の固体高分子形燃料電池発電システムにおいて、
前記固体高分子形燃料電池の前記サブスタックの前記酸化ガス排出口から排出された前記酸化ガス中の水によって、当該サブスタックの前記酸化ガス供給口へ供給する前記酸化ガスを加湿する膜加湿器を備えている
ことを特徴とする固体高分子形燃料電池発電システム。
【請求項10】
請求項1,3,4,6,8のいずれか一項に記載の固体高分子形燃料電池発電システムにおいて、
前記燃料ガス用気液分離手段の内部のガスを系外へリークさせるガスリーク手段を備えている
ことを特徴とする固体高分子形燃料電池発電システム。
【請求項11】
請求項2,3,5,7,9のいずれか一項に記載の固体高分子形燃料電池発電システムにおいて、
前記酸化ガス用気液分離手段の内部のガスを系外へリークさせるガスリーク手段を備えている
ことを特徴とする固体高分子形燃料電池発電システム。
【請求項12】
請求項1,3,4,6,8,10のいずれか一項に記載の固体高分子形燃料電池発電システムにおいて、
前記燃料ガス供給手段が、濃度99%以上の水素ガスを供給するものである
ことを特徴とする固体高分子形燃料電池発電システム。
【請求項13】
請求項2,3,5,7,9,11のいずれか一項に記載の固体高分子形燃料電池発電システムにおいて、
前記酸化ガス供給手段が、濃度99%以上の酸素ガスを供給するものである
ことを特徴とする固体高分子形燃料電池発電システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−152090(P2009−152090A)
【公開日】平成21年7月9日(2009.7.9)
【国際特許分類】
【出願番号】特願2007−329591(P2007−329591)
【出願日】平成19年12月21日(2007.12.21)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】