説明

太陽電池素子

【課題】可撓性の光透過基板を用いた太陽電池素子としても、入射光利用効率を高めることができる素子構造を提供する。
【解決手段】可撓性の光透過基板上に、透明正面電極と光電変換層と裏面電極とを順次積層してなる太陽電池素子において、裏面電極を透明性導電膜で構成し、この裏面電極の表面に、波長変換層と光反射層とを更に備える構成とした。これにより、光電変換層を透過した光が波長変換層によって光電変換層の吸光感度の高い光となって再放出され、再放出光のほとんどは光電変換層で吸収されるので、光電変換層の高いエネルギー取得効率を実現する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池素子の構造に関し、詳しくは発電量を向上させる目的で、入射光捕捉効率を向上させる構造を備えた太陽電池素子に関する。
【背景技術】
【0002】
太陽電池素子は、クリーンエネルギーを供給するデバイスの代表であり、太陽電池素子への入射光の光利用効率を向上させて、同一面積で光電変換層で発電した光起電力の取り出しエネルギーを高めることが要求され続けている(例えば、特許文献1、2参照のこと)。
【0003】
この特許文献1には、透光性のガラス基板表面に半球状のディンプルを形成し、さらにその上に透明電極、光電変換層、反射電極を積層した太陽電池素子を形成することによって、実効的な太陽電池の表面積を増大させ、入射する光により得られる電流出力を向上させる技術が開示されている。
【0004】
また、特許文献2には、透光性の平板上基板の表面に形成された、Raが50nmを超える凹凸表面テクスチャを有する透明電極上に、光電変換層、反射電極を積層した太陽電池素子を形成することで、入射光の光利用効率を高め、光起電力の取り出し量を向上させる技術が開示されている。
【0005】
【特許文献1】特開2000−223724号公報(第2―3頁、第1図)
【特許文献2】特開2001−007356号公報(第3―4頁、第1図)
【発明の開示】
【発明が解決しようとする課題】
【0006】
特許文献1または2に記載の太陽電池素子の様に、金属基板やガラス基板の様な、耐熱性の高い基板表面に、入射光の光利用効率を高めるための技術を適用することは可能であるが、可撓性の光透過基板(フィルム基板)表面に、これら文献に記載の技術を採用することは非常に難しい。
【0007】
つまり、特許文献1に記載の構成では、ガラス基板表面に形成された半球状のディンプルの鋭角部分で、脆性材料である、透明電極や、アモルファスシリコン膜からなる光電変換層の損傷が発生し易くなる。この構成を、可撓性の光透過基板を有する太陽電池素子に採用すると、信頼性に欠ける素子となってしまう。
【0008】
また、特許文献2に記載の構成では、透明電極にテクスチャ構造を付与するために、500度以上の基板加熱温度で、SnO膜を成膜する必要がある。この様な高い温度では、可撓性の光透過基板が熱的に耐えられずに熱収縮してしまうため、本構成を採用することは現実的に不可能である。
【0009】
そこで、本発明は上記課題を解決し、可撓性の光透過基板を用いたとしても、入射光の光利用効率を高めることができる太陽電池素子を提供することを目的とする。
【課題を解決するための手段】
【0010】
これら従来技術の課題を克服して、太陽電池素子の入射光捕捉効率を向上させるために、本発明の太陽電池素子は、基本的に下記記載の構成を採用する。
【0011】
すなわち本発明の太陽電池素子は、可撓性の光透過基板上に、透明正面電極と光電変換層と透明裏面電極層と、裏面電極とを順次積層してなる太陽電池素子において、裏面電極を透明性導電膜で構成し、この裏面電極の表面に、波長変換層と光反射層とを更に備える構成とした。
【0012】
この様に、本発明の太陽電池素子は、光入射面の形状には特段の処理を加えずに、透明裏面電極と光反射層との間に、光電変換層の吸光感度が低い短波長光を吸収して吸光感度の高い波長光を放出する波長変換層を設けている。この構造によって、光電変換層を透過した光が波長変換層によって光電変換層の吸光感度の高い光となって再放出され、再放出光のほとんどは光電変換層で吸収されるので、光電変換層の高いエネルギー取得効率を実現する。
【0013】
また、上記波長変換層として、樹脂に、紫外光を可視光に変換する蛍光材粉体を混入して形成された層を用いれば良い。
【0014】
また、上記波長変換層として、樹脂に、YAG蛍光材粉体を混入して形成された層を用いても良い。
【0015】
また、上記波長変換層と光反射層との界面は、粗面化されているのが好ましい。
【0016】
この様に、波長変換層と光反射層境界面を粗面化することによって、再放出光の内の、光反射層で拡散反射された光を、光電変換層方向に戻り易くすることができる。これにより、光反射面が鏡面状の場合に比べて再放出光の利用効率がより高くなり、発電電流をさらに多くすることができる。
【0017】
また、本発明の太陽電池素子を、可撓性の光透過基板上に、透明正面電極と、光電変換層と、裏面電極とを順次積層した構成とし、この裏面電極を、透明性導電膜で形成し、さらに裏面電極の上層に、波長変換層と光反射層とを更に備える構成とすることもできる。
【発明の効果】
【0018】
以上に述べたように、本発明によれば、特殊な工程や特殊な材料を用いることなく可撓性の光透過基板上に高効率の太陽電池素子を形成することができるので、安価で信頼性に富んだフレキシブル太陽電池を提供することが可能となる。
【0019】
また、耐熱性に問題がある可撓性の光透過基板を用いて太陽電池素子を製造するにあたって、光利用効率を高めるための方策を採用したとしても、基板が熱により収縮する現象を最小限に留めることができる。
【0020】
さらに、本発明の太陽電池素子は一般に市販されている可撓性の光透過基板(フィルム基板)を用いることができるので、安価に製造が容易することができる。
【発明を実施するための最良の形態】
【0021】
[第1の実施形態]
(太陽電池素子の構成:図1)
本発明の最適な実施の形態を、図1を用いて説明する。図1は、本発明による太陽電池素子の模式断面図である。
【0022】
図1に示すように、本発明の太陽電池素子は、可撓性の光透過基板10の表面に、透光性導電膜からなる透明正面電極11と、pin接合、pn接合、またはこれら接合構造を繰り返し積層したタンデム構造であって、アモルファスシリコン膜により形成された光電
変換層12と、透光性導電膜からなる透明裏面電極13とを有して構成される。また、本素子は、この透明裏面電極13の上面に、蛍光材粉体14aを樹脂14bに混入して形成した波長変換層14と、光反射性の光反射層15とを有する。なお、この波長変換層14と、光反射性の光反射層15との間の界面は、粗面化してある。
【0023】
次に、本発明の太陽電池素子の機能について説明する。
可撓性の光透過基板10に入射した入射光31は、下部正面電極11を通過して、光電変換層12に入射する。光電変換層12に入射した入射光31の内の主に可視光域の光が、この光電変換層12で光電変換される。そして、この光電変換層で変換しきれなかった可視光および他の波長帯域の光からなる透過光32は、透明裏面電極13を通過して、波長変換層14に入射する。
【0024】
ここで、波長変換層14は、入射した透過光32の内の他の波長帯域の光の波長を可視光に変換する機能を有する。例えば、この波長変換層14は、蛍光材粉体14aによって近紫外光を可視光に変換する。または、蛍光材粉体14aによって青色光を黄色光に変換する。したがって、波長変換層14に入射した、この光電変換層12で光電変換されなかった波長帯域(可視光域以外の波長帯域)の透過光32は、可視光域の光(波長変換光)に変換される。
【0025】
そして、波長変換層14で波長変換された波長変換光と、光電変換層12で変換しきれなかった可視光が、粗面化された光反射層15に当たって散乱して反射する。そして、この粗面化された界面で散乱する反射光33は、透明裏面電極13を通過して、再び光電変換層12に入射する。すると、この反射光33に含まれる、先に光電変換されなかった可視光と波長変換光とが、光電変換層12で光電変換されることとなる。ここで、粗面化された界面は、界面で反射した一部の光が波長変換層14内部を伝播して、外部に放出されることを防ぐ様に機能し、より効率よく光電変換層12に戻り光を導く。
【0026】
この様にして、可撓性の光透過基板10から入射する入射光31に含まれる内の可視光量を増やすことにより、本発明の太陽電池素子は、波長変換層14を有さない素子に比べて、光利用効率を高くすることができる。
【0027】
ここで、波長変換層14と光反射層15を、太陽電池素子における光電変換層12に対し、光入射側とは反対側に配置した理由について説明する。まず、この波長変換層14を、太陽電池素子における光入射側に配設した場合について説明する。
【0028】
図1における可撓性の光透過基板10の外側、または可撓性の光透過基板10と透明正面電極11との間に配設した場合、光電変換層12に到達する前の入射光31であって、入射光31の内の一部の波長帯域の光は、蛍光材粉体14aで吸収される。ところが、ここで吸収された光は、球体の蛍光材粉体14aの全表面から、可視光域の波長変換光となって放出されることとなるので、その波長変換光の内の半分の光が、光電変換層12とは反対側に向けて出射されることとなる。
【0029】
また、蛍光材粉体14aに吸収されなかった入射光31は、蛍光材粉体14aに吸収されず、蛍光材粉体14aの表面で散乱されることとなるので、その散乱光の内の半分の光も同様に、光電変換層12とは反対側に向けて出射されてしまう。
【0030】
この様に、波長変換層14を、太陽電池素子における光入射側に配設してしまうと、入射光31における可視光の光量を増やすことができるものの、結果として光電変換層12に到達しない戻り光を増やすこととなり、太陽電池素子での光利用効率の向上は望めない。
【0031】
それに対して、波長変換層14と光反射層15を、太陽電池素子における光電変換層12に対し、光入射側とは反対側に配置した場合、蛍光材粉体14aで吸収された透過光32は、蛍光材粉体14aの全表面から、可視光域の波長変換光となって放出されるが、ここでの戻り光は光電変換層12に到達し、光反射層15に向けて放出された光は、反射光33となって光電変換層12に導かれる。この様にして、波長変換層14でもって変換された可視光と、光電変換層12に吸収しきれなかった可視光を、より効率よく光反射層15でもって光電変換層12に戻すことができる。
【0032】
また、蛍光材粉体14aで吸収されなかった透過光32は、蛍光材粉体14aの表面で散乱光となるが、この内の戻り光は光電変換層に到達するし、光反射層15からの反射光33も同様である。
【0033】
以上の理由から、本発明の太陽電池素子では、この波長変換層14を、太陽電池素子における光電変換層12に対し、光入射側とは反対側に配設するのが好ましいことが判る。
【0034】
なお、上記説明では、可撓性の光透過基板10の表面に、光電変換層12を、透明正面電極11と透明裏面電極13とで挟持した構成として説明したが、この光透過基板10を、ガラス基板、石英基板等の耐熱性に優れた基板を用い、他の構成は前述したと同じ構成としても良い。
【0035】
(太陽電池素子の製造方法:図1)
次に、可撓性の光透過基板に形成する、本発明の太陽電池素子の製造方法について説明する。
まず、可撓性の光透過基板10として、ポリエチレンナフタレート樹脂としてシート状の75μm厚を用意し、このシートを真空環境下で190℃で120分焼成して、シートが元々持っている残留応力などを除去する。可撓性の光透過基板10には、光透過性、後プロセスでの耐熱性、耐薬品性等の信頼性、ガスバリア性、表面平滑性、積層膜の密着性など多様な要求があるため、使用できる材料が限られるが、ポリエチレンナフタレート樹脂は、他の樹脂に比べて、樹脂の中ではこれらの要求を高いレベルで満たし、本発明の適用に適した基板材料である。しかし、シートの耐熱性が180℃〜200℃程度であり、ガラス基板等に比べれば耐熱性は低いという特性を有する。このため、素子製造工程において、高温でのプロセスを用いることができないことに留意すべきである。
【0036】
次に、可撓性の光透過基板10表面に、スパッタリング法を用いてITO(酸化インジウム錫)膜を形成して、透明正面電極11を得る。なお、本実施例ではITO膜の厚みは80nmであり、ITO膜の透明性を確保するためにアルゴンに酸素を微量加えたガスを用いた反応性スパッタリング法により、基板を190℃に加熱して行った。ここで基板を加熱するのは、可撓性の光透過基板10と透明正面電極11との密着性を向上させる目的と、透明正面電極11の透明性を確保するためである。この様に、可撓性の光透過基板10の耐熱温度以下で成膜する必要があるため、熱CVDによるSnO透明電極形成などの手法を用いることができず、透明正面電極11を形成する手法としては反応性スパッタリングが最適である。
【0037】
次に、透明正面電極11上に、モノシラン、ホスフィン、トリメチルボロンを反応性ガスとしたプラズマCVD法により光電変換層12を形成した。モノシラン、ホスフィン、トリメチルボロンの各反応性ガスは、成膜時には水素希釈して用いる。光電変換層12は、p型層、i型層、n型層の順に積層した水素含有アモルファスシリコン(a−Si:Hと略記する)によって構成する。本実施例におけるp型層の厚みは50nm、i型層の厚みは600nm、n型層の厚みは50nmで、成膜レートは約12nm/分程度とした。
このCVD成膜時の基板温度を高くして、太陽電池素子の発電性能を安定化させることが望ましいが、ここでは、可撓性の光透過基板10の材質面での制約により、本実施例では、光電変換層12形成時の基板温度を190℃として行った。
【0038】
この様な理由から、可撓性の光透過基板10の耐熱性の制約から、熱CVDによる多結晶シリコン成膜や高温焼結などの手法を用いることができないので、光電変換層12をプラズマCVD法によって形成し、成膜時の基板温度を190℃にした。それは、190℃より高い温度では、プラズマCVDプロセス中に可撓性の光透過基板10が熱変形する危険が大きく、190℃より低い基板温度(特に160℃以下)では、光電変換層12の光電変換性能が低下するからである。
【0039】
上記工程で光電変換層12を形成した後、透明正面電極11を形成したのと同様にして、光電変換層12の表面に透明裏面電極13を形成する。ここでも、スパッタリング法を用いてITO(酸化インジウム錫)膜を80nmの膜厚で、基板加熱温度を190℃として形成した。
【0040】
次に、透明裏面電極13を形成した後、透明裏面電極13上に、本発明の特徴部分となっている波長変換層14を形成する。本実施例では、波長変換層14をYAG(イットリウム・アルミニウム・ガーネット)蛍光材粉体14aと、熱硬化性透明エポキシ材からなる樹脂14bとの混合物を、透明裏面電極13表面にスクリーン印刷法にて形成した。
【0041】
ここで用いるYAG蛍光材粉体14aとエポキシ材からなる樹脂14bの比率は、重量比で1:3のものを用いて形成した。波長変換層14の厚みは、スクリーン印刷のばらつきを考慮して10〜15μmとした。この様に、YAG蛍光材粉体14aとエポキシ材からなる樹脂14bの比率を任意に調整できることは言うまでもないが、実験的に1:2から1:5の範囲が最良であったので、本実施例では上記比率を用いた。
【0042】
なお、ここでは蛍光材粉体14aにYAG蛍光材粉体を用いたが、YAG蛍光材は、400nm〜460nmの波長光を吸収して、560nm付近を中心とする蛍光を発する。また、本発明では蛍光材粉体14aはYAGに限定されるものではなく、紫外線を可視光に変換するものであっても良い。この様な蛍光材粉体14aを樹脂14bに混入することで、透過光32の内の、a−Si:Hが吸収しにくい波長帯の光を、a−Si:Hが吸収しやすい波長帯の光に変換する機能を発揮することができる。
【0043】
次に、表面に凹凸形状を有する形状転写用の型を、未硬化状態の波長変換層14の表面に押し付けた状態で、150℃にて1時間掛けて熱硬化して、波長変換層14が完全に硬化した後に、形状転写用の型を離型する。これにより、波長変換層14の表面にテキスチャー構造を形成することができる。
【0044】
次に、テキスチャー構造を形成した波長変換層14表面に、DCスパッタリング法によって光反射層15を形成する。ここで形成する光反射層15は、アルミニウム/チタンの積層構造としてあり、アルミニウムは高反射率を得ることができる膜厚である200nm、チタンはアルミニウム保護の目的で60nmで形成した。この光反射層15は、波長変換層14から発せられる光として、光電変換層12で吸収されなかった可視光、波長変換層14で波長変換された光、および波長変換されなかった他の波長帯域の光を、無駄なく光電変換層13方向に戻す。
【0045】
上記製造方法により形成された太陽電池素子は、耐熱性の低い可撓性の光透過基板10上に形成さたにも拘らず、光電変換層13に戻った光の内の可視光が再度光電変換層13で吸収されて、より高い光利用効率を実現する素子となる。
【0046】
(太陽電池素子の特性評価)
ここで、上記のようにして形成した、本実施例の太陽電池素子と、波長変換層14の存在しない太陽電池素子(比較例の太陽電池素子)との発電性能を比較検証した。
なお、比較例の太陽電池素子は、波長変換層を有さず、かつ透明裏面電極と光反射層との境界面が鏡面としてあるが、可撓性の光透過基板10、透明正面電極11、光電変換層12、透明裏面電極13、光反射層15は、本実施例の太陽電池素子と同一に形成してある。
【0047】
蛍光灯(FL−W型)照明500lx下で、可撓性の光透過基板10側から光を入射させて、比較例と本発明の太陽電池の両者の単位面積あたりの発電電流を比較した(10個ずつの平均)。
短絡電流密度(μA/cm
本発明の実施例1の太陽電池素子 42.4±0.3
従来技術による太陽電池素子 40.6±0.2
なお、太陽電池素子の開放端電圧は、比較例、本実施例の両者ともに、開放端電圧(Voc)≒0.71V、F.F.≒0.70であった。
【0048】
上述した評価成績を見れば明白なように、本実施例の太陽電池素子は、比較例による太陽電池素子よりも、同一受光量での発電エネルギー量が大きい。その差は少ないように見えるが、効率改善は5%程度あり、可撓性の光透過基板を使用した太陽電池素子としては大きな改善効果があることが判った。
【0049】
[第2の実施形態]
(太陽電池素子の構成:図2)
次に、本発明の第2の実施形態を図2を用いて説明する。
本実施例の太陽電池素子の構成は、実施例1で示した太陽電池素子における、波長変換層24と光反射層25との境界面を鏡面化した以外は、実施例1の構成と同じとなっている。したがって、以下の説明では、この相違点について主に説明をし、共通する構成についての説明は省略する。
【0050】
図2に示すように、本実施例の太陽電池素子は、可撓性の光透過基板10表面に、透明正面電極11、光電変換層12、透明裏面電極13を、実施例1と同様にして積層した構成となっている。また、本太陽電池素子は、蛍光材粉体14aを混入する樹脂14bからなる波長変換層24と、光反射層25をさらに積層した構成となっているが、先に示したように、波長変換層24と光反射層25の界面は、実施例1の様に祖面化されておらず、鏡面となっている。
【0051】
(太陽電池素子の製造方法:図2)
次に、実施例2の太陽電池素子の製造方法について、下記に示す。
まず、実施例1と同様にして、可撓性の光透過基板10表面に、透明正面電極11、光電変換層12、透明裏面電極13を形成した後、透明裏面電極13上に波長変換層24を形成する。ここでも実施例1と同様に、波長変換層24をYAG(イットリウム・アルミニウム・ガーネット)蛍光材粉体14aと、熱硬化性透明エポキシ性の樹脂14bとの混合物を透明裏面電極13上にスクリーン印刷したのち、150℃にて1時間熱硬化して形成する。
【0052】
なお、波長変換層24の表面は、実施例1の様に粗面化処理は行わない。この様に、波長変換層24形成した時に、波長変換層24表面を粗面化していないため、波長変換層24と光反射層25との境界面は鏡面状となる。
【0053】
(太陽電池素子の特性評価)
ここで、本実施例の太陽電池素子と、波長変換層24の存在しない太陽電池素子(比較例の太陽電池)の発電性能を比較した。
なお、比較例の太陽電池素子は波長変換層を有さず、かつ透明裏面電極と光反射層との境界面が鏡面としてあるが、可撓性の光透過基板10、透明正面電極11、光電変換層12、透明裏面電極13、光反射層25は、本実施例の太陽電池素子と同一に形成してある。
【0054】
蛍光灯(FL−W型)照明500lx下で、可撓性の光透過基板10側から光を入射させて、本実施例と比較例の太陽電池素子の両者の単位面積あたりの発電電流を比較した(10個ずつの平均)。
短絡電流密度(μA/cm
本発明の実施例2の太陽電池素子 41.7±0.2
従来技術による太陽電池素子 40.6±0.2
なお、太陽電池素子の開放端電圧は、比較例と本実施例の両者ともに、開放端電圧(Voc)≒0.71V、F.F.≒0.70であった。
【0055】
上記評価成績を見れば明白なように、本実施例の太陽電池素子は、比較例の太陽電池素子よりも、同一受光量での発電エネルギー量が大きい。その差は少ないように見えるが、効率改善は4%程度あり、可撓性の光透過基板を使用した太陽電池素子としては大きな改善効果があった。
【0056】
この様に、本発明の太陽電池素子は、耐熱性の低い可撓性の光透過基板10上に形成したにも拘らず、光電変換層13に戻った光の内の可視光が、再度光電変換層13で吸収されて、より高い光利用効率を実現する。
【図面の簡単な説明】
【0057】
【図1】本発明の太陽電池素子の第1の実施形態の素子断面図である。
【図2】本発明の太陽電池素子の第2の実施形態の素子断面図である。
【符号の説明】
【0058】
10 可撓性の光透過基板
11 透明正面電極
12 光電変換層
13 透明裏面電極
14、24 波長変換層
15、25 光反射層
31 入射光
32 透過光
33 反射光

【特許請求の範囲】
【請求項1】
可撓性の光透過基板上に、透明正面電極と、光電変換層と、裏面電極とを順次積層してなる太陽電池素子において、
前記裏面電極を、透明性導電膜で構成し、
前記裏面電極の上層に、波長変換層と光反射層とを更に備える
ことを特徴とする太陽電池素子。
【請求項2】
前記波長変換層は、樹脂に、紫外光を可視光に変換する蛍光材粉体を混入して形成された層である
ことを特徴とする請求項1に記載の太陽電池素子。
【請求項3】
前記波長変換層は、樹脂に、YAG蛍光材粉体を混入して形成された層である
ことを特徴とする請求項1に記載の太陽電池素子。
【請求項4】
前記波長変換層と前記光反射層との界面は、粗面化されている
ことを特徴とする請求項1から3のいずれか一項に記載の太陽電池素子。
【請求項5】
光透過基板上に、透明正面電極と、光電変換層と、裏面電極とを順次積層してなる太陽電池素子において、
前記裏面電極を、透明性導電膜で構成し、
前記裏面電極の上層に、波長変換層と光反射層とを更に備える
ことを特徴とする太陽電池素子。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2009−212414(P2009−212414A)
【公開日】平成21年9月17日(2009.9.17)
【国際特許分類】
【出願番号】特願2008−55847(P2008−55847)
【出願日】平成20年3月6日(2008.3.6)
【出願人】(000001960)シチズンホールディングス株式会社 (1,939)
【Fターム(参考)】