説明

広スペクトル帯域幅を有するレーザ・パルスを用いた材料の加工方法、および該方法を実行するための装置

広スペクトル帯域幅を有するレーザ・パルスによって材料を加工する方法および装置、ならびに前記方法を実行する装置を提供する。本発明の目的は、全般的に適用可能でありながら、特定の加工および方法論的要求に適応することができる加工を可能にする、容易で柔軟性のある方法を創造することにある。本発明によれば、レーザ・パルスの1つまたは数個のスペクトル・パラメータ、即ち、スペクトル振幅および/またはスペクトル位相および/またはそのスペクトル偏波を、好ましくは測定加工変数に応じて、材料を加工するために、あるいは前記加工の実行の間に、特定的に改変する。本発明は、広スペクトル帯域幅、特にフェムト秒パルスおよびピコ秒パルスを有するレーザ・パルスによって材料を加工するために用いられる。


【発明の詳細な説明】
【技術分野】
【0001】
本発明は、広スペクトル帯域幅、特にフェムト秒およびピコ秒パルスを有するレーザ・パルスを用いた材料の加工方法、ならびに該方法を実行するための装置に関する。
【背景技術】
【0002】
赤外線、可視および紫外線スペクトル範囲における電磁放射線と材料との相互作用を利用して、材料を溶融、蒸発、除去(切除)したり(米国特許第4,494,226号)、位相遷移を誘発したり(米国特許第6,329,270号)、あるいはその他の物理的または化学的特性を改変するための方法が数多く知られている。
【0003】
レーザ光と作業片との相互作用の場所に、例えば、光学マスクによってか、あるいはレーザ焦点の順次シフトによって、作業片の表面上で空間的に明確な形状を与えると、加工の間に順次、線または面状構造を形成することが可能となり、層状除去によって、更に透明媒体では、レーザ焦点を材料の奥に位置付けることによって、三次元構造を得ることができる(DE100 06 081A1)。
【0004】
これらの方法の多くは、高い電力密度を必要とし、特に、パルス状レーザ放射源を利用することによって得ることができる。短期間(数ナノ秒)のレーザ・パルスを用いることにより、特に効率的な加工が達成される(米国特許第6,281,471号)。相互作用区域の外側における作業片の干渉変態が熱効果によって生ずるが、これは更に短いパルス期間によって低減することができる(米国特許第6,150,630号)。したがって、例えば、切除により、非常に細密な構造を生成することが可能となり、放射線との相互作用が発生する材料領域のサイズ、およびその初期状態と比較して大きな変態を生じない材料領域は、レーザの焦点サイズのみで示される。最少構造寸法に対する理論的な限界は、したがって、回折の限界、つまり、究極的には、用いるレーザ放射線の波長によって決められる。即ち、パルス期間が約20fsから1,000psの範囲であるレーザ・パルスを用いれば、材料の直接微細加工が可能となり(エフ.コルテその他(F.Korte et.al )、「フェムト秒レーザ・パルスによる固体ターゲットの回折未満に制限した構造形成(Sub-diffraction limited structuring of solid targets with femtosecond laser pulses)」、Optics Express 7、2000、41)、そのような直接微細加工の使用には、技術的な使用に加えて、特に微小外科手術(microsurgery)における医療用の使用が含まれる。更に、スペクトル帯域が広いレーザ・パルスを発生する装置は、研究における超短パルス・レーザとして広く応用されている。
【0005】
ストイアンその他(Stoian et al. )による2件の実験論文(アール.ストイアンその他(R.Stoiam et al. )、「時間整形フェムト秒パルスを用いた誘電体のレーザ切除(Laser ablation of dielectrics with temporally shaped femtosecond pulses )」、Appl. Phys. Lett. 80、2002、353、アール.ストイアンその他、「動的時間的パルス整形を用いた超高速レーザ材料加工(Ultrafast laser material processing using dynamic temporal pulse shaping)」、RIKEN Review 50、2003)は、時間整形パルスによる残留損傷を低減することに関して、レーザ切除における構造形成プロセスをいかにすれば最適化できるかについて開示している。この目的のために、異なるパルス列を位相変調によって発生し、選択した材料の切除レーザ・ボーリングにおいて用いられるレーザ・システムの非整形レーザ・パルスと比較した際に、その使用の利点が真空状態の下で実験的に示された。このようにする際に、非整形および整形レーザ・パルスを、比較のために、それぞれa−SiOおよびAlの表面に向けて発射し、加工の結果を、光顕微鏡の補助によって、視覚的に分析した。
【0006】
複合材料のレーザ材料加工では、材料選択的加工が可能なように、用いるレーザ・パルスの振幅スペクトルを選択することができる。加工対象材料にレーザ波長を適応させる観点の下での適したレーザの選択は、公知の方法である(例えば、米国特許第5,948,214号、米国特許第5,948,214号、米国特許第4,399,345号、および米国特許第5,569,398号)。しかしながら、加工対象物体の物理技術的特性は、例えば、材料の加熱によって、加工動作の間に変化する可能性がある。即ち、複合物の吸収特性の変化により、加工動作における材料選択性が制限を受ける(米国特許第6,281,471号)。何故なら、材料加工に用いられるレーザでは、レーザ波長の適当な変更が殆ど不可能であるからである。
【発明の開示】
【発明が解決しようとする課題】
【0007】
したがって、できるだけ手間を省き、しかもできるだけ柔軟にそしてできるだけ広く適用できるように、加工効果を可能にする方法を提供する。前記効果は、それぞれ、加工作業および加工の過程に関して、具体的に決定可能かつ適応可能である。
【課題を解決するための手段】
【0008】
本発明によれば、レーザ・パルスの1つ以上のスペクトル・パラメータ、即ち、スペクトル振幅および/またはスペクトル位相および/またはスペクトル偏波をそれぞれ、材料加工プロセスのために、あるいはその最中に選択的に変更し、これによって、加工に特定した明確な効果、例えば、加工速度上昇、材料選択性の向上、または表面構造形成の改良が得られる。少なくとも1つのスペクトル・パラメータを、好ましくは、閉ループ制御回路において、加工プロセスからの測定のパラメータの関数として改変すると有利である。これに関する更に詳しい明細は、従属クレームにおいて示すこととする。
【0009】
このように、一方では、意図する加工動作、および前記材料加工の意図する効果に合わせてスペクトル・レーザ・パルス・パラメータ(例えば、検査結果あるいはその他の経験または計算に基づいて)の可能な限り最良の設定を行うことが可能となる。更に、他方では、前記スペクトル・レーザ・パルス・パラメータは、規定の態様で予め選択することができるだけでなく、材料加工プロセスに対しておよび/またはその実行中に、意図した加工効果に関する加工動作から直接得られる制御変数の関数として改変し適応することもできる。その限りにおいて、加工対象物体の物理技術特性の改変、および加工動作中におけるプロセス条件は、意図した加工効果を高めるか、あるいは少なくともそれに作用するように応答することができる。例えば、材料加熱の場合、一般に複合材料の加工においては材料の選択性に影響が及ばずには済まないが、レーザ・パルスの複合材料との相互作用の関数として、レーザ・パルスのスペクトル振幅を、測定可能量として動的に改変することができる。これらの改変は、加工動作(閉ループ制御動作)中に連続的、または加工動作の中断や前記動作の継続のためのスペクトル・パラメータの再調節を伴って間欠的の双方で実行することができる。
【0010】
光学的異方性材料の微細構造形成に関する発明者自身の調査では、広スペクトル帯域レーザ・パルスの周波数成分を選択的に改変することにより、レーザ・パルスと加工対象物体との間の相互作用のプロセスの制御が可能になることが示されている。特に、異方性材料の加工においてスペクトル偏波およびスペクトル位相を同時に閉ループ制御することにより、異方性導波路構造を生成するために利用される、その構造形成プロセスの制御が可能になる。これは、特に、公知の実験結果(エフ.コルテその他、「フェムト秒レーザ・パルスによる固体ターゲットの回折未満に制限した構造形成」、Optics Express 7、2000、41)が、光学的異方性材料のレーザ加工においても、屈折率の局所変化が生じるだけでなく、局所異方性も通常同様に誘発されることを示すからである。
【0011】
広いスペクトル帯域のレーザ・パルスのスペクトル・パラメータを改変することの可能性自体は周知である(米国特許第4,655,547号、またはブリックスナおよびゲルベル(Brixner and Gerber):Optics Letters 26、2001、557)。即ち、微小電気機械システムに基づく変調器は、今後の産業への応用に大きな潜在性を有すると思われる(ハッカーその他(Hacker et al. )、「紫外線におけるフェムト秒パルス整形のためのマイクロミラーSLM(Micromirror SLM for femtosecond pulses shaping in the ultraviolet )」、Appl.Phys.B76、2003、711)。
【発明を実施するための最良の形態】
【0012】
以下に、図面に示す2つの実施形態を参照しながら、本発明について更に詳しく説明する。
図1は、スペクトル・レーザ・パルス・パラメータの整形による、材料加工装置の設計を模式的に示す。広帯域レーザ・パルス1の発生源としての短パルス・レーザ1が、図示しない、加工対象材料の材料加工のために、加工部3へのレーザ・パルスのスペクトル・パラメータを整形するために、パルス整形部2を介して接続されている。短パルス・レーザ1のパルスは、こうして、そのスペクトル振幅および/またはスペクトル位相、および/またはスペクトル偏波に関して整形され、加工部3において、加工対象物体に入射するときに、材料との物理技術的相互作用を発生させる。整形されたレーザ・パルス(破線で示す)を、オプションとして、光増幅器4を介して加工部3に供給してもよい。
【0013】
パルス整形部2によるレーザ・パルスのスペクトル・パラメータの1つ以上の改変により、レーザ・パルスの、加工対象物体の材料との相互作用に影響を与え、例えば、加工速度、材料選択性、または表面構造形成に関して、あるいは加工プロセスの間に、明確な加工特定効果を得ることができる。
【0014】
このように、スペクトル・パラメータの改変を、材料加工の測定可能な量の関数として変更すると、制御変数として機能し、有益である。この目的のために、加工対象物体を含む加工部3に、測定部5を結合することが好ましい。測定部5は、制御部6を介して、インパルス整形部2に接続されている。たとえば、測定部5は、切除速度、表面粗さ、あるいは加工対象物体の材料または環境温度のそれぞれを測定し、測定可能量の関数として、制御変数を制御部6を介して供給し、短パルス・レーザ1のスペクトル振幅および/またはスペクトル位相および/またはスペクトル偏波を改変する。
【0015】
図2は、マイクロチップ(以下に関連)上における導電路のレーザに基づく遮断のための特殊装置の設計を模式的に示す。このような材料加工作業は、特に、メモリ・チップを調整する際に行われる。本発明による方法は、マイクロチップ基板への損傷を避けるために得られた材料選択性を利用するために有利に用いることができ、こうしなければ、加工する導電路上におけるレーザ光の空間的重なりの低精度のために、損傷が生ずる(例えば、米国特許第6,281,471号も参照)。加工対象物体の温度変化も材料加工の間に発生し、この変化によって個々の材料成分の吸収スペクトルがずれるので、本発明による方法の効果は、特に有利である。何故なら、そうでなければ、複合材料の前記吸収スペクトルのずれにより、材料選択性が不適切となるからである。また、このために、加工誤差が出たり、加工対象物体に損傷が生じたりする可能性もある。
【0016】
本装置は、フェムト秒レーザ7を内蔵しており、レーザ増幅段8を介して、振幅変調パルス整形部9に接続されている。パルス整形部9の制御入力は、振幅改変のために、制御部10の出力に接続されている。フェムト秒レーザ7のレーザ・パルスは、増幅の後、さらにそのスペクトル振幅の変調の後、色消し対物レンズ11に達し、この対物レンズがレーザ・ビームを加工対象物体13との相互作用区域12に導く。加工対象物体13は、座標ステージ14上に配置されており、加工対象物体13を三空間方向に位置決めすることができる。例えば、振幅改変パルス整形部9は、米国特許第4,655,547号による光学構成によって実現することができる。これは、回折格子によるレーザ・ビームのスペクトル成分の空間分離、およびその後のレンズによるスペクトルのフーリエ面への撮像を含む。前記フーリエ面内に配置されている偏波回転帯状液晶マトリクス(ツイステット・ネマチック液晶マトリクス)が、空間光変調器として機能し、個々の帯を横断するスペクトル成分の偏波状態を変化させる。前記特許文献では、後続の偏光板(分析器)が、こうして得られた個々のスペクトル成分の偏波状態の変化を、所望のスペクトル振幅変調に移転させるように機能する。対応する入力構成要素と同じパラメータを有する更に別のレンズおよび更に別の分散素子が、空間的に分離したスペクトルを元のレーザ・ビームに変換させる(平行化)。
【0017】
パルス整形に対してパラメータを適切に選択すれば、レーザ・パルスのスペクトル振幅を、加工対象材料成分の吸収スペクトルに適応させ、レーザ加工の間他の材料の隣接する区域に損傷を与えないようにすることにより、材料の選択性を達成することができる。更に、温度変化にも反応することができる。この変化は、材料加工によって生じ、複合材料の吸収スペクトルをずらす。この場合(図1参照)、温度を検知するための測定センサ(全体像を見やすくするために図2には示されていない)を、加工対象物体13上に配置することができ、前記センサを制御部10に接続する。レーザ材料加工の間温度依存制御を用いると、この場合、パルス整形部は、レーザ・パルスのスペクトル振幅を、切除する材料の吸収特性に動的に適応させることができるので、加工プロセスにおける温度変化は材料選択性に影響を及ぼすことはない。
【0018】
本発明の実施は、ここに示す実施形態に限定されず、当業者によってなされる改良は、特許請求の範囲によって規定される保護の範囲から逸脱するものではない。
【図面の簡単な説明】
【0019】
【図1】スペクトル・レーザ・パルス・パラメータの整形による、材料加工装置の設計の模式図。
【図2】レーザ・パルスのスペクトル振幅の変更によるマイクロチップ上の導電路の、レーザに基づく遮断装置の設計の模式図。
【符号の説明】
【0020】
1…短パルス・レーザ、2…パルス整形部、3…加工部、4…光増幅器、5…測定部、6,10…制御部、7…フェムト秒レーザ、8…レーザ増幅段、9…振幅変調パルス整形部、11…色消し対物レンズ、12…相互作用区域、13…加工対象物体、14…座標ステージ

【特許請求の範囲】
【請求項1】
広スペクトル帯域幅を有するレーザ・パルスによる材料加工方法において、前記レーザ・パルスが加工対象物体上に入射または内部に進入し、前記加工対象物体の材料に物理的または化学的変化を生じさせる材料加工方法であって、例えば、加工速度上昇、材料選択性の向上、表面構造形成の向上、または光学ブレークスルーの達成というような、明確な加工特定効果を達成するために、加工プロセスの前および/または最中に前記レーザ・パルスの1つ以上のスペクトル・パラメータを選択的に改変することを特徴とする方法。
【請求項2】
請求項1に記載の方法において、前記改変されるスペクトル・パラメータが、前記レーザ・パルスのスペクトル振幅であることを特徴とする、方法。
【請求項3】
請求項1に記載の方法において、前記改変されるスペクトル・パラメータが、前記レーザ・パルスのスペクトル位相であることを特徴とする、方法。
【請求項4】
請求項1に記載の方法において、前記改変されるスペクトル・パラメータが、前記レーザ・パルスのスペクトル偏波であることを特徴とする、方法。
【請求項5】
請求項1に記載の方法において、前記少なくとも1つのスペクトル・パラメータは、前記加工プロセスの測定可能量の関数として、好ましくは動的に改変されることを特徴とする、方法。
【請求項6】
請求項5に記載の方法において、材料加工の除去速度が、前記測定可能量としての役割を担うことを特徴とする、方法。
【請求項7】
請求項5に記載の方法において、表面粗さが、前記測定可能量としての役割を担うことを特徴とする、方法。
【請求項8】
請求項5に記載の方法において、特に光導波路を生成または加工するために、前記加工対象物体の透過率が前記測定可能量として用いられることを特徴とする、方法。
【請求項9】
請求項5に記載の方法において、特に光導波路を生成または加工するために、電磁波の反射が前記測定可能量として用いられることを特徴とする、方法。
【請求項10】
請求項5に記載の方法において、加工区域によって反射されるレーザ光の一部が、前記測定可能量としての役割を担うことを特徴とする、方法。
【請求項11】
請求項5に記載の方法において、特に微小機械構成要素を生成または加工するために、前記成分の共振周波数の少なくとも1つが前記測定可能量として用いられることを特徴とする、方法。
【請求項12】
請求項5に記載の方法において、特に微小機械構成要素を生成または加工するために、規定された発振周波数における共振振幅が、前記測定可能量としての役割を担うことを特徴とする、方法。
【請求項13】
請求項5に記載の方法において、前記加工表面の疎水性または親水性がそれぞれ前記測定可能量として評価されることを特徴とする、方法。
【請求項14】
請求項5に記載の方法において、前記加工材料の異方性が前記測定可能量として評価されることを特徴とする、方法。
【請求項15】
請求項5に記載の方法において、複合材料の加工の際に、前記材料選択性、前記複合材料との相互作用が前記測定可能量として用いられることを特徴とする、方法。
【請求項16】
請求項5に記載の方法において、微小電子構成要素を加工する際に、導電性または容量というような、その電気的特性が前記測定可能量として用いられることを特徴とする、方法。
【請求項17】
請求項5に記載の方法において、人の組織、特に人の目の組織の処置において、光学ブレークスルー、分散光、またはプラズマ・スペクトルに対するエネルギー閾値のような少なくとも一つのプラズマ・パラメータが前記測定可能量として用いられることを特徴とする、方法。
【請求項18】
請求項5に記載の方法において、光合成材料、特に液状樹脂の二光子重合の際に、重合プロセスの量子効率、重合材料の光学的または力学的特性が前記測定可能量として用いられることを特徴とする、方法。
【請求項19】
請求項1に記載の方法において、前記レーザ・パルスのスペクトル・パラメータを最初に、意図した加工動作に対する効果について検査し、その後、前記意図した加工効果に関して選択されたスペクトル・パラメータを、前記材料加工プロセスの開始パラメータとして設定することを特徴とする、方法。
【請求項20】
請求項1に記載の方法において、経験または計算から求められた前記レーザ・パルスのスペクトル・パラメータを、前記加工プロセスの開始パラメータとして設定することを特徴とする、方法。
【請求項21】
請求項1に記載の方法を実行するための装置であって、広スペクトル帯域幅を有するレーザ・パルスを発生するレーザ(1)が、加工対象物体(13)のレーザ・パルス加工のための加工部(3,11)に接続され、前記レーザ(1)がパルス整形部(2)を介して前記加工部(3,11)に接続されて、前記レーザ・パルスの振幅および/またはスペクトル位相および/またはスペクトル偏波をそれぞれ設定または改変することを特徴とする装置。
【請求項22】
請求項21に記載の装置において、前記パルス整形部(2)の前段または後段に、前記レーザ・パルスの増幅のために少なくとも1つの増幅段(4,8)が配置されていることを特徴とする、装置。
【請求項23】
請求項21に記載の装置において、加工プロセスを監視する測定部(5)が設けられ、該測定部(5)は、制御部(6,10)を介して前記パルス整形部(2)に接続されていることを特徴とする、装置。
【請求項24】
請求項23に記載の装置において、前記測定部(5)は、分散、屈折率、またはプラズマ放出スペクトルのような光学物性を測定するための少なくとも1つの測定部を備えていることを特徴とする、装置。
【請求項25】
請求項23に記載の装置において、前記測定部(5)は、材料加工の温度測定のための少なくとも1つのセンサを備えていることを特徴とする、装置。
【請求項26】
請求項23に記載の装置において、前記測定部(5)は、前記加工対象物体(13)の表面粗さの測定のための少なくとも1つのセンサを備えていることを特徴とする、装置。
【請求項27】
請求項23に記載の装置において、前記測定部(5)は、少なくとも1つの光センサを備えていることを特徴とする、装置。
【請求項28】
請求項21に記載の装置であって、人の目の組織を処理するのに適していることを特徴とする装置。
【請求項29】
請求項21に記載の装置であって、微小電気機械システム(MEMS)の使用に基づくスペクトル位相変調器を備えていることを特徴とする装置。

【図1】
image rotate

【図2】
image rotate


【公表番号】特表2006−528071(P2006−528071A)
【公表日】平成18年12月14日(2006.12.14)
【国際特許分類】
【出願番号】特願2006−520772(P2006−520772)
【出願日】平成16年7月20日(2004.7.20)
【国際出願番号】PCT/EP2004/008090
【国際公開番号】WO2005/009666
【国際公開日】平成17年2月3日(2005.2.3)
【出願人】(503078265)カール ツァイス メディテック アクチエンゲゼルシャフト (51)
【Fターム(参考)】