説明

廃熱回収システム及びエンジン

【課題】効率よくエンジンの過給を行うことができると共に、エンジンの廃熱を効率よく回収することのできる廃熱回収システムを提供することを課題とする。
【解決手段】廃熱回収システム(1)は、エンジン(2)の過給を行うコンプレッサ(9)、エンジン(2)の廃熱によって発生する蒸気によって作動し、コンプレッサ(9)を駆動するタービン(5)、コンプレッサ(9)を駆動するモータ(11)を備える。また、モータ(11)とタービン(5)との連結状態を切り替える第1クラッチ(13)、コンプレッサ(9)とタービン(5)との連結状態を切り替える第2クラッチ(15)、コンプレッサ(9)とモータ(11)との連結状態を切り替える第3クラッチ(17)、これらのクラッチの切替指令を行うECU(18)を備え、エンジン(2)の状態に応じて、各クラッチの断続状態を切り替える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エンジンにおける廃熱により発生した蒸気によってエンジンを過給するコンプレッサを備えた廃熱回収システムに関する。
【背景技術】
【0002】
従来、実際の排気量よりも多量の空気を吸入させることができ、エンジンの出力向上に資するものとしてターボチャージャが実用化されている。ターボチャージャは、エンジンの排気ガスによってタービンを回転させてコンプレッサを駆動し、これによりシリンダ内へ導入する吸入空気量を増量する。すなわち、その作動に排気ガスを利用している。一方、エンジンが備える触媒は所定温度以上とならないと有効に機能しないことから、触媒を有効に機能させるためには排気ガス自体も高温であることが望ましい。ところが、排気ガスはタービンを作動させることにより熱を消費してしまうことから触媒活性に不利となる。特に、エンジン暖機時には触媒活性に時間を要すると考えられる。このような問題を解決するために補助熱源等により触媒を昇温させることも考えられるが補助熱源の利用は燃費を悪化させることにもなりかねない。
【0003】
また、エンジンのウォータジャケット内で冷却水等の冷媒を蒸気化し、この蒸気をさらに排気ガスの熱で過熱後、タービン等の膨張器を介して廃熱を動力として回収するいわゆるランキンサイクルの提案がされている。このようなランキンサイクルを利用したシステムは、例えば特許文献1に開示されている。このようなシステムを、ターボチャージャを備えたエンジンに組み込むことも可能であるが、以下のような問題が生じると考えられる。すなわち、ターボチャージャの駆動に排気ガスの熱が利用されるため、特にエンジンの低負荷時や、エンジン暖機時は回収可能な排気ガスの熱量自体が少ないこともあり、ランキンサイクルの熱効率が低下すると考えられる。また、蒸気に排気ガスの熱を付与するための過熱器を新たに装備することとなればエンジンの背圧が上昇し、エンジンのポンプ損失が増大してエンジンの熱効率を低下させることにもなりかねない。エンジンの背圧の上昇を抑えるため、圧損を小さくすることを目的として過熱器を大型化することも考えられるが、これでは、搭載性が悪化する。また、過熱器の大型化は、熱容量が大きくなりエンジン暖機時等に回収可能な熱量が減少する事態を招くことともなる。
【0004】
ところで、排気熱により発生させた蒸気によってタービンとこれと一体となったコンプレッサを駆動して、排気ガスの熱エネルギを回収するセラミックエンジンの提案がある(特許文献2)。このようなエンジンであれば、前記のような種々の問題を解決することが可能であると考えられる。
【0005】
【特許文献1】特開2000−345835号公報
【特許文献2】特開平10−299574号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献2で開示されたようなエンジンは、エンジンの運転状態によりタービンの効率が変化し、コンプレッサの駆動力、ひいては過給圧も変化してしまうことから、目的とする過給圧が得られないことも考えられる。また、廃熱回収の効率を向上させるためにもさらなる改良の余地があると考えられる。
【0007】
そこで、本発明は、効率よくエンジンの過給を行うことができると共に、エンジンの廃熱を効率よく回収することのできる廃熱回収システムを提供することを課題とする。
【課題を解決するための手段】
【0008】
かかる課題を解決するための、本発明の廃熱回収システムは、エンジンの過給を行うコンプレッサと、前記エンジンの廃熱によって発生する蒸気によって作動し、前記コンプレッサを駆動するタービンと、蓄電装置と接続され、前記コンプレッサを駆動するモータと、を備えたことを特徴とする。このような構成とすることにより、コンプレッサをタービン又はモータによって駆動することができる。このような廃熱回収システムは、前記モータと前記タービンとの連結状態を切り替える第1クラッチ、前記コンプレッサと前記タービンとの連結状態を切り替える第2クラッチ、前記コンプレッサと前記モータとの連結状態を切り替える第3クラッチを備えることにより、エンジンの過給、廃熱の回収を効率よく行うことができる。これらの第1クラッチ乃至前記第3クラッチの切り替えはそれぞれのクラッチに対し切替指令を行う制御手段によって行うことができる。
【0009】
以上のような廃熱回収システムは、コンプレッサの作動に必要となるタービンの駆動力が得られないときにモータによりコンプレッサの作動を補助する。一方、コンプレッサの作動が不要なときを含めタービンの駆動力がコンプレッサの作動に必要となる駆動力に対して余剰となるときにはモータを発電機として機能させて動力を回収することができる。また、このように動力を回収する際は、例えば、ポンプ等を駆動する他の動力回収手段を介した動力回収を行うようにすることもできる。すなわち、モータを介した動力回収以外に動力回収を行うようにすることができる。
【0010】
このような廃熱回収システムをエンジンに組み込めば、本発明のエンジンとすることができる。
【発明の効果】
【0011】
本発明の廃熱回収システムによれば、冷媒の蒸気によって作動するタービン及びモータによってコンプレッサを駆動するようにしたので、エンジンの効率的な過給及び効率的な廃熱回収を行うことができる。
【発明を実施するための最良の形態】
【0012】
以下、本発明を実施するための最良の形態を図面と共に詳細に説明する。
【実施例】
【0013】
本発明の実施例について図面を参照しつつ説明する。図1は、本実施例の廃熱回収システム1をエンジン本体2aに組み込んだエンジン2の概略構成を示した説明図である。
【0014】
エンジン本体2a内にはウォータジャケットが形成されており、ウォータジャケット内を循環する冷却水はエンジン2の燃焼熱によって蒸気化する。廃熱回収装置1は、冷却水の蒸気が流通する蒸気経路3を備えている。この蒸気経路3には上流側、すなわち、エンジン本体2に近い側から順に過熱器4、タービン5が配設されており、その端部は凝縮器6に接続されている。過熱器4にはエンジン本体2の排気ポートと接続された排気経路7が引き込まれている。過熱器4は、排気経路7中の排気ガスから熱を回収し、蒸気通路3内を通じる蒸気へさらに熱を付与するもので、廃熱の回収効率を向上させるものである。排気経路7には、エンジン本体2aと過熱器4との間に触媒8が配設されている。タービン5は蒸気経路3を通じて流入する高温、高圧の蒸気によって作動する。凝縮器6は、蒸気を液体の冷却水に戻す。液体に戻された冷却水はポンプ24によって冷却水経路23を通じて再びエンジン本体2a内に形成されたウォータジャケットへ供給される。なお、液体の冷却水はエンジン2が搭載された車両が備える空調装置25内を循環し、空調に利用される。
【0015】
廃熱回収システム1は、エンジン2の過給を行う過給器、すなわちコンプレッサ9を備えている。コンプレッサ9は、空気を圧縮し、吸気経路19を通じて圧縮空気をエンジン本体2aの吸気ポートへ供給する。また、蓄電装置10と接続され、コンプレッサ9を駆動するモータ11を備えている。モータ11とタービン5とは第1駆動軸12によって接続されている。この第1駆動軸12はモータ11とタービン5との連結状態を切り替える第1クラッチ13を備えている。また、第1駆動軸12のモータ11側には、図示しない補器類を駆動する動力回収装置26が装着されている。この動力回収装置26は第1クラッチ13が接続されることによりタービン5によって駆動され、補器類を作動させる。コンプレッサ9とタービンとは第2駆動軸14によって接続されている。この第2駆動軸14はコンプレッサ9とタービン5との連結状態を切り替える第2クラッチ15を備えている。コンプレッサ9とモータ11とは第3駆動軸16によって接続されている。この第3駆動軸はコンプレッサ9とモータ11との連結状態を切り替える第3クラッチ17を備えている。第1クラッチ13、第2クラッチ15、第3クラッチ17は、それぞれ本発明における制御手段に相当するECU(Electronic control unit)18に電気的に接続されている。このECU18は第1クラッチ13、第2クラッチ15、第3クラッチ17の切替指令を行う制御手段に相当する。このようなECU18には、吸気経路19に装着されたアクセル開度センサ20、過給圧センサ21が電気的に接続されている。ECU18には、さらに、タービン5に装着され、タービン5の回転数を検出するタービン回転数センサ22が電気的に接続されている。また、モータ11、エンジン2に装着された各種センサと電気的に接続されている。
【0016】
以上のように構成される廃熱回収システム1では、タービン5は排気経路7状には存在しておらず、エンジン2から排出される排気ガスは即座に触媒8内に流入するため、触媒8の活性化に有利である。また、タービン5が排気経路7状に存在しないことにより、エンジン2の背圧増加、ポンプ損失の増大を抑制することができる。
【0017】
以上のように構成される廃熱回収システム1の動作及び制御につき、図面を参照しつつ説明する。図2は、ECU18が行う制御の一例を示すフロー図である。また、図3は、コンプレッサ9がエンジン2の運転状態に応じて求められる目標過給圧を決定するための目標過給圧決定マップの一例を示した図である。また、図4乃至図7は、それぞれ第1クラッチ13、第2クラッチ15、第3クラッチ17の異なる断続状態を示した説明図である。
【0018】
まず、ECU18は、ステップS1において、図3に示す目標過給圧決定マップに基づいてエンジン2の運転状態に応じた目標過給圧を決定する。目標過給圧はアクセル開度が大きくなるほど高くなる。具体的には、ECU18は、エンジン2に装着された各種センサからエンジンの運転状態を把握し、この運転状態に適したアクセル開度−目標過給圧線を選択し、選択したアクセル開度−目標過給圧線から目標過給圧を決定するアクセル開度はアクセル開度センサ20から取得する。また、ステップ1では、このようにして決定された目標過給圧に応じてタービン5の目標回転数Xを算出しておく。ECU18は、このように目標過給圧を決定し、目標タービン回転数Xを算出した後、ステップS2へ進む。
【0019】
ステップS2では、ECU18は、ステップS1で取得した目標過給圧が実測過給圧よりも高いか否かを判断する。実測過給圧は、過給圧センサ21から取得する。このステップS2においてYesと判断された場合、すなわち、エンジンの運転状態から求められる適切な過給圧が得られていない場合はステップS3へ進む。一方、ステップS2においてNoと判断された場合、すなわち、目標過給圧を確保できている場合は、ステップS8へ進む。ステップS8へ進む場合は、コンプレッサ9を作動させることは不要である。そこで、蒸気によって駆動されるタービン5を介して廃熱を回収するようにする。従って、ステップS8では、図4に示すように第1クラッチ13を接続状態とし、第2クラッチ15及び第3クラッチ17をいずれも切断状態とする。これにより、蒸気により駆動されるタービン5によってモータ11が回転し、発電機として機能して蓄電装置10に電力を蓄える。また、第1駆動軸12が接続状態となることから第1駆動軸12を介して装着されている動力回収装置26も駆動される。このようにして蒸気を介した廃熱回収が効率よく行われる。
【0020】
一方、ステップS3に進んだ場合は、まずステップS1で取得した目標タービン回転数Xが実測タービン回転数Nよりも高いか否かを判断する。実測タービン回転数Nは、タービン回転数センサ22から取得する。このステップS3でYesと判断される場合、すなわち、蒸気によるタービン5の回転数ではコンプレッサ9が目標過給圧を実現するだけの駆動力を確保することができないときは、ステップS4へ進み、図5に示すように第3クラッチ17を接続状態とし、第1クラッチ13及び第2クラッチ15をいずれも切断状態とする。これにより、コンプレッサ9をモータ11の駆動力によって作動させるようにする。ステップS4の処理を行うような状況は、例えば、エンジン2の暖機時等が想定される。すなわち、エンジン2の暖機中は、十分な量、温度、圧力の蒸気が発生していない状態が想定される。このような状態では、タービン5によってコンプレッサ9を十分に稼働させることができず、目標過給圧を確保することが困難である。そこで、モータ11の駆動力を利用してコンプレッサ9を作動させるようにすれば、迅速に目的とする過給圧を実現することができる。なお、第1クラッチ13を接続してタービン5とモータ11とによってコンプレッサ9を作動させるようにしてもよい。但し、この場合、タービン5による回転とモータ11による回転を同期させる同期手段を介在させることが望ましい。
【0021】
ステップS3においてNoと判断されたときはステップS5に進む。ステップS5ではECU18は、目標タービン回転数Xが実測タービン回転数Nと同じか否かを判断する。このステップS5においてYesと判断されるとき、すなわち、現状のタービンの回転数で目標過給圧を確保することができるときは、ステップS6へ進み、図6に示すように第2クラッチ15を接続状態とし、第1クラッチ13及び第3クラッチ17をいずれも切断状態とする。これによりコンプレッサ9の作動はタービン5の蒸気による駆動力によって維持される。ステップS6の処理を行うような状況は、例えば、暖機が完了し、エンジン2が定常運転に近い状態にあるときが想定される。すなわち、エンジン2内で蒸気が発生し、タービン5の駆動力によってコンプレッサ9を作動させることができる状態が想定される。このような状態では、コンプレッサ9を作動させるためのモータ11の駆動は不要である。従って、蓄電装置10内に蓄えた電力を消費することもない。
【0022】
一方、ステップS5でNoと判断された場合、すなわち、実測タービン回転数Nが目標タービン回転数Xを上回っているときは、ステップS7へ進む。ステップS7では、図7に示すように第3クラッチ17を切断状態とし、第1クラッチ13及び第2クラッチ15をいずれも接続状態とする。これによりタービン5の駆動力によりコンプレッサ9が作動し、目標過給圧が確保されると共に、余剰の動力がモータ11を介して蓄電装置10に回収される。ステップS7の処理を行うような状況は、例えば、エンジン2の高負荷時等が想定される。すなわち、エンジン2内で多量の高温、高圧力の蒸気が発生し、タービン5の駆動力がコンプレッサ9を作動させてもなお余剰動力として回収できる状態が想定される。このような状態において、蒸気により駆動されるタービン5によってコンプレッサ9を作動させ、さらに、モータ11を回転させて動力を回収することにより、廃熱の利用、回収効率を向上させることができる。また、第1駆動軸12が接続状態となることから第1駆動軸12を介して装着されている動力回収装置26も駆動される。このようにして蒸気を介した廃熱回収が効率よく行われる。
【0023】
以上、説明したように、本発明によれば、触媒の暖機やエンジンの背圧増加抑制に有利である蒸気駆動のコンプレッサ(過給器)を備えた廃熱回収システムにおいて、タービン、コンプレッサ、モータ(発電機)の断続をエンジンの状態に応じて適宜変更するようにしたので効率よくエンジンの過給を行うことができると共に、エンジンの廃熱を効率よく回収することができる。
【0024】
上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。
【図面の簡単な説明】
【0025】
【図1】廃熱回収システムをエンジン本体に組み込んだエンジンの概略構成を示した説明図である。
【図2】廃熱回収システムの制御の一例を示すフロー図である。
【図3】目標過給圧決定マップの一例を示す説明図である。
【図4】第1クラッチを接続状態とし、第2クラッチ及び第3クラッチをいずれも切断状態とした廃熱回収システムを示した説明図である。
【図5】第3クラッチを接続状態とし、第1クラッチ及び第2クラッチをいずれも切断状態とした廃熱回収システムを示した説明図である。
【図6】第2クラッチを接続状態とし、第1クラッチ及び第3クラッチをいずれも切断状態とした廃熱回収システムを示した説明図である。
【図7】第3クラッチを切断状態とし、第1クラッチ及び第2クラッチをいずれも接続状態とした廃熱回収システムを示した説明図である。
【符号の説明】
【0026】
1 廃熱回収システム
2 エンジン
2a エンジン本体
3 蒸気経路
4 過熱器
5 タービン
6 凝縮器
7 排気経路
8 触媒
9 コンプレッサ
10 蓄電装置
11 モータ
12 第1駆動軸
13 第1クラッチ
14 第2駆動軸
15 第2クラッチ
16 第3駆動軸
17 第3駆動軸
18 ECU
19 吸気経路
20 アクセル開度センサ
21 過給圧センサ
22 タービン回転数センサ

【特許請求の範囲】
【請求項1】
エンジンの過給を行うコンプレッサと、
前記エンジンの廃熱によって発生する蒸気によって作動し、前記コンプレッサを駆動するタービンと、
蓄電装置と接続され、前記コンプレッサを駆動するモータと、
を備えたことを特徴とする廃熱回収システム。
【請求項2】
請求項1記載の廃熱回収システムにおいて、
前記モータと前記タービンとの連結状態を切り替える第1クラッチを備えたことを特徴とする廃熱回収システム。
【請求項3】
請求項1記載の廃熱回収システムにおいて、
前記コンプレッサと前記タービンとの連結状態を切り替える第2クラッチを備えたことを特徴とする廃熱回収システム。
【請求項4】
請求項1記載の廃熱回収システムにおいて、
前記コンプレッサと前記モータとの連結状態を切り替える第3クラッチを備えたことを特徴とする廃熱回収システム。
【請求項5】
請求項1記載の廃熱回収システムにおいて、
前記モータと前記タービンとの連結状態を切り替える第1クラッチと、
前記コンプレッサと前記タービンとの連結状態を切り替える第2クラッチと、
前記コンプレッサと前記モータとの連結状態を切り替える第3クラッチと、
前記第1クラッチ乃至前記第3クラッチの切替指令を行う制御手段と、
を備えたことを備えたことを特徴とする廃熱回収システム。
【請求項6】
請求項1記載の廃熱回収システムにおいて、
前記タービンによって駆動される動力回収装置を備えたことを特徴とする廃熱回収システム。
【請求項7】
請求項1記載の廃熱回収システムにおいて、
前記コンプレッサの作動に必要となるタービンの駆動力が得られないときに、前記モータによりコンプレッサを作動させることを特徴とした廃熱回収システム。
【請求項8】
請求項1記載の廃熱回収システムにおいて、
前記タービンの駆動力がコンプレッサの作動に必要となる駆動力に対して余剰となるときに前記モータを介して前記タービンから動力回収することを特徴とした廃熱回収システム。
【請求項9】
請求項1乃至8のいずれか一項記載の廃熱回収システムを備えたことを特徴とするエンジン。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2008−223509(P2008−223509A)
【公開日】平成20年9月25日(2008.9.25)
【国際特許分類】
【出願番号】特願2007−59646(P2007−59646)
【出願日】平成19年3月9日(2007.3.9)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】