説明

成形装置及び成形方法

【課題】より均一な板厚の成形品を製造可能な、成形装置及び方法を提供する。
【解決手段】本発明の成形装置10は、シート材1が加圧される前に、加圧変形の開始から成形面20への密着までに要する時間に基づき定められた温度分布を、シート材1に形成する温度制御手段を有している。シート材1のうち加圧変形の開始から成形面20への密着までに要する時間が長い部分は、密着までに要する時間が短い部分に比べて、加圧変形工程の初期段階において、伸び変形の速度が小さくなるように、シート材1に温度分布を形成する。これにより、成形面20に密着した時点における加圧変形開始時点からの伸び変形量を、密着までに要する時間が短い部分と同等にする、つまり、成形後のシート材1の板厚を均一なものとすることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、加熱したシート状部材に圧力をかけて型に密着させて成形する成形装置及び成形方法に関する。
【背景技術】
【0002】
従来から、型を用いて成形品を得る成形技術の一つに圧縮空気成形法(以下、圧空成形法と記す)がある。圧空成形法は、熱可塑性のシート状の部材(以下、シート材と記す)を、加熱して軟化させて、これを圧縮気体により加圧して型の成形面に沿って密着させることで、所望の形状の成形品を得る加工法である。加熱したシート材に圧力をかけて熱成形するという点では、真空成形法と同様であるが、真空成形法の場合、減圧した圧力と大気圧との差圧が成形圧力となるため、0.1MPa以上の成形圧力をかけるのが困難であるのに対し、圧空成形法の場合は、時には1MPa以上の成形圧力を、シート材の表面に加えることができる。このため、より型に忠実な成形品を得ることができ、特に、深絞りされた成形品、いわゆる深物を成形するのに適している。
【0003】
このような圧空成形の工程は、以下の通りである。まず、成形品の外形を模した形状の成形面を有する型の上に、熱可塑性のシート材を配置する。シート材の上方には、鉛直方向に移動可能な蓋状の部材(以下、上蓋と記す)が設けられており、この上蓋の縁部と型の縁部により、シート材の周囲部分が挟み込まれる。そして、型と上蓋により挟持されたシート材を、型に埋め込まれたヒータにより加熱して軟化させる。さらに、シート材と上蓋により密閉された空間に加圧した気体を吹き込むことにより、シート材に圧力をかける。この圧力により、シート材を伸び変形させて、型の成形面に沿って密着させる。このようにして所望の形状の成形品が得られる。
【発明の開示】
【発明が解決しようとする課題】
【0004】
このようなシート材を変形・密着させる工程において、シート材が型の成形面に密着するまでに要する時間は、シート材の各部分により異なったものとなる。比較的短時間で成形面に密着する部分、例えば、キャビティのほぼ中央部に密着する部分は、成形面との摩擦により、その後の伸び変形量(歪み)が極端に小さくなる。一方、比較的長い時間経過した後で成形面に密着する部分、例えば成形面の隅部に密着する部分は、前述の短い時間で成形面に密着する部分に比べて、長い時間伸び変形を続けるため、その変形量は大きなものとなる。このため、成形後のシート材すなわち成形品の板厚は、前述の成形面への密着に要する時間に応じて不均一なものとなり、特に、成形面の隅部など、比較的長い時間をかけて成形面に密着した部分の板厚が薄くなってしまうという問題が生じる。したがって、より均一な板厚の成形品を製造可能な成形技術が要望されている。
【0005】
以上のような成形後のシート材の板厚をより均一にする成形技術として、例えば、特開平1−133617に記載の技術が提案されている。この従来技術は、型の成形面に形成された角部の周囲を、他の部分に比べて高温となるよう制御することで、この部分に密着する加工板(シート材)を、より高温にして変形し易くしている。この周囲部分に密着するシート材が伸び変形することで、角部に変形が集中しないようにしており、角部に密着する部分の板厚が、その周囲に比べて薄くなってしまうことを防止している。しかし、型の成形面に密着した後のシート材の伸び変形量は、金型との間に生じる摩擦により極端に小さくなるため、上述の従来技術のように、型の成形面にシート材が密着した部分を加熱するだけでは、十分な伸び変形を得ることができない。
【0006】
そこで本発明は、より均一な板厚の成形品を製造可能な、成形装置及び方法を提供することを目的としている。
【課題を解決するための手段】
【0007】
本発明の成形装置は、シート材が加圧される前に、加圧変形の開始から成形面への密着までに要する時間に基づき定められた温度分布を、シート材に形成する温度制御手段を有している。温度制御手段は、シート材の各部分が加圧変形を開始してから成形面に密着するまでに要する時間の長短に応じて、シート材の各部分の温度を異ならせるよう、温度分布を形成する。
【0008】
シート材のうち加圧変形の開始から成形面への密着までに要する時間が長い部分は、密着までに要する時間が短い部分に比べて、伸び変形の速度が小さくなるように、シート材に温度分布を形成することで、成形面に密着した時点における加圧変形開始時点からの伸び変形量を、密着までに要する時間が短い部分と同等にする、つまり、成形後のシート材の板厚を均一なものとすることができる。
【0009】
好ましくは、温度制御手段は、加熱されたシート材のうち加圧変形の開始から成形面への密着までに要する時間が長い部分を、冷却する冷却部を有する。
【0010】
また好ましくは、冷却部は、シート材の所定部分に当接して、これを冷却する冷却面と、内部を冷媒が循環し、冷却面から伝導された熱を冷媒に放熱する冷却配管とを有する。
【0011】
本発明の成形方法は、シート材を加熱する工程と、シート材のうち加圧変形の開始から成形面への密着までに要する時間に基づき定められる温度分布を、シート材に形成する温度制御工程と、シート材を加圧して伸び変形させ、型の成形面に沿って密着させる加圧変形工程とを有する。温度制御工程において、シート材に温度分布が形成することで、後の加圧変形工程の初期段階において、シート材の各部分は、その温度に応じて、伸び変形の速度(歪み速度)を異ならせる。
【0012】
加圧変形工程における、シート材の各部分が成形面に密着するまでに要する時間の長短に応じて、予め、温度制御工程において、シート材の各部分の温度を異ならせる、即ち温度分布をシート材に形成することにより、シート材の各部分が、成形面に密着した時点における加圧変形開始時点からの伸び変形量、すなわち成形後のシート材の板厚を、より均一なものにすることができる。
【発明の効果】
【0013】
本発明の圧空成型技術によれば、成形後の板厚を、より均一なものとすることができ、成形品に薄肉化された部位が生じることを防止することができる。
【発明を実施するための最良の形態】
【0014】
以下に、本発明に係る実施形態について、図面を用いて詳細を説明する。
【0015】
まず、本実施形態の成形装置の加工対象であり成形方法が適用されるシート状の部材(以下、シート材と記す)について説明する。シート材1は、熱可塑性を有する厚さ0.8〜2mm程度の板状部材であり、材質には、5000系アルミ合金が採用されている。アルミ合金は、400〜500℃に加熱することにより所定の応力下で延性が著しく向上する、いわゆる「超塑性状態」となる性質を有している。この特性を利用してアルミ合金製シート材1を成形することで、例えば、自動車用のフェンダーやトランクリッドなど、軽量で、かつ深さのある形状の成形品を実現することができる。
【0016】
本実施形態の成形装置10の構成について、図1及び図2を用いて説明する。図1には、成形装置10の断面を示し、図2には、成形装置10の構成部品である冷却コテ部12の斜視を示す。成形装置10は、図1に示すように、シート材1を密着させて成形する金型14と、金型14と共にシート材1を挟持する上蓋16と、シート材1を冷却する冷却コテ部12とを有している。
【0017】
金型14は、その略中央が掘り下げられてキャビティ18が形成されており、金型の内側には、成形品の外形を模した形状を呈する成形面20が形成されている。シート材1は、この成形面20に沿って密着して成形される。また、金型14の成形面20からは、キャビティ18内の気体を金型14外に排出する排出ノズル22が設けられている。この排出ノズル22は、シート材1が成形面20に密着する際に、シート材1と成形面20で囲まれ圧縮された気体を、矢印Bで示すように外部に排出する。
【0018】
また、金型14の内部には、複数のヒータ24が埋め込まれており、ヒータ24が発する熱は、金型14の全体に伝導される。なお、ヒータ24は、熱電素子等で構成することができ、金型14の温度は自在に制御可能となっている。金型14の成形面20の周囲には、キャビティ18の開口縁部14aがあり、この上に加工前のシート材1が配置される。ヒータ24が発する熱が、金型14の開口縁部14aからシート材1に伝達され又は金型14から放射されて、シート材1が加熱される。
【0019】
一方、上蓋16は、金型14の鉛直上方に設けられ、金型14の開口縁部14aに合わさる蓋形状に形成されている。上蓋16は、図示しないプラテン(加圧板)に固定されており、鉛直方向(矢印Zで示す)に移動可能となっている。上蓋16を金型14に向け鉛直下方に移動させることで、上蓋16の縁部16aは、金型14の開口縁部14aと共に、金型14上に配置されたシート材1の周囲部分1aを挟み込む。これにより、シート材1は、その周囲部分1aが金型14と上蓋16により挟持される。また、上蓋16の内部には、金型14と同様にヒータが設けられており、金型14のヒータと共に、挟持されたシート材1を、例えば500℃に加熱することができる。
【0020】
また、上蓋16の略中央には、気体を上蓋16内側に吹き込む供給ノズル28が設けられている。供給ノズル28から矢印Aで示すように上蓋内側30に気体を供給することで、上蓋16とこれに周囲を挟持されたシート材1で密閉された空間32を昇圧することができる。これにより、上蓋内側30の空間32からシート材1に圧力をかけ、シート材1を成形面20に向けて変形させることができる。なお、供給ノズル28から吹き込まれる気体は、空気または、窒素ガス等の不活性ガスが用いられる。
【0021】
さらに、上蓋16には、挟持されたシート材1のうち所定の部分を冷却する冷却コテ部12が設けられている。冷却コテ部12は、上蓋内側30の天井34に固定されており、その鉛直下側には、シート材1に当接する冷却コテ面36が形成されている。冷却コテ面36は、上蓋16の縁部16aと略同一の平面上に形成されている。よって、上蓋縁部16aがシート材1の周囲部分1aを挟み込んだ状態において、冷却コテ面36は、シート材1のうち冷却対象である所定の部分(以下、冷却対象部分と記す)に上蓋16側から当接する。なお、冷却コテ面36の形状は、冷却が要求されるシート材1の冷却対象部分1bの形状に応じて形成されている。そして、冷却コテ部12は、加熱され高温となっているシート材1の冷却対象部分1bから、冷却コテ面36を介して熱を吸収する。以上のようにして冷却コテ部12は、加熱されたシート材1の冷却対象部分1bを冷却することで、シート材1に温度分布を形成することができる。
【0022】
また、冷却コテ部12内には、冷却液が循環する冷却配管38が設けられている。シート材1の冷却対象部分1bから冷却コテ面36に吸収された熱は、冷却配管38から配管内部を流れる冷却液に伝達される。冷却配管38は、図2に示すように、冷却コテ部12の形状に応じて、その内部を蛇行するよう形成されている。この冷却配管38内を循環する冷却液は、上蓋16の外から供給されており、冷却コテ部12内を流れて高温となった冷却液は、再び上蓋16の外に戻される。この冷却配管38内を循環する冷却液の温度や時間あたりの流量を調整することで、冷却コテ部12が所望の温度となるよう制御される。これにより、冷却コテ部12は、加熱されたシート材1の冷却対象部分1bを、所望の温度に冷却することができる。なお、冷却配管38内を循環する冷却液の温度は、シート材1の冷却対象部分1bが所望の温度に冷却されるように、適宜、常温から300℃に設定される。
【0023】
以上に説明したように本実施形態の成形装置10は、冷却コテ部12が、加熱されたシート材1のうち所定の冷却対象部分1bを冷却する。これにより、シート材1が加圧される前の時点で、シート材1に温度分布を形成することが可能となっている。
【0024】
従来技術のように、温度分布が形成されることがなく略均一な温度のシート材1を加圧して変形させた場合、シート材1のうち比較的長い時間が経過した後に成形面20に密着する部分は、比較的短時間で成形面20に密着する部分に比べて、成形完了時における加圧変形開始からの伸び変形量が大きく、板厚が薄くなってしまうという問題が生じる。
【0025】
そこで、本実施形態の成形装置10は、加圧変形の開始から成形面20への密着までに要する時間の長短に応じて、シート材1に温度分布を形成することで、シート材1が加圧変形する工程において、その伸び変形の速度を異ならせる。成形面20の隅部など比較的長い時間が経過した後に成形面20に密着する部分については、比較的短時間で密着する部分に比べて、加圧変形時における伸び変形の速度が抑制されるよう、予めシート材1に温度分布を形成しておくことで、成形完了時における加圧変形開始時からの伸び変形量を、比較的短時間で成形面20に密着する部分と同等にすることができる。したがって、成形完了後の板厚を、より均一なものとすることができる。
【0026】
次に、本実施形態の成形装置10を用いた成形方法について、図3〜図7を用いて説明する。図3〜図7は、本成形加工によりシート材1を成形加工する様子を時系列で示す断面図であり、図3には、成形加工の開始時の状態を、図7には、成形加工が完了した状態を示す。
【0027】
まず、金型14の上にシート材1を配置し、上蓋16を移動してシート材1を挟み込む。図3に示すように、平らな形状のシート材1の周囲部分1aが、金型14の開口縁部14aと上蓋縁部16aにより挟持される。このとき、金型14及び上蓋16は、それぞれ内部に有するヒータ24,26により400〜500℃に加熱されており、この熱を、金型開口縁部14a及び上蓋縁部16aからシート材1に伝達させて又は金型14からシート材1に放射させて、シート材1を加熱する。
【0028】
また、上蓋16がシート材1を挟み込むと同時に、冷却コテ面36がシート材1の冷却対象部分1bに当接する。シート材1を加熱すると共に又はシート材1が加熱された後に、冷却配管38内に冷却液を循環させて、シート材1の冷却対象部分1bを冷却する。冷却された冷却対象部分1bは、他の部分に比べて低温となり、また、シート材1のうち冷却対象部分1bに近い部位ほど低温となる。つまり、シート材1に、冷却対象部分1bに向かうにつれて低温となるような温度分布が形成される。本実施形態の成形技術においては、冷却コテ面36がシート材1に当接する位置や形状を調整し、加えて、ヒータ24,26の温度、冷却コテ部12を循環する冷却液の温度、及び冷却液の単位時間あたり循環流量を制御することにより、シート材1に所望の温度分布を形成する。
【0029】
このような温度制御工程において、シート材1に形成される温度分布は、後述するシート材1の加圧変形の開始から成形面20への密着までに要する時間に基づき定められている。シート材1の各部分が加圧変形を開始してから成形面20に密着するまでに要する時間の長短に応じて、シート材1の各部分の温度を異ならせるよう制御しており、具体的には、成形面20への密着に要する時間が長い部分ほど低温となるよう、シート材1の温度を制御している。
【0030】
なお、シート材1の各部分における、加圧変形の開始から成形面20への密着までに要する時間や、冷却コテ面36の位置や形状、冷却液の温度及び循環流量は、予め、有限要素解析法等のシミュレーションや実物を用いての試作により求められた適切な値が設定されている。
【0031】
次に、供給ノズル28から気体を供給し、上蓋16とシート材1で密閉された空間32を昇圧することで、図4に示すように、圧力を受けたシート材1は、成形面20に向けて変形を開始する。以下、シート材1が圧力を受けて変形することを「加圧変形」と記す。この時点において、冷却対象部分1bから距離が遠い部位、すなわち低温の冷却対象部分1bに比べて温度が高い部分ほど、大きく伸び変形する。例えば、本実施形態の場合、シート材1の略中央の部分1cが最も温度が高い部分であり、大きく伸び変形している。このような、伸び変形の大きい部位は、その変形に応じて板厚も薄くなっている。一方、冷却されて低温となった冷却対象部分1bは、上述の温度が高い部位に比べて伸び変形が抑制されている。冷却対象部分1bのうちシート材1の中央部分1cに近い部位が僅かに撓み変形しているだけで、冷却対象部分1bの板厚は薄くなっていない。なお、冷却対象部分のうち撓み変形して冷却コテ面から離れた部分は、中央部分1c側からの熱伝導により温度が上昇していく。
【0032】
そして、シート材1の加圧変形が進むと、図5に示すように、シート材1の温度が高い略中央部分1cが、成形面20に到達し密着する。この成形面20に密着した略中央部分1cは、この後の時点において、成形面20との摩擦により伸び変形が抑制されて、板厚はほとんど薄くならない。一方、冷却対象部分1bは、シート材1のより温度が高い部分からの熱伝導により温度が上昇しており、僅かではあるが伸び変形が始まっている。冷却対象部分1bのうち温度が高い中央部分1c側ほど、伸び変形が進んでおり、これに応じて板厚も薄くなっている。
【0033】
以上のような加圧変形工程の初期段階において、シート材1の各部分は、形成された温度分布に応じて、伸び変形の速度が異なっている。シート材1の低温となった部分は、温度が高い部分に比べて、伸び変形が抑制されている。なお、温度制御工程においてシート材1に形成された温度分布は、シート材1の部分間における熱伝導や金型14からの熱の放射により、加工変形の開始から時間の経過と共に、徐々に平準化されていく。シート材1の温度分布が平準化されるに従って、シート材1の各部分における伸び変形の速度は、より均一なものとなっていく。
【0034】
さらに、シート材1の加圧変形が進むと、図6に示すように、シート材1のうち、冷却対象部分1bすなわち成形面20の隅部に密着する部分を除いて、ほとんどの部分が成形面20に密着する。一方、この後の時点において成形面20の隅部に密着する冷却対象部分1bは、周囲からの熱伝導により十分に高温となっているが、成形面20に密着した部分に比べて、加圧変形開始時点からの伸び変形量は小さく、その板厚は成形面20に密着した部分に比べて厚い状態に保たれている。この後、冷却対象部分1bは、更に伸び変形して板厚が減少していくこととなる。
【0035】
最後に、図7に示すように、シート材1の全ての部分が成形面20に密着し、成形加工が完了する。この加工完了時点において、成形面20の隅部に密着した冷却対象部分1bにおける加工変形開始時点からの伸び変形量は、成形面20に密着する他の部分、例えばシート材中央部分1cにおける伸び変形量と、略同一となっている。つまり、成形面20に密着したシート材1の板厚は、均一なものとなっている。
【0036】
以上説明したように本実施形態の成形技術は、シート材1が加圧される前の時点で、加圧変形の開始から成形面20への密着までに要する時間に基づき定められた温度分布を、シート材1に形成する。すなわちシート材1の各部分が加圧変形を開始してから成形面20に密着するまでに要する時間の長短に応じて、シート材1の各部分の温度を異ならせる。例えば、成形面20への密着に要する時間が長い部分ほど低温となるよう、シート材1の温度を制御する。具体的には、冷却コテ部12をシート材1の冷却対象部分1bに当接させて冷却する。
【0037】
このようにして、シート材を加圧して変形させる工程の初期段階において、シート材の各部分における、伸び変形の速度(歪み速度)を異ならせる。例えば、5000系等のアルミ合金製シート材の場合、冷却された低温となった部分は、温度が高い部分に比べて、伸び変形が抑制される、すなわち歪み速度が小さくなる。このようなシート材の性質を利用して、本実施形態の成形技術は、シート材のうち、加圧変形の開始から成形面への密着までに要する時間が長い部分は、短い部分に比べて加圧変形工程の初期段階における伸び変形が抑制されるよう、予め温度制御工程において、シート材に温度分布を形成する。
【0038】
これにより、成形面への密着までに要する時間が長い部分が成形面に密着した時点における加圧変形開始時点からの伸び変形量を、密着までに要する時間が短い部分と同等にすることができる。つまり、成形完了時点において成形面に密着したシート材すなわち成形後のシート材の板厚を、より均一なものとすることができる。この結果、成形品に薄肉化された部位が生じることを防止することができる。
【0039】
なお、本発明の成形技術が適用されるシート材は、前述のアルミ合金製に限定されるものではない。熱可塑性を有し、かつ温度によって伸び変形(歪み速度)が変化する材質のシート材であれば良く、2000系や7000系のアルミ合金製シート材はもちろんのこと、チタン合金など他の金属製シート材や、樹脂製のシート材にも、本実施形態の成形技術を適用することができる。
【0040】
また、本発明の温度制御手段は、本実施形態の「加熱されたシート材の冷却対象部分を冷却する冷却部」を有する構成に限定されるものではない。例えば、上蓋側に、シート材の各部分をそれぞれ加熱するヒータを設け、各ヒータの温度を別個に制御することで、シート材各部分の温度を異ならせて温度分布を形成しても良い。
【0041】
また、本発明の冷却部は、本実施系形態の「シート材の冷却対象部分に当接する冷却面」を有する構成に限定されるものではない。例えば、シート材の加熱温度より沸点が高い液体を、シート材に吹き付けて、加熱されたシート材の冷却対象部分を冷却する構成としても良い。
【図面の簡単な説明】
【0042】
【図1】本実施形態の成形装置の構成を示す概略図である。
【図2】本実施形態の成形装置における冷却コテ部の斜視図である。
【図3】本実施形態の成形技術によりシート材を成形加工する様子を時系列で示す断面図であり、成形加工の開始時でありシート材が加圧変形する前の状態を示す図である。
【図4】本実施形態の成形技術によりシート材を成形加工する様子を時系列で示す断面図であり、シート材の加圧変形が開始された状態を示す図である。
【図5】本実施形態の成形技術によりシート材を成形加工する様子を時系列で示す断面図であり、シート材の略中央部が成形面に密着した状態を示す図である。
【図6】本実施形態の成形技術によりシート材を成形加工する様子を時系列で示す断面図であり、シート材が成形面の隅部を除いて密着した状態を示す図である。
【図7】本実施形態の成形技術によりシート材を成形加工する様子を時系列で示す断面図であり、成形面にシート材が全て密着し、成形加工が完了した状態を示す図である。
【符号の説明】
【0043】
1 シート材、1a シート材の周囲部分、1b シート材の冷却対象部分、1c シート材の略中央部分、10 成形装置、12 冷却コテ部、14 金型、16 上蓋、20 成形面、24,26 ヒータ、32 密閉された空間、36 冷却コテ面、38 冷却配管。

【特許請求の範囲】
【請求項1】
周囲を挟持され且つ加熱されたシート材を、流体により加圧して変形させ、型の成形面に沿って密着させて成形する成形装置であって、
シート材が加圧される前に、加圧変形の開始から成形面への密着までに要する時間に基づき定められた温度分布を、シート材に形成する温度制御手段、を有する
成形装置。
【請求項2】
請求項1に記載の成形装置であって、
温度制御手段は、加熱されたシート材のうち、加圧変形の開始から成形面への密着までに要する時間が長い部分を、冷却する冷却部、を有する、
成形装置。
【請求項3】
請求項2に記載の成形装置であって、
冷却部は、
シート材の所定部分に当接して、これを冷却する冷却面と、
内部を冷媒が循環し、冷却面から伝導された熱を冷媒に放熱する冷却配管と、
を有する、
成形装置。
【請求項4】
周囲を挟持され且つ加熱されたシート材を、流体により加圧して変形させ、型の成形面に沿って密着させて成形する成形方法であって、
シート材を加熱する工程と、
シート材のうち、加圧変形の開始から成形面への密着までに要する時間に基づき定められる温度分布を、シート材に形成する温度制御工程と、
シート材を加圧して伸び変形させ、型の成形面に沿って密着させる加圧変形工程と、
を有する、
成形方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−105968(P2007−105968A)
【公開日】平成19年4月26日(2007.4.26)
【国際特許分類】
【出願番号】特願2005−298435(P2005−298435)
【出願日】平成17年10月13日(2005.10.13)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】