説明

撮像装置、光量測定装置および記録媒体ならびに露出量の算出方法

【課題】入射する光が偏光しているときであっても、露出量の調整が正しく行われる撮像装置、光量測定装置および記録媒体ならびに露出量の算出方法を提供する。
【解決手段】撮像装置は、入射光束を第1の光束および第2の光束に分離する光束分離素子と、第1の光束が入射するとともに、第1の光束に関するP偏光成分の強度またはS偏光成分の強度を取得する受光部と、第2の光束が入射する被照射体と、受光部で取得されたP偏光成分の強度またはS偏光成分の強度から、第2の光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力する信号処理部と、被照射体に対する第2の光束の入射および遮断を切り替えるシャッタと、被照射体に対する第2の光束の到達量を調整する絞りとを備える。シャッタのシャッタスピードおよび絞りの開きのうちの少なくとも1つが、信号処理部からの出力に応じて調整される。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、撮像装置、光量測定装置および記録媒体ならびに露出量の算出方法に関する。特に、入射する光の一部を露出量の算出に利用する撮像装置、光量測定装置および記録媒体ならびに露出量の算出方法に関する。
【背景技術】
【0002】
カメラなどの撮像装置を用いて、日光の強い屋外で撮影した場合や、白い部分の占める割合が多い被写体を撮影した場合に、得られた画像が、いわゆる白とび(Over Exposure)を起こしていることがある。白とびは、フィルムや撮像素子に対する露出量(露光量)が過度に大きくなってしまうことで発生する。逆に、暗い場所で撮影した場合や、黒い部分の占める割合が多い被写体を撮影した場合には、得られた画像が、いわゆる黒つぶれ(Under Exposure)を起こしていることもある。白とびや黒つぶれの発生を防止するには、撮影時の状況に応じて、フィルムや撮像素子に対する露出量を調整する必要がある。
【0003】
近年では、カメラが自動露出機能や自動測距機能(オートフォーカス機能)を備えることが多い。自動露出機能を備えるカメラでは、適正露出となるようにカメラが露出量の調整を行う。
【0004】
ところが、被写体からの光が偏光しているときなどに、自動露出機能を備えるカメラが露出量の計算を誤ってしまうことがある。特に、ハーフミラーなどの光学素子に反射(または透過)させた後の、被写体からの光の測光結果を露出量の計算に用いるカメラでは、被写体からの光が偏光していると、カメラが露出量の計算を誤りやすい。これは、ハーフミラーが、入射する光のP偏光成分およびS偏光成分に対して、それぞれ異なる反射特性(透過特性といってもよい。)を示すことによる。
【0005】
カメラが露出量の計算を誤ってしまうと、得られた画像が、撮影者の期待したイメージとは異なるものとなる。例えば、被写体からの光が、水面やガラス面などで反射した光であると、カメラが露出量の調整を正しく行うことができず、撮影者の意図しない白とびや黒つぶれが発生してしまうことがある。被写体からの光が、液晶表示装置からの光である場合も、同様である。
【0006】
自動露出機能によっても適正露出とならない場合には、撮影者自身が、光学フィルタを使用したり、絞りやシャッタスピードを調整したりして、露出量をさらに補正する必要がある。しかしながら、露出量の補正は経験や技術を必要とし、撮影者がイメージ通りの画像を得られないことも多い。また、被写体に動きがあると、絞りやシャッタスピードを調整する間に、せっかくのシャッタチャンスを撮影者が逃してしまうことにもなる。
【0007】
被写体からの光が偏光している場合でも、カメラが露出量の計算を誤らないようにするために、種々の提案がなされている。例えば、下記の特許文献1では、光学系にハーフプリズムを配置し、ハーフプリズムの透過光のP成分とS成分とがなす比率と、ハーフプリズムの反射光をさらにハーフミラーに透過させた光のP成分とS成分とがなす比率とを略等しくすることが提案されている。また、撮影者のイメージと得られる画像との間の乖離を解消するために、例えば、下記の特許文献2では、撮像装置の観察光学系の光路に無偏光ビームスプリッタを配置することにより、観察光学系の明るさムラを軽減することが提案されている。
【0008】
しかしながら、特許文献1に記載の技術は、複雑な光学部品を必要とし、撮像装置が大型化するとともに重くなってしまう。特許文献2に記載の技術は、特殊な光学部品を必要とし、設計上の制約が多い。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開昭63−231415号公報
【特許文献2】特開2006−349960号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
撮像装置や光量測定装置などに対しては、被写体からの光が偏光しているときであっても、露出量の調整が正しく行われることが望まれている。
【課題を解決するための手段】
【0011】
本開示の第1の好ましい実施態様は、
撮像装置が、光束分離素子と、受光部と、被照射体と、信号処理部と、シャッタと、絞りとを備える。
光束分離素子が、入射光束を第1の光束および第2の光束に分離する。
受光部には、第1の光束が入射し、受光部が、第1の光束に関するP偏光成分の強度またはS偏光成分の強度を取得する。
被照射体には、第2の光束が入射する。
信号処理部が、受光部で取得されたP偏光成分の強度またはS偏光成分の強度から、第2の光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力する。
シャッタが、被照射体に対する第2の光束の入射および遮断を切り替える。
絞りが、被照射体に対する第2の光束の到達量を調整する。
シャッタのシャッタスピードおよび絞りの開きのうちの少なくとも1つが、信号処理部からの出力に応じて調整される。
【0012】
本開示の第2の好ましい実施態様は、
光量測定装置が、光束分離素子と、受光部と、信号処理部とを備える。
光束分離素子が、入射光束を第1の光束および第2の光束に分離する。
受光部には、第1の光束および第2の光束のうちの一方が入射するとともに、受光部が、該一方に関するP偏光成分の強度またはS偏光成分の強度を取得する。
信号処理部が、受光部で取得されたP偏光成分の強度またはS偏光成分の強度から、第1の光束および第2の光束のうちの他方に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力する。
【0013】
本開示の第3の好ましい実施態様は、
記録媒体が、コンピュータによる読み取りが可能な記録媒体である。
コンピュータによる読み取りが可能な記録媒体には、プログラムが記録される。
記録されたプログラムが、一の入射光束から光束分離素子により分離された、一の入射光束の一部に関するP偏光成分の強度またはS偏光成分の強度を入力として、光束分離素子のP偏光成分またはS偏光成分に対応する反射率または透過率に関するデータから、一の入射光束の残余に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値をコンピュータに出力させるためのプログラムである。
【0014】
本開示の第4の好ましい実施態様は、
露出量の算出方法が、
第1の受光部により、一の入射光束から光束分離素子により分離された第1の光束に関するP偏光成分の強度またはS偏光成分の強度を取得することと、
信号処理部により、第1の受光部で取得されたP偏光成分の強度またはS偏光成分の強度から、一の入射光束から光束分離素子により分離された第2の光束に関するP偏光成分の強度またはS偏光成分の強度を予測することにより、前記第2の光束が入射する第2の受光部における露出量を算出することと
からなる。
【0015】
ここで、本開示における「P偏光成分」とは、光束分離素子の表面の法線ベクトルと、入射光の電場ベクトルとを含む面を入射面としたときに、入射面内に振動する偏光成分をいう。また、本開示における「S偏光成分」とは、光束分離素子の入射面に対して垂直に振動する偏光成分をいう。光束分離素子を反射した光および透過した光についても、同様とする。
【0016】
なお、本開示における「反射率」とは、エネルギ反射率をいうものとし、本開示における「透過率」とは、エネルギ透過率をいうものとする。すなわち、「反射率」をΓ、「透過率」をΠとおくと、Γ+Π=1の関係が成立する。また、本開示における「反射率」および「透過率」は、特に断りのない限り、400nm〜750nmの波長域における平均の反射率および透過率をそれぞれ指すものとする。
【0017】
本開示では、入射光束が、光束分離素子により、例えば、2つの光束に分離される。分離された光束のうちの一方(第1の光束)が、例えば、受光部に入射する。本開示では、受光部が、受光部への入射光束に関するP偏光成分の強度またはS偏光成分の強度を取得する。したがって、受光部への入射光束に関するP偏光成分の強度およびS偏光成分の強度が、それぞれ別個に取得される。
【0018】
光束分離素子が、例えば、被写体からの光の一部を反射させ、残余を透過する光学素子であったとする。一般に、光束分離素子におけるP偏光成分に対する反射率は、S偏光成分に対する反射率と異なっている。すなわち、第1の光束における、P偏光成分とS偏光成分との間の比率は、光束分離素子の反射特性に依存することになる。同様に、光束分離素子により分離されたもう一方の光束(第2の光束)における、P偏光成分とS偏光成分との間の比率も、光束分離素子の反射特性(透過特性)に依存することになる。そのため、光束分離素子により分離された光束のうち、一方の光束に関するすべての振動成分の強度をもとにして、他方の光束に関する強度を予測しようとすると、入射光束の偏光の度合いによっては、予測された強度と実際の強度との間に大きなずれが生じる。
【0019】
このことは、言い換えれば、光束分離素子により分離された光束のうち、一方の光束に関するP偏光成分の強度およびS偏光成分の強度がわかれば、他方の光束に関するP偏光成分の強度およびS偏光成分の強度を、それぞれ予測できることを意味する。例えば、光束分離素子の反射特性(透過特性)を、偏光成分ごとにあらかじめ把握しておけば、光束分離素子により分離された光束のうち、一方の光束に関するP偏光成分の強度から、他方の光束に関するP偏光成分の強度が正確に予測される。同様にして、一方の光束に関するS偏光成分の強度から、他方の光束に関するS偏光成分の強度が正確に予測される。したがって、一方の光束に関するP偏光成分の強度またはS偏光成分の強度をもとにして、他方の光束に関する強度が、他方の光束に関するP偏光成分の強度およびS偏光成分の強度の和として予測される。
【0020】
本開示では、上述したように、受光部への入射光束に関するP偏光成分の強度またはS偏光成分の強度が取得される。すなわち、受光部への入射光束に関するP偏光成分の強度およびS偏光成分の強度が、それぞれ別個に取得される。そのため、光束分離素子により分離された光束のうち、一方の光束に関する強度を、P偏光成分およびS偏光成分の区別なく取得した場合とは異なり、他方の光束に関するP偏光成分の強度およびS偏光成分の強度が、それぞれ正確に予測される。したがって、入射光束の偏光の度合いが大きい場合であっても、予測された強度と実際の強度との間に大きなずれが生じることがない。
【発明の効果】
【0021】
少なくとも1つの実施例によれば、入射する光が偏光しているときであっても、露出量の調整が正しく行われる撮像装置、光量測定装置および記録媒体ならびに露出量の算出方法を提供することができる。
【図面の簡単な説明】
【0022】
【図1】図1は、第1の実施形態にかかる撮像装置の概略的構成を示す略線図である。
【図2】図2は、第1の実施形態にかかる撮像装置の構成例を示すブロック図である。
【図3】図3Aおよび図3Bは、受光素子に到達する光のP偏光成分またはS偏光成分を切り替えるための偏光素子の一例の概略を示す斜視図である。
【図4】図4Aおよび図4Bは、受光素子に到達する光のP偏光成分またはS偏光成分を切り替えるための偏光素子の他の一例の概略を示す斜視図である。
【図5】図5A〜図5Dは、偏光素子を構成する液晶素子を説明するための図である。
【図6】図6Aおよび図6Bは、図5A〜図5Dに示した液晶素子の複数個を用いて偏光素子を構成した例を示す図である。
【図7】図7Aおよび図7Bは、図5A〜図5Dに示した液晶素子の複数個を用いて偏光素子を構成した例を示す図である。
【図8】図8Aは、光束分離素子の反射特性および透過特性の一例を示すグラフである。図8Bは、光束分離素子の反射特性および透過特性の他の一例を示すグラフである。
【図9】図9は、第1の実施形態にかかる撮像装置の変形例の概略的構成を示す略線図である。
【図10】図10Aおよび図10Bは、第2の実施形態にかかる撮像装置の概略的構成を示す略線図である。
【図11】図11Aおよび図11Bは、第2の実施形態にかかる撮像装置の変形例の概略的構成を示す略線図である。
【図12】図12は、第3の実施形態にかかる光量測定装置の構成例を示すブロック図である。
【発明を実施するための形態】
【0023】
以下、撮像装置、光量測定装置および記録媒体ならびに露出量の算出方法の実施形態について説明する。説明は、以下の順序で行う。
<1.第1の実施形態>
[撮像装置の概略的構成]
[撮像装置の動作]
[自動露出の応用例]
[第1の実施形態の変形例]
<2.第2の実施形態>
[撮像装置の概略的構成]
[撮像装置の動作]
[第2の実施形態の変形例]
<3.第3の実施形態>
[光量測定装置の概略的構成]
<4.変形例>
【0024】
なお、以下に説明する実施形態は、撮像装置、光量測定装置および記録媒体ならびに露出量の算出方法の好適な具体例である。以下の説明においては、技術的に好ましい種々の限定が付されているが、特に本開示を限定する旨の記載がない限り、撮像装置、光量測定装置および記録媒体ならびに露出量の算出方法の例は、以下に示す実施形態に限定されないものとする。
【0025】
<1.第1の実施形態>
[撮像装置の概略的構成]
図1は、第1の実施形態にかかる撮像装置の概略的構成を示す略線図である。図1に示すように、第1の実施形態にかかる撮像装置1は、光束分離素子3と、受光部5と、被照射体7と、信号処理部21と、シャッタ9と、絞り11とを備える。第1の実施形態にかかる撮像装置1は、具体的には、例えば、ペリクルミラー内蔵型のカメラである。図1に示す例では、鏡筒1aが、撮像装置1の本体1bの筐体19に対して着脱自在とされる。もちろん、鏡筒1aおよび本体1bを一体的として、撮像装置1を構成してもかまわない。鏡筒1aの内部には、絞り11やレンズ13,15などが配置されている。レンズ13,15は、フォーカス駆動系によって駆動され、オートフォーカス動作が可能とされるが、図1においては、フォーカス駆動系の図示を省略している。
【0026】
光束分離素子3は、撮像装置1への入射光束Fの一部を反射させるとともに、残余を透過させることにより、入射光束Fを、例えば、2つの光束に分離する。光束分離素子3により分離された一方の光束は、受光部5に入射する。受光部5は、入射する光束に関するP偏光成分の強度またはS偏光成分の強度を取得する。受光部5で取得されたP偏光成分の強度またはS偏光成分の強度は、信号処理部21に対する入力とされる。光束分離素子3により分離された他方の光束は、被照射体7に入射する。被照射体7に対する光束の入射および遮断は、シャッタ9により切り替えられ、被照射体7に対する光束の到達量は、絞り11により調整される。シャッタ9のシャッタスピードおよび絞り11の開きのうちの少なくとも1つは、信号処理部21からの出力に応じて調整される。シャッタ9のシャッタスピードまたは絞り11の開きの調整は、信号処理部21により出力される、被照射体7に入射する光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値に応じて実行される。
【0027】
以下、光束分離素子3、受光部5、被照射体7、信号処理部21、シャッタ9および絞り11について、図1を参照しながら、順に説明する。
【0028】
(光束分離素子)
光束分離素子3は、絞り11やレンズ13,15などを介して筺体19の内部に入射する被写体からの光を、反射および透過させる光学素子である。光束分離素子3は、被写体からの光の一部を反射させ、残余の光を透過させる。光束分離素子3の反射率は、例えば、30%程度とされ、したがって、光束分離素子3の透過率は、例えば、70%程度とされる。もちろん、光束分離素子3の被写体からの光に対する反射率および透過率は、上述の値に限られず、適宜設定される。
【0029】
第1の実施形態では、光束分離素子3が、撮像素子1の内部において、筺体19に対して固定されている。すなわち、第1の実施形態では、光束分離素子3の反射面にたてた法線Nと入射光束Fの光軸とのなす角ξが、一定である。画質の劣化を低減する観点から、角ξが45°より小であることが好ましい。角ξが45°以上である場合と比較して、被写体からの光が光束分離素子3を通過する距離(光学的距離といってもよい。)を小とすることができるからである。
【0030】
光束分離素子3としては、例えば、半透過ミラーを用いることができる。半透過ミラーは、例えば、光透過性基材の一主面上に光学薄膜を形成することにより形成することができる。光透過性基材を構成する材料としては、例えば、樹脂材料やガラスなどを挙げることができる。光透過性基材として樹脂フィルムを用いることにより、撮像装置1を小型かつ軽量に構成することができる。光束分離素子3としては、半透過ミラーのほかに、プリズム型またはウェッジ基板型の光学素子を用いることができるが、画質の劣化を低減する観点から、平板型の光学素子が選択されることが好ましい。光学素子がプリズム型またはウェッジ基板型の場合と比較して、被写体からの光が光束分離素子3を通過する距離を小とすることができるからである。なお、光透過性基材の厚さとしては、10μm以上100μm以下であることが好ましい。
【0031】
(受光部)
受光部5は、光束分離素子3により分離された光束のうちの一方が入射する光学部品である。受光部5は、具体的には、いわゆる測光センサである。受光部5は、筺体19の内部において、例えば、光束分離素子3により反射された、被写体からの光の一部が入射するように配置される。
【0032】
受光部5は、受光部5への入射光束に関するP偏光成分の強度またはS偏光成分の強度を取得できればよく、受光部5は、例えば、偏光素子51と、1以上の受光素子53とを含む。後述するように、本開示では、受光部5が、入射する光束に関するP偏光成分の強度またはS偏光成分の強度を取得する。受光部5が、オートフォーカス機能のための測距センサを含んでいてもよい。
【0033】
受光素子53としては、例えば、シリコンフォトダイオード、ガリウム砒素フォトダイオード、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などのイメージセンサ、硫化カドミウムの焼結体を含む硫化カドミウムセル(CdSセル)などを用いることができる。偏光素子51の具体的な構成例については、後述する。
【0034】
(被照射体)
被照射体7には、光束分離素子3により分離された光束のうち、受光部5に入射しない側の光束が入射する。すなわち、例えば、光束分離素子3により反射された、被写体からの光の一部が受光部5に入射する場合には、被照射体7は、筺体19の内部において、光束分離素子3により反射されずに光束分離素子3を透過した被写体からの光が入射するように配置される。
【0035】
被照射体7は、具体的には、例えば、フィルムまたは撮像素子である。撮像素子としては、例えば、CCDやCMOSなどのイメージセンサを用いることができる。以下の説明では、被照射体7が撮像素子であるものとして説明を行うが、本開示の撮像装置は、フィルムを用いたアナログ方式のカメラまたは撮像素子を用いたデジタル方式のカメラのいずれであってもよい。
【0036】
撮像装置1には、必要に応じて、電子式ビューファインダとしての機能を有する表示部17が設けられる。表示部17は、例えば、液晶ディスプレイ(Liquid Crystal Display(LCD))や有機EL(Electroluminescence:電界発光効果)ディスプレイなどのフラットディスプレイである。なお、図1に示す例では、表示部17が筺体19の背面側に設けられているが、表示部17を設ける箇所は、これに限られない。表示部17が筺体19の上面などに設けられてもよく、表示部17が可動式や取り外し式とされてもよい。表示部17をファインダの内部に設けてもよい。表示部17が、例えばタッチパネルなどの、ユーザからの指示を受け取る入力装置とされてももちろんかまわない。
【0037】
撮像素子からの信号は、後述する信号処理部21により、デジタルゲイン調整、ガンマ補正、色補正、コントラスト補正などの画像処理がなされた後、映像信号として表示部17に供給される。したがって、表示部17には、現在の被写体像が表示される。
【0038】
(信号処理部)
信号処理部21は、受光部5や被照射体7からの出力信号や、撮像装置1のユーザからの指令信号などを入力として、各種の演算処理および撮像装置1の各部の制御を行う処理装置である。信号処理部21は、例えば、マイクロプロセッサのほか、アナログデジタル変換回路、画像処理回路、圧縮伸張回路、ビデオ信号出力回路、入出力回路などを含む。後述するように、各種の演算処理や撮像装置1の各部の制御を行うためのプログラムは、例えば、信号処理部21に接続された記憶部23に格納されている。信号処理部21が、記憶部23を含む処理装置であってもよい。
【0039】
本開示では、信号処理部21により、受光部5で取得されたP偏光成分の強度またはS偏光成分の強度から、被照射体7への入射光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値が算出される。したがって、記憶部23には、受光部5で取得されたP偏光成分の強度またはS偏光成分の強度から、信号処理部21が、被照射体7への入射光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力するためのプログラムが格納されている。
【0040】
記憶部23としては、例えば、不揮発性または揮発性メモリ、光記録媒体、光磁気記録媒体、磁気記録媒体などの記録媒体を挙げることができるが、格納されたプログラムをコンピュータが読み取りできればよく、記録媒体の種類は特に限定されない。
【0041】
(シャッタ)
シャッタ9は、例えば、光束分離素子3を透過した光の、被照射体9に対する入射および遮断を切り替えるために撮像装置1の内部に配置される。シャッタ9としては、被照射体7の受光面の直前に配置されるフォーカルプレーンシャッタや、鏡筒1aの内部に配置されるレンズシャッタなどを挙げることができる。また、シャッタ9としては、機械的動作を伴う機械式シャッタ、シャッタスピードに応じた時間分だけ撮像素子からの出力信号を取得する電子式シャッタまたはこれらの組み合わせを用いることができる。シャッタ9が機械式シャッタの場合には、具体的には、例えば、シャッタ9に設けられたスリットの間隔が変更自在とされ、スリットの間隔が変更されることにより、シャッタ9のシャッタスピードが調整される。
【0042】
図1においては、シャッタ9としてフォーカルプレーンシャッタを備える撮像装置を例示したが、シャッタ9の種類は、これに限られず、適宜選択することができる。なお、図1においては、シャッタ9を明示的に示したが、電子式シャッタを用いる場合には、被照射体7としての撮像素子がシャッタ9の機能を兼ねるため、部材としてシャッタ9を必ずしも撮像装置1の内部に配置する必要はない。
【0043】
(絞り)
絞り11は、被照射体7への入射光束の到達量を調整するために撮像装置1の内部に配置される。絞り11は、一般に、複数枚の羽根状の遮光部材の組み合わせからなり、絞り11は、例えば、鏡筒1aの内部に配置される。もちろん、絞り11が、本体1bの内部に配置されていてもよい。絞り11の開口は、複数枚の遮光部材の重なり具合が変更されることにより調整される。
【0044】
[撮像装置の動作]
次に、図2を参照しながら、第1の実施形態にかかる撮像装置の動作を説明する。
【0045】
図2は、第1の実施形態にかかる撮像装置の構成例を示すブロック図である。なお、図2においては、オートフォーカス機能のための測距センサや、赤外線カットフィルタ、画像のデータが格納される本体メモリまたは外部メモリ、各種駆動機構の制御回路、表示部の駆動回路などの図示を省略した。以下の説明においても、特に断りのない限り、これらの図示を省略する。
【0046】
まず、レンズ13,15や絞り11を介して、被写体からの光が、光束分離素子3に入射する。このとき、絞り11は全開とされている。光束分離素子3に入射した光の一部は、光束分離素子3により反射され、受光部5に入射する。一方、光束分離素子3を透過した光は、シャッタ9および被照射体7に向かって進行する。
【0047】
受光部5は、光束分離素子3により反射された光を受光するとともに、例えば、受光素子の光電変換作用により、受光部5に到達した光のエネルギ量に関する情報を取得する。受光部5は、取得された情報を出力信号として信号処理部21に向けて送出する。信号処理部21は、受光部5からの出力信号を入力として演算処理を行い、露出量の計算を行う。すなわち、被照射体7に対する露出量は、被写体からの光により運ばれるエネルギ量のうち、光束分離素子3により反射された光により運ばれるエネルギ量をもとにして算出される。
【0048】
(P偏光成分またはS偏光成分のエネルギ量に関する情報の取得)
ここで、本開示では、受光部5に到達する光のエネルギ量に関する情報の取得に際して、受光部5に到達する光のP偏光成分またはS偏光成分のエネルギ量に関する情報の取得が行われる。該情報の取得は、例えば、受光部5に対して、光束分離素子3により反射された光が入射しているときに、継続して行われる(常時測光)。または、例えば、該情報の取得は、撮影者がシャッタボタンを半押ししたときに行われる。該情報の取得に際しては、受光部5に到達する光をなるべく多くするために、絞り11が全開とされていることが好ましい。受光部5に到達する光のP偏光成分またはS偏光成分のエネルギ量に関する情報の取得は、例えば、光束分離素子3と受光素子53との間に配置された偏光素子51を透過する偏光成分の切り替えにより実現される。
【0049】
図3Aおよび図3Bは、受光素子に到達する光のP偏光成分またはS偏光成分を切り替えるための偏光素子の一例の概略を示す斜視図である。受光素子53に到達する光のP偏光成分またはS偏光成分を切り替えるための偏光素子は、例えば、1枚以上の偏光子からなる。例えば、図3Aおよび図3Bに示す偏光素子51aは、同一面内に並べて配置された2枚の偏光子51sおよび偏光子51pからなる。偏光子51sは、光束分離素子3により反射された光の偏光成分のうち、S偏光成分のみを透過する。一方、偏光子51pは、光束分離素子3により反射された光の偏光成分のうち、P偏光成分のみを透過する。偏光子51sおよび偏光子51pは、一方が、もう一方の偏光子の吸収軸と平行な方向に沿って配置される。
【0050】
図3Aは、光束分離素子3により反射された光の偏光成分のうち、S偏光成分のエネルギ量に関する情報の取得を行うときの、偏光素子51および受光素子53の配置を示す図である。図3Aに示すように、S偏光成分のエネルギ量に関する情報の取得に際しては、光束分離素子3と受光素子53との間には、偏光子51sが配置される。偏光子51sは、光束分離素子3により反射された光の偏光成分のうち、S偏光成分のみを透過させるので、受光素子53には、光束分離素子3により反射された光の偏光成分のうち、S偏光成分のみが到達する。したがって、受光部5は、光束分離素子3により反射された光の偏光成分のうち、S偏光成分のエネルギ量に関する情報を取得する。なお、図3Aにおいて、網掛けされた矢印は、光束分離素子3により反射された光の偏光成分のうち、S偏光成分を模式的に示し、網掛けされていない矢印は、P偏光成分を模式的に示している。以下の説明においても、同様とする。
【0051】
図3Bは、光束分離素子3により反射された光の偏光成分のうち、P偏光成分のエネルギ量に関する情報の取得を行うときの、偏光素子51および受光素子53の配置を示す図である。P偏光成分のエネルギ量に関する情報の取得に際しては、偏光子51sおよび偏光子51pが、例えば、偏光子51pの吸収軸に沿った方向(図3Aに示す矢印Xの方向)に移動される。したがって、図3Bに示すように、P偏光成分のエネルギ量に関する情報の取得に際しては、光束分離素子3と受光素子53との間には、偏光子51pが配置される。このようにすることで、受光部5は、受光部5に到達する光のP偏光成分またはS偏光成分のエネルギ量に関する情報をそれぞれ取得することができる。
【0052】
なお、偏光子51sおよび偏光子51pを並べて配置して偏光素子を構成することにかえ、偏光子51sまたは偏光子51pのうちの一方のみから偏光素子を構成してもよい。例えば、偏光子51pを省略し、偏光子51sのみから偏光素子を構成した場合には、まず、光束分離素子3により反射された光の偏光成分のうち、例えば、S偏光成分のエネルギ量に関する情報の取得を行う。その後、光路上から偏光子51sを退避させた上で、光束分離素子3により反射された光のエネルギ量に関する情報の取得を行えば、光束分離素子3により反射された光のS偏光成分のエネルギ量とP偏光成分のエネルギ量との和(光束分離素子3により反射された光の総エネルギ量)に関する情報が取得される。このとき、P偏光成分のエネルギ量は、後者と前者との差として計算することができる。
【0053】
図4Aおよび図4Bは、受光素子に到達する光のP偏光成分またはS偏光成分を切り替えるための偏光素子の他の一例の概略を示す斜視図である。図4Aおよび図4Bに示す例は、透過光を直線偏光とする1枚の偏光子により偏光素子51bを構成した例である。
【0054】
図4Aは、光束分離素子3により反射された光の偏光成分のうち、S偏光成分のエネルギ量に関する情報の取得を行うときの、偏光素子51bおよび受光素子53の配置を示す図である。図4Aに示すように、偏光子51bは、光束分離素子3と受光素子53との間に配置される。
【0055】
初期状態では、偏光子51bは、例えば、光束分離素子3により反射された光の偏光成分のうち、S偏光成分のみを透過させる。したがって、受光部5は、光束分離素子3により反射された光の偏光成分のうち、S偏光成分のエネルギ量に関する情報を取得する。
【0056】
P偏光成分のエネルギ量に関する情報の取得に際しては、偏光子51bは、光束分離素子3により反射された光の光軸に沿った方向と平行な軸(図4Aに示す軸C)を回転軸として、90°回転される。そうすると、偏光子51bの吸収軸が90°回転することとなり、偏光子51bは、光束分離素子3により反射された光の偏光成分のうち、P偏光成分のみを透過させることになる。したがって、受光部5は、受光部5に到達する光のP偏光成分およびS偏光成分のエネルギ量に関する情報をそれぞれ取得することができる。
【0057】
偏光子のほか、液晶素子を用いて、偏光素子51を構成することも可能である。
【0058】
図5A〜図5Dは、偏光素子を構成する液晶素子を説明するための図である。図5Aは、偏光素子を構成する液晶素子41の断面模式図である。図5Aに示すように、液晶素子41は、例えば、光透過性基材45aおよび光透過性基材45bと、透明導電層43aおよび透明導電層43bと、液晶分子46を含む液晶層47とを備える。光透過性基材45aおよび光透過性基材45bの一主面上には、透明導電層43aおよび透明導電層43bがそれぞれ設けられており、光透過性基材45aおよび光透過性基材45bは、透明導電層43aと透明導電層43bとが対向するようにして配置される。液晶層47は、透明導電層43aが設けられた光透過性基材45aと、透明導電層43bが設けられた光透過性基材45bとの間に封止される。透明導電層43aおよび透明導電層43bは、電源49と接続することにより、透明導電層43aと透明導電層43bとの間に電場を発生させることができるようになされている。
【0059】
図5Aおよび図5Bに示すように、初期状態では、透明導電層43aおよび透明導電層43bが電源49と接続されておらず、液晶層47中の液晶分子46の長軸方向が、透明導電層43aおよび透明導電層43bの面に平行な一方向に揃えられた状態とされる。図5Aに示す状態で液晶素子41に光が入射すると、液晶素子41は、入射した光の偏光成分のうち、液晶分子46の長軸方向に沿って振動する成分のみを透過させる。例えば、図5Bに示すように、液晶素子41は、入射した光の偏光成分のうち、S偏光成分のみを透過させる。したがって、透明導電層43aおよび透明導電層43bが電源49と接続されていない液晶素子41は、偏光子と同様の機能を有する。なお、図5Bにおいては、電源49の図示を省略した。
【0060】
図5Cおよび図5Dは、透明導電層43aおよび透明導電層43bに電源49を接続することにより、透明導電層43aと透明導電層43bとの間に電場を発生させた状態を示す図である。液晶層47中の液晶分子46は、電場の印加などの刺激によって簡単に分子の並び方が変わる。液晶層47中の液晶分子46に電場がかかると、液晶分子46は、液晶分子46の長軸方向が電場と平行になるように並び方を変える。液晶分子46が、液晶分子46の長軸方向が電場と平行になるように並び方を変えると、図5Dに示すように、入射した光のP偏光成分およびS偏光成分が、ともに液晶素子41を通過するようになる。なお、図5Dにおいては、電源49の図示を省略した。
【0061】
上述したように、液晶素子41は、透明導電層43aおよび透明導電層43bへの通電の有無により、液晶素子41を透過する偏光成分を切り替えることができる。さらに、図5A〜図5Dに示した液晶素子の複数個を組み合わせることにより、透過する偏光成分を選択的に切り替える偏光素子を構成することもできる。
【0062】
図6Aおよび図6Bならびに図7Aおよび図7Bは、図5A〜図5Dに示した液晶素子の複数個を用いて偏光素子を構成した例を示す図である。図6Aおよび図6Bならびに図7Aおよび図7Bにおいては、電源49の図示を省略した。
【0063】
図6Aおよび図6Bならびに図7Aおよび図7Bに示す偏光素子51cは、液晶素子41aおよび液晶素子41bが、入射する光の光軸の方向に沿って重なるように配置されることにより構成されている。図6Aは、偏光素子51cを構成する液晶素子41aおよび液晶素子41bに通電がされていない状態を示す図である。液晶素子41aと液晶素子41bとは、ともに通電がされていない状態において、液晶素子41aの液晶層47a中の液晶分子の長軸方向と、液晶素子41bの液晶層47b中の液晶分子の長軸方向とが直交するようにして配置される。
【0064】
ここで、偏光素子51cに対して、液晶素子41b側から液晶素子41a側に向かって、光が入射したとする。偏光素子51cに入射した光は、例えば、液晶素子41bによりP偏光成分が遮られ、S偏光成分だけが液晶素子41aに入射する。ところが、液晶素子41aはP偏光成分のみを透過させるため、液晶素子41aに入射した光は液晶素子41aにより遮られる。すなわち、液晶素子41aおよび液晶素子41bが通電されていない状態においては、図6Aに示すように、偏光素子51cは、すべての振動成分を遮ることになる。
【0065】
図6Bは、偏光素子51cを構成する液晶素子のうち、液晶素子41bにのみ通電がされた状態を示す図である。この場合は、偏光素子51cに入射した光のすべての振動成分が、液晶素子41bを透過して液晶素子41aに入射する。液晶素子41aに入射した光は、液晶素子41aによりS偏光成分が遮られ、P偏光成分のみが透過する。したがって、このときの偏光素子51cは、図6Bに示すように、全体としてP偏光成分のみを透過させる偏光子として機能する。
【0066】
図7Aは、偏光素子51cを構成する液晶素子のうち、液晶素子41aにのみ通電がされた状態を示す図である。この場合は、液晶素子41bに入射した光は、液晶素子41bによりP偏光成分が遮られ、S偏光成分のみが液晶素子41aに入射する。通電がされた液晶素子41aは、液晶素子41aに入射した光のすべての振動成分を透過させるため、液晶素子41aに入射した光のすべての振動成分、すなわち、S偏光成分のみが液晶素子41aから出射されることになる。したがって、このときの偏光素子51cは、図7Aに示すように、全体としてS偏光成分のみを透過させる偏光子として機能する。
【0067】
なお、偏光素子51cに入射した光のすべての振動成分を透過させるには、図7Bに示すように、液晶素子41aと液晶素子41bとが、ともに通電がされた状態とすればよい。
【0068】
上述したように、偏光素子51として液晶素子を用いることにより、受光素子53に到達する光のP偏光成分またはS偏光成分のエネルギ量に関する情報を取得するに際して、偏光子の移動や回転などの機械的動作を不要とできる。したがって、撮像装置の構成が複雑化することがなく、撮像装置を小型かつ軽量に構成することができる。また、撮像装置の内部で機械的動作を伴う部材を必要としないので、撮像素子の内部におけるダストの発生を防止することができる。
【0069】
なお、第1の実施形態では、例えば、光束分離素子3により反射された光のうち、下記<1>〜<3>に示すいずれかの組み合わせ方により、受光部5に到達する光のP偏光成分およびS偏光成分のエネルギ量に関する情報の取得が行われる。いずれの場合についても、受光部5が、受光部5に到達する光のP偏光成分のエネルギ量に関する情報と、S偏光成分のエネルギ量に関する情報とを、それぞれ区別して別個に取得できることに変わりはない。
<1> (P偏光成分,S偏光成分)
<2> (P偏光成分,すべての振動成分)
<3> (S偏光成分,すべての振動成分)
【0070】
受光部5に到達する光の振動成分のうち、P偏光成分、S偏光成分またはすべての振動成分のいずれについてのエネルギ量に関する情報を取得するかの切り替えは、偏光素子の移動や回転、液晶素子への通電の切り替えなどにより行われる。偏光素子の移動や回転、液晶素子への通電の切り替えは、偏光素子駆動機構61によって行われ、偏光素子駆動機構61は、信号処理部21からの制御信号により制御される。なお、液晶素子の応答速度は、数ミリ秒(1/1000[秒])と高速であるので、偏光素子51として液晶素子を用いることにより、受光部5に到達する光のP偏光成分およびS偏光成分のエネルギ量に関する情報の取得を高速に行うことが可能である。受光部5で取得された、受光部5に到達する光のP偏光成分およびS偏光成分のエネルギ量に関する情報は、受光部5からの出力信号として信号処理部21へ送られる。
【0071】
(露出量の算出)
信号処理部21は、受光部5からの出力信号を入力として演算処理を行い、被照射体7への入射光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力する。具体的には、信号処理部21は、被写体からの光により運ばれるエネルギ量のうち、光束分離素子3を透過した光により運ばれるエネルギ量を予測することにより、被照射体7に対する露出量を算出する。
【0072】
いま、被写体からの光により運ばれる総エネルギ量をΦ[w]とし、総エネルギ量Φ[w]のうち、P偏光成分の大きさをΦp[w]、S偏光成分の大きさをΦs[w]とする。すなわち、Φ[w]=Φp[w]+Φs[w]が成り立つものとする。なお、本明細書において単にエネルギ量というときは、単位時間当たりのエネルギ量をいうものとする。また、光束分離素子3における、入射光束FのP偏光成分に対する反射率および透過率が、それぞれΓp、Πpであったとする。同様に、光束分離素子3における、入射光束FのS偏光成分に対する反射率および透過率が、それぞれΓs、Πsであったとする。
【0073】
図8Aは、光束分離素子の反射特性および透過特性の一例を示すグラフである。図8Aに示すグラフは、入射光束のP偏光成分に対する反射率および透過率と、入射光束のS偏光成分に対する反射率および透過率とを重ねて示している。また、図8Aは、反射率および透過率を縦軸にとり、光束分離素子に入射する光の波長λ[nm]を横軸にとったグラフである。図8Aにおいて、L1pおよびL1sは、入射光束のP偏光成分に対する透過率Πpおよび入射光束のS偏光成分に対する透過率Πsをそれぞれ示し、L1aは、ΠpおよびΠsの算術平均を示している。また、図8Aにおいて、L2pおよびL2sは、入射光束のP偏光成分に対する反射率Γpおよび入射光束のS偏光成分に対する反射率Γsをそれぞれ示し、L2aは、ΓpおよびΓsの算術平均を示している。
【0074】
図8Aに示すように、一般に、入射光束のP偏光成分に対する透過率Πpと、入射光束のS偏光成分に対する透過率Πsとは、同じ値とはならない。すなわち、入射光束のP偏光成分に対する反射率Γpと、入射光束のS偏光成分に対する反射率Γsとについても、同じ値とはならない。
【0075】
被照射体7に到達する光の総エネルギ量Φr[w]は、信号処理部21により、以下の手順で予測される。
【0076】
まず、信号処理部21は、受光部5に到達した光のP偏光成分およびS偏光成分のエネルギ量に関する情報を受光部5から取得する。光束分離素子3における、入射光束FのP偏光成分に対する反射率がΓpであり、S偏光成分に対する反射率がΓsであることから、受光部5に到達する光のP偏光成分およびS偏光成分のエネルギ量は、それぞれ(Γp*Φp)[w]、(Γs*Φs)[w]である。
【0077】
次に、信号処理部21は、記憶部23から、光束分離素子3の反射特性(透過特性)に関するデータを呼び出す。該データは、偏光成分ごとの、光束分離素子3の透過率と反射率との比率に関するデータであり、具体的には、該データは、(Πp/Γp)および(Πs/Γs)の値である。すなわち、記憶部23には、被照射体7への入射光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力するためのプログラムのほかに、(Πp/Γp)および(Πs/Γs)の値が格納されている。
【0078】
次に、信号処理部21は、受光部5に到達する光のエネルギ量から、被照射体7に到達する光のP偏光成分およびS偏光成分のエネルギ量の計算を行う。例えば、被照射体7に到達する光のP偏光成分のエネルギ量Φrp[w]は、(Πp*Φp)[w]であるから、受光部5に到達した光のP偏光成分のエネルギ量と、光束分離素子3の透過率と反射率との比率とを用いて、以下の式(1)により求めることができる。
Φrp[w]=(Πp/Γp)*(Γp*Φp)[w] ・・・(1)
【0079】
同様にして、以下の式(2)により、被照射体7に到達する光のS偏光成分のエネルギ量Φrs[w]が求められる。
Φrs[w]=(Πs/Γs)*(Γs*Φs)[w] ・・・(2)
【0080】
信号処理部21は、上述した演算により、被照射体7への入射光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力することができる。したがって、Φrp[w]とΦrs[w]との和として被照射体7に到達する光の総エネルギ量Φr[w]が求められるので、被照射体7に対する露出量が、信号処理部21により算出されたことになる。しかも、本開示によれば、(Πp/Γp)および(Πs/Γs)の値さえ用意しておけば、被写体からの光の偏光の度合いによらず、被照射体7に対する露出量を、偏光成分ごとに正確に求められる。しかも、(Πp/Γp)および(Πs/Γs)の値は、あらかじめ正確に測定しておくことが可能である。
【0081】
反射率Γpおよび透過率Πpならびに反射率Γsおよび透過率Πsが、波長400nm〜750nmの可視光領域(カラーフィルタを含む撮像素子の感度域といってもよい。)においてほぼ一定のとき、上述の演算により、光束分離素子3を透過した光により運ばれるエネルギ量を予測することができる。反射率Γpおよび透過率Πpならびに反射率Γsおよび透過率Πsが、可視光領域においてほぼ一定ではないときには、例えば、可視光領域を複数の波長帯域に区分して、区分された波長帯域ごとに(Πp/Γp)および(Πs/Γs)の値を用意しておけばよい。
【0082】
図8Bは、光束分離素子の反射特性および透過特性の他の一例を示すグラフである。図8Bに示すグラフは、入射光束のP偏光成分に対する反射率および透過率と、入射光束のS偏光成分に対する反射率および透過率とを重ねて示している。また、図8Bは、反射率および透過率を縦軸にとり、光束分離素子に入射する光の波長λ[nm]を横軸にとったグラフである。図8Bにおいて、L3pおよびL3sは、入射光束のP偏光成分に対する透過率Πpおよび入射光束のS偏光成分に対する透過率Πsをそれぞれ示し、L3aは、ΠpおよびΠsの算術平均を示している。また、図8Bにおいて、L4pおよびL4sは、入射光束のP偏光成分に対する反射率Γpおよび入射光束のS偏光成分に対する反射率Γsをそれぞれ示し、L4aは、ΓpおよびΓsの算術平均を示している。
【0083】
図8Bに示す例では、例えば、λ=520[nm]の近傍においては、P偏光成分とS偏光成分との間で、透過率Πpと透過率Πsと間の差(反射率Γpと反射率Γsとの間の差)は小さい。ところが、例えば、λ=650[nm]の近傍においては、P偏光成分とS偏光成分との間で、透過率Πpと透過率Πsとの間の差(反射率Γpと反射率Γsとの間の差)が、λ=520[nm]の近傍の場合と比較して大きい。このように、光束分離素子に入射した光の波長によって、透過率Πpと透過率Πsとの間の差(反射率Γpと反射率Γsとの間の差)が大きく変化する場合には、可視光領域を複数の波長帯域に区分して、区分された波長帯域ごとに(Πp/Γp)および(Πs/Γs)の値を用意しておく。
【0084】
光束分離素子が、図8Bに示す反射特性(透過特性)を示す場合には、例えば、入射光から知覚される色みごとに、可視光領域を区分することができる。例えば、図8Bに示すλbは、400≦λ<490[nm]の範囲を、λgは、490≦λ<600[nm]の範囲を、λrは、600≦λ≦750[nm]の範囲を示している。記憶部23には、例えば、λb、λgおよびλrに対応する、光束分離素子3の透過率および反射率のデータが、偏光成分ごとに格納される。すなわち、記憶部23は、下記の表1に示すデータを格納しておくことができる。もちろん、記憶部23が、λb、λgおよびλrに対応した、(Πp/Γp)および(Πs/Γs)の値のみを格納しておいてもよい。
【0085】
【表1】

【0086】
信号処理部21は、受光部5に入射した光の波長に応じて、λb、λgおよびλrに対応した、(Πp/Γp)および(Πs/Γs)の値を選択し、上述した演算を実行する。
【0087】
なお、可視光領域の区分は任意に設定することができ、例えば、撮像素子とともに配置されるカラーフィルタを透過する光の波長ごと、撮像素子の感度域ごとなどに設定することもできる。可視光領域を区分する数が増えるほど、信号処理部21から出力される予測計算値は、より正確となる。
【0088】
(露出量の調整)
次に、信号処理部21は、被照射体7への入射光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値をもとにして、被照射体7に対する露出量を算出した後、被照射体7に対する露出量の調整のための制御信号を送出する。信号処理部21は、例えば、シャッタ駆動機構63に対して、シャッタ9のシャッタスピードを調整するための制御信号を送出する。信号処理部21は、また、例えば、鏡筒1aと本体1bとの間の電気的接続部64を介し、鏡筒11内に備えられた絞り駆動機構63に対して、絞り11の開きを調整するための制御信号を送出する。シャッタ駆動機構63および絞り駆動機構63は、信号処理部21からの制御信号に従い、シャッタ9のシャッタスピードおよび絞り11の開きを適正な値に設定する。
【0089】
露出のモードとしては、Pモード(プログラムオート)やSモード(シャッタ優先オート)、Aモード(絞り優先オート)などがあるが、本開示では、撮影に際して、いずれのモードも任意に選択することが可能である。撮影者の要求などに応じて、ISO感度(ISO speed)と組み合わせた露出量の調整ももちろん可能である。例えば、シャッタ9のシャッタスピードおよび絞り11の開きが、ISO感度が考慮されたうえで調整されるようにしてもよい。本開示では、被照射体7に到達する光の総エネルギ量Φr[w]が、それぞれ別個に求められたΦrp[w]およびΦrs[w]の和として求められるが、Φr[w]が得られることに変わりはないからである。
【0090】
本開示によれば、入射光束の偏光の度合いが大きい場合であっても、信号処理部により求められたエネルギ量は、実際に被照射体7に到達する光の総エネルギ量との間にずれが生じない。なお、上述した一連の処理は、信号処理部21により、記憶部23に格納された制御プログラムにしたがって実行される。
【0091】
[自動露出の応用例]
(連写機能との連携)
本開示によれば、入射光束の偏光の度合いが大きい被写体(以下、「偏光被写体」と記載する。)と、入射光束の偏光の度合いが小さい被写体(以下、「一般被写体」と記載する。)とに対して、それぞれを適正露出としながら、これらを一つの画像として得ることも可能である。本開示の露出量の算出方法によれば、例えば、池の畔に立つ人物を撮影する場合に、水面(偏光被写体)からの反射光を測光しても、適正露出とすることができる。ところが、偏光被写体からの光をもとにして決められた露出量は、池の畔に立つ人物(一般被写体)を撮影するのに適した露出量であるとは限らない。そこで、一般には、露出量を、偏光被写体と一般被写体のどちらにあわせるかを撮影者が選択することになる。
【0092】
本開示によれば、被写体からの光の偏光の度合いによらず、かつ光学フィルタの交換などを必要とせずに、被照射体7に対する露出量を適正とすることができる。そこで、偏光被写体と一般被写体とを一枚の画像として得る場合には、撮像装置1は、まず一方の被写体からの光を測光して適正露出とし、測光の対象とした被写体を撮像する。そして、撮像装置1は、短い間隔をおいて、もう一方の被写体からの光を測光して適正露出とし、測光の対象とした被写体を撮像する。すなわち、撮影者は、測光の対象をそれぞれの被写体としながら、それぞれの被写体を撮像装置1により連写することになる。
【0093】
すると、撮像装置1は、適正露出とされたそれぞれの被写体に関する画像情報を得ることになるので、例えば、信号処理部21により、それぞれの被写体に関する画像情報を合成する画像処理を行うことが可能である。画像処理を行うことにより得られた画像は、偏光被写体および一般被写体のそれぞれが適正な露出量とされて撮影された一つの画像となる。
【0094】
また、本開示は、例えば、カメラの向きまたは位置を連続的に変化させながら撮影を行い、一つの画像を得る撮影方法に適用することも可能である。本開示によれば、例えば、撮影者の周りの景色を360°の範囲にわたって撮影し、一つの画像に収めることも可能である。このとき、一つの画像に収めたい範囲の中に、明るい部分と暗い部分が混在していても、撮像装置1が自動的に測光と露出調整を連続して行うので、撮影者は、難しい操作を必要とせずに、撮影した全範囲を適正露出とすることができる。例えば、撮影者は、露出量を気にすることなく、青空と建築物とが収められた一枚のパノラマ写真を撮影したり、広大な雪山や雲海のパノラマ写真を撮影したりすることができる。
【0095】
(動画撮影機能との連携)
本開示は、動画撮影機能を備えるカメラにも適用が可能である。ペリクルミラー内蔵型のカメラは、動画撮影の際に、オートフォーカスと、表示部17への現在の被写体像の表示とを同時に行うことができるという特長を有している。さらに、ペリクルミラー内蔵型のカメラは、動画の撮影中であっても、露出量の算出のための測光を行うことができる。そのため、動画撮影機能を備えるペリクルミラー内蔵型のカメラに本開示を適用することにより、動きの速い被写体に対して、ピントを合わせながら、撮影シーンに応じた適正な露出量により撮影を行うことが可能となる。
【0096】
例えば、撮像装置1のユーザが、撮像装置1に対して撮影の開始を指示すると、撮像装置1は、撮像素子により、被写体の撮像を開始するとともに、受光部5により、受光部5に到達する光のエネルギ量に関する情報の取得を開始する。ここで、例えば、受光部5が、例えば、P偏光成分についてのエネルギ量に関する情報と、S偏光成分についてのエネルギ量に関する情報とを別個に取得する構成であるとする。このとき、P偏光成分およびS偏光成分のエネルギ量に関する情報の取得は、例えば、撮影シーンの切り替わり(以下、シーンチェンジと適宜記載する。)があったときに実行される。
【0097】
動画撮影中は、撮像素子により被写体の撮像が行われ続けるため、シーンチェンジがあったかどうかは、撮像素子からの出力信号を画像認識した結果により判断することができる。例えば、信号処理部21は、撮像素子からの出力信号を画像認識し、シーンチェンジがあったかどうかを判断する。シーンチェンジを検出するためのアルゴリズムとしては、例えば、画素差分検出法、動きベクトル検出法、またはこれらの組み合わせなどを挙げることができる。
【0098】
撮像素子からの出力信号を画像認識した結果によりシーンチェンジがあったことを判断することにかえ、あらかじめ設定された周期ごとに、P偏光成分およびS偏光成分のエネルギ量に関する情報の取得が実行されるようにしてもよい。例えば、フレームレートが24[fps(frame per second)]の動画を撮影するのであれば、1/24秒ごとに、P偏光成分およびS偏光成分のエネルギ量に関する情報を取得するように設定することができる。P偏光成分およびS偏光成分のエネルギ量に関する情報の取得の周期は、もちろん、これに限られず、任意に設定することができる。
【0099】
撮像装置1は、動画の撮影中であっても、露出量の算出のための測光を行うことができるため、P偏光成分およびS偏光成分のエネルギ量に関する情報の取得が、動画の撮影中に、常に実行され続けるようにしてもよい。このとき、P偏光成分のエネルギ量に関する情報の取得と、S偏光成分のエネルギ量に関する情報の取得とは、連続的に切り替えられ続けることになる。受光部5が液晶素子からなる偏光素子51を含む場合には、上述したように、液晶素子の応答速度が数ミリ秒と高速であるので、P偏光成分のエネルギ量に関する情報の取得と、S偏光成分のエネルギ量に関する情報の取得とを容易かつ高速に切り替えることができる。
【0100】
動画の撮影中にP偏光成分およびS偏光成分のエネルギ量に関する情報の取得を実行することにより、撮像装置1のユーザが、例えば、暗い場所から急に明るい場所に移動した直後であっても、得られる画像が白とびを起こすことがない。
【0101】
なお、動画の撮影中、表示部17には、撮像素子により撮像された被写体像が表示される。このとき、撮像素子に対する光束の到達量は、絞り11により調整される。
【0102】
信号処理部21は、受光部5により取得された情報をもとにして、撮像素子に到達する光のP偏光成分およびS偏光成分のエネルギ量の計算を実行し、絞り駆動機構63に対して、絞り11の開きを調整するための制御信号を送出する。絞り11の開きは、信号処理部21から送出される制御信号を受け取った絞り駆動機構63により調整される。したがって、絞り11の開きの調整がP偏光成分およびS偏光成分のエネルギ量に関する情報の取得に追随する場合、表示部17には、撮像装置1のユーザのイメージ通りの被写体像が表示されることになる。動画の撮影中に絞り11の開きを調整し続けることは現実的ではないが、例えば、撮像素子に対する光束の到達量が、あらかじめ設定されたしきい値を超えると予測された場合にのみ、絞り11の開きの調整が実行されるように設定することも可能である。
【0103】
また、撮像素子からの信号は、信号処理部21による画像処理を経た映像信号として表示部17に供給される。そこで、撮像素子に対する光束の到達量の予測計算値をもとにして、信号処理部21が、撮像素子からの信号を画像処理の際に補正してもよい。または、撮像素子に対する光束の到達量の予測計算値をもとにして、信号処理部21が、撮像素子の感度を調整してもよい。
【0104】
撮像素子に対する光束の到達量の予測計算値をもとにした絞り11の開きの調整または撮像素子からの信号の補正のいずれの場合も、表示部17には、撮像装置1のユーザのイメージ通りの被写体像が表示される。したがって、本開示によれば、撮像素子に対する露出量が、撮像素子に入射する光の偏光成分ごとに正確に求められるため、表示部17に表示される画像に色とびが発生することもなく、撮像装置1のユーザは、イメージ通りの動画を撮影することができる。
【0105】
[第1の実施形態の変形例]
図9は、第1の実施形態にかかる撮像装置の変形例の概略的構成を示す略線図である。図9に示す撮像装置71は、光束分離素子3と、被照射体7と、信号処理部21と、シャッタ9と、絞り11とを備える点で、図1に示す撮像装置1と共通している。図9に示す撮像装置71の本体71bの内部には、受光部5にかえて、受光部75が配置される。受光部75が、偏光ビームスプリッタ72ならびに受光素子73aおよび受光素子73bからなる点で、図1に示す撮像装置1と相違している。
【0106】
光束分離素子3は、撮像装置1への入射光束Fの一部を反射させるとともに、残余を透過させることにより、入射光束Fを、例えば、2つの光束に分離する。光束分離素子3により分離された一方の光束は、受光部75に入射する。
【0107】
受光部75に入射した光束は、偏光ビームスプリッタ72によりP偏光成分とS偏光成分とにさらに分離され、受光素子73aおよび受光素子73bには、受光部75に入射した光束のP偏光成分およびS偏光成分がそれぞれ入射する。すなわち、撮像装置1では、受光部75に入射する光束に関するP偏光成分の強度またはS偏光成分の強度が順次行われたが、撮像装置71では、受光部75に入射する光束に関するP偏光成分の強度またはS偏光成分の強度が同時に行われる。
【0108】
受光部75で取得されたP偏光成分の強度またはS偏光成分の強度は、信号処理部21に対する入力とされる。信号処理部21により出力される、被照射体7に入射する光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値に応じて、シャッタ9のシャッタスピードまたは絞り11の開きの調整が実行される点については、撮像装置1と同様である。
【0109】
ここで、偏光ビームスプリッタ72は、入射する光の一部をその内部で反射させ、残余を透過する光学素子である。すなわち、受光素子73aおよび受光素子73bへ入射する光は、偏光ビームスプリッタ72内部の接合面(ビーム分岐面)において、反射された光または透過された光である。そのため、受光素子73aへ入射する光束に関するP偏光成分の強度は、偏光ビームスプリッタ72内部の接合面の反射特性に依存し、受光部75に入射した光束のP偏光成分の強度とは異なったものとなる。同様に、受光素子73bへ入射する光束に関するS偏光成分の強度は、受光部75に入射した光束のS偏光成分の強度とは異なったものとなる。
【0110】
このとき、受光素子73aで取得されるP偏光成分の強度および受光素子73bで取得されるS偏光成分の強度から、被照射体7に入射する光束に関するP偏光成分の強度またはS偏光成分の強度を予測するには、以下のようにすればよい。
【0111】
まず、偏光成分ごとの、光束分離素子3の透過率と反射率との比率(Πp1/Γp1)および(Πs1/Γs1)の値をあらかじめ正確に測定しておく。ここで、光束分離素子3のP偏光成分に対する透過率および反射率をそれぞれΠp1、Γp1とし、S偏光成分に対する透過率および反射率をそれぞれΠs1、Γs1とした。また、偏光ビームスプリッタ72内部の接合面のP偏光成分に対する透過率の値Πp2と、S偏光成分に対する反射率の値Γs2とをあらかじめ正確に測定しておく。
【0112】
撮像装置71では、光束分離素子3の反射特性(透過特性)に関するデータに加えて、偏光ビームスプリッタ72内部の接合面の反射特性(透過特性)に関するデータを記憶部23にさらに記憶させておく。すなわち、記憶部23には、(Πp1/Γp1)、(Πs1/Γs1)、Πp2およびΓs2の値が格納される。
【0113】
被写体からの光により運ばれるエネルギ量のうち、P偏光成分の大きさをΦp[w]、S偏光成分の大きさをΦs[w]とすると、受光素子73aに到達する光のP偏光成分のエネルギ量は、(Πp2*Γp1*Φp)[w]と表わされる。同様に、受光素子73bに到達する光のS偏光成分のエネルギ量は、(Γs2*Γs1*Φs)[w]と表わされる。
【0114】
したがって、被照射体7に到達する光のP偏光成分のエネルギ量Φrp[w]および被照射体7に到達する光のS偏光成分のエネルギ量Φrs[w]は、それぞれ以下の式(3)および式(4)により求めることができる。
Φrp[w]=(Πp1/Γp1)*(1/Πp2)*(Πp2*Γp1*Φp)[w] ・・・(3)
Φrs[w]=(Πs1/Γs1)*(1/Γs2)*(Γs2*Γs1*Φs)[w] ・・・(4)
【0115】
このように、光束分離素子3により分離された光束のうちの一つを、さらに別の光学素子に反射または透過させ、該光束に関するP偏光成分の強度またはS偏光成分の強度を取得するようにしてもよい。この場合は、光束分離素子3とは異なる光学素子の反射特性(透過特性)を、偏光成分ごとにあらかじめ把握しておけば、被照射体7に入射する光束に関するP偏光成分の強度またはS偏光成分の強度を正確に予測することができる。
【0116】
<2.第2の実施形態>
[撮像装置の概略的構成]
図10Aおよび図10Bは、第2の実施形態にかかる撮像装置の概略的構成を示す略線図である。図10Aは、撮像装置81のシャッタボタンを押下する前の状態を示す図であり、図10Bは、撮像装置81のシャッタボタンを押下した状態を示す図である。図10Aおよび図10Bに示すように、第2の実施形態にかかる撮像装置81は、受光部5と、被照射体7と、信号処理部21と、シャッタ9と、絞り11とを備える点で、図1に示す撮像装置1と共通している。図10Aおよび図10Bに示す撮像装置81の本体81bの内部には、光束分離素子3にかえて、半透過ミラー83とサブミラー84との組が配置される。半透過ミラー83は、筺体89の内部に配置された回転軸R1により支持される。サブミラー84は、半透過ミラー83に配置された回転軸R2により支持される。第2の実施形態にかかる撮像装置81は、具体的には、例えば、一眼レフレックスカメラである。本開示は、一眼レフレックスカメラにも適用が可能である。
【0117】
[撮像装置の動作]
撮影者がシャッタボタンを押下する前の状態において、半透過ミラー83は、撮像装置81への入射光束Fの一部を反射させるとともに、残余を透過させることにより、入射光束Fを、例えば、2つの光束に分離する。半透過ミラー83により反射された光は、半透過ミラー83の上部に配置されたペンタプリズム85に入射する。ペンタプリズム85に入射した光は、ペンタプリズム85内部で全反射を繰り返し、接眼レンズ87が備えられたファインダに到達する。
【0118】
一方、半透過ミラー83を透過した光は、その一部が、サブミラー84に入射する。なお、半透過ミラー83を透過した光のうち、サブミラー84に入射しない残余の光が、被照射体7に向かって進行することになるが、被照射体7に向かって進行する光は、シャッタ9により遮られ、被照射体7には到達しない。サブミラー84に入射した光は、サブミラー84により反射される。サブミラー84により反射された光は、例えば、半透過ミラー83の下部に配置された測距センサなどに向かって進行する。
【0119】
半透過ミラー83の下部には、例えば、受光部5を配置することもできる。図10Aおよび図10Bに示す構成例では、サブミラー84により反射された光が、半透過ミラー83の下部に配置された受光部5に入射する。受光部5は、第1の実施形態と同様に、受光部5に入射する光束に関するP偏光成分の強度またはS偏光成分の強度を取得する。受光部5で取得されたP偏光成分の強度またはS偏光成分の強度は、第1の実施形態と同様に、信号処理部21に対する入力となる。
【0120】
撮影者がシャッタボタンを押下すると、半透過ミラー83とサブミラー84との組が上部に跳ね上がるとともに、シャッタ9が開かれ、撮像装置81への入射光束Fが、被照射体7に到達する。このときのシャッタ9のシャッタスピードおよび絞り11の開きのうちの少なくとも1つは、第1の実施形態と同様に、信号処理部21からの出力に応じて調整される。シャッタ9のシャッタスピードまたは絞り11の開きの調整は、信号処理部21により出力される、被照射体7に入射する光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値に応じて実行される。
【0121】
(露出量の算出)
第2の実施形態においても、受光部5が、受光部5に入射する光束に関するP偏光成分の強度またはS偏光成分の強度を取得する点は、第1の実施形態と同様である。第2の実施形態は、受光部5に入射する光が、半透過ミラー83を透過した後にサブミラー84によりさらに反射された光である点と、被照射体7に到達する光束が、入射光束Fの一部ではなくすべてである点とにおいて、第1の実施形態と相違している。
【0122】
ここで、半透過ミラー83のP偏光成分に対する透過率が、Πp1であるとし、S偏光成分に対する透過率が、Πs1であるとする。また、サブミラー84のP偏光成分に対する反射率が、Γp2であるとし、S偏光成分に対する反射率が、Γs2であるとする。記憶部23には、被照射体7への入射光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力するためのプログラムのほかに、Πp1、Πs1、Γp2およびのΓs2値が格納されているとする。このとき、信号処理部21は、受光部5からの出力信号を入力として、以下の手順で演算処理を行い、被照射体7への入射光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力する。
【0123】
被写体からの光により運ばれるエネルギ量のうち、P偏光成分の大きさをΦp[w]、S偏光成分の大きさをΦs[w]とすると、受光部5に到達する光のP偏光成分のエネルギ量は、(Γp2*Πp1*Φp)[w]と表わされる。同様に、受光部5に到達する光のS偏光成分のエネルギ量は、(Γs2*Πs1*Φs)[w]と表わされる。信号処理部21は、これらの値を入力とし、記憶部23に格納されたΠp1、Πs1、Γp2およびΓs2の値を用いて、被照射体7への入射光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力する。
【0124】
具体的には、信号処理部21は、以下の式(5)および式(6)から、被照射体7に到達する光のP偏光成分のエネルギ量Φrp[w]および被照射体7に到達する光のS偏光成分のエネルギ量Φrs[w]を算出する。
Φrp[w]=(1/Γp2)*(1/Πp1)*(Γp2*Πp1*Φp)[w] ・・・(5)
Φrs[w]=(1/Γs2)*(1/Πs1)*(Γs2*Πs1*Φs)[w] ・・・(6)
【0125】
第2の実施形態によれば、撮影者は、光学式のファインダにより現在の被写体像を確認した上で撮影を行うことができるとともに、撮像装置81が露出量を適切な値に調整するので、撮影者は、期待したイメージ通りの画像を得ることができる。
【0126】
[第2の実施形態の変形例]
図11Aおよび図11Bは、第2の実施形態にかかる撮像装置の変形例の概略的構成を示す略線図である。図11Aは、撮像装置82のシャッタボタンを押下する前の状態を示す図であり、図11Bは、撮像装置82のシャッタボタンを押下した状態を示す図である。図11Aおよび図11Bに示すように、撮像装置82が、半透過ミラー83およびサブミラー84の組にかえて、筺体88内部に配置された回転軸R1により支持される可動式ミラー86を備えるようにしてもよい。
【0127】
図11Aおよび図11Bに示す構成例は、受光部5に入射する光が、可動式ミラー86により反射された光である点において、第1の実施形態にかかる撮像装置1と共通する。被照射体7に到達する光束が、入射光束Fの一部ではなくすべてである点においては、図11Aおよび図11Bに示す構成例は、第1の実施形態にかかる撮像装置1と相違するが、撮像装置81とは共通する。
【0128】
図11Aおよび図11Bに示す構成例では、信号処理部21は、上述した式(1)において、(Πp/Γp)の値にかえて、(1/Γp)の値を用いることにより、被照射体7に到達する光のP偏光成分のエネルギ量Φrp[w]を算出することができる。また、信号処理部21は、上述した式(2)において、(Πs/Γs)の値にかえて、(1/Γs)の値を用いることにより、被照射体7に到達する光のS偏光成分のエネルギ量Φrs[w]を算出することができる。
【0129】
<3.第3の実施形態>
光束分離素子、受光部および信号処理部により、照射対象に照射される光束に関する強度を外部へ出力することのできる光量測定装置が得られる。
【0130】
[光量測定装置の概略的構成]
図12は、第3の実施形態にかかる光量測定装置の構成例を示すブロック図である。図12に示すように、第3の実施形態にかかる光量測定装置91は、光束分離素子93と、受光部95と、信号処理部92とを備えている。図12に示す構成例では、記憶部94が、信号処理部92に接続されている。なお、光束分離素子93、受光部95、信号処理部92および記憶部94には、それぞれ第1の実施形態にかかる光束分離素子3、受光部5、信号処理部21および記憶部23と同様の構成をそれぞれ適用することができる。
【0131】
光束分離素子93は、光量測定装置91への入射光束Fの一部を反射させるとともに、残余を透過させることにより、入射光束Fを、例えば、2つの光束に分離する。光束分離素子93により分離された一方の光束は、受光部95に入射する。受光部95は、受光部95に入射する光束に関するP偏光成分の強度またはS偏光成分の強度を取得する。受光部95で取得されたP偏光成分の強度またはS偏光成分の強度は、信号処理部92に対する入力とされる。信号処理部92は、光束分離素子93により分離されたもう一方の光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力する。該光束に関するすべての振動成分の強度の予測計算値が、信号処理部92から出力される、P偏光成分の強度の予測計算値と、S偏光成分の強度の予測計算値との和として得られる。
【0132】
したがって、第3の実施形態によれば、光束分離素子93により分離された他方の光束を照射対象に照射するときに、該光束に関する強度を直接測定せずに、照射対象に照射される光束に関する、すべての振動成分に関する強度を測定することができる。
【実施例】
【0133】
以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例のみに限定されるものではない。
【0134】
(実施例1)
まず、第1の実施形態と同様の構成を備える撮像装置を想定し、偏光被写体を撮影するときに算出される露出量の評価を行った。
【0135】
撮像装置の内部に光束分離素子として配置される半透過ミラーにおいて、入射光束のP偏光成分に対する反射率および透過率が、それぞれ20%、80%であり、S偏光成分に対する反射率および透過率が、それぞれ40%、60%であると想定した。すなわち、Γp=20[%]、Πp=80[%]、Γs=40[%]、Πs=60[%]と想定した。したがって、撮像装置の記憶部には、(Πp/Γp)および(Πs/Γs)の値として、4.0および1.5が、それぞれに対応して格納されている。
【0136】
次に、被写体からの光により運ばれる総エネルギ量を100[w]と想定し、総エネルギ量のうち、P偏光成分の大きさを70[w]、S偏光成分の大きさを30[w]と想定した。すなわち、被写体として、被写体からの光により運ばれるエネルギ量がΦp=70[w]、Φs=30[w]の偏光被写体を想定した。
【0137】
このとき、撮像装置の受光部に到達する光のP偏光成分のエネルギ量およびS偏光成分のエネルギ量を計算すると、それぞれ、(Γp*Φp)=14[w]、(Γs*Φs)=12[w]となる。
【0138】
信号処理部により求められる、被照射体に到達する光のP偏光成分のエネルギ量Φrp[w]は、上述の式(1)により、Φrp=4.0*14=56[w]となる。同様に、被照射体に到達する光のS偏光成分のエネルギ量Φsp[w]は、上述の式(2)により、Φrs=1.5*12=18[w]となる。したがって、被照射体に到達する光の総エネルギ量Φr[w]が、Φr=Φrp+Φrs=74[w]と求められる。
【0139】
これは、(Πp*Φp)+(Πs*Φs)[w]として計算される、実際に被照射体に到達する光の総エネルギ量である74[w]に等しい。
【0140】
すなわち、信号処理部は、P偏光成分については、受光部に到達する光のエネルギ量の4.0倍のエネルギ量が被照射体に到達すると予測する。また、S偏光成分については、受光部に到達する光のエネルギ量の1.5倍のエネルギ量が被照射体に到達すると予測する。したがって、信号処理部は、被照射体に到達する光の総エネルギ量を正確に予測することができ、信号処理部は、該予測をもとにして、シャッタのシャッタスピードおよび絞りの開きを適正な値に設定することができる。
【0141】
次に、偏光被写体にかえて、一般被写体を撮影するときに算出される露出量の評価を行った。
【0142】
被写体からの光により運ばれる総エネルギ量を100[w]と想定し、総エネルギ量のうち、P偏光成分の大きさを50[w]、S偏光成分の大きさを50[w]と想定した。すなわち、被写体として、被写体からの光により運ばれるエネルギ量がΦp=50[w]、Φs=50[w]の一般被写体を想定した。
【0143】
このとき、撮像装置の受光部に到達する光のP偏光成分のエネルギ量およびS偏光成分のエネルギ量を計算すると、それぞれ、(Γp*Φp)=10[w]、(Γs*Φs)=20[w]となる。
【0144】
信号処理部により求められる、被照射体に到達する光のP偏光成分のエネルギ量Φrp[w]は、上述の式(1)により、Φrp=4.0*10=40[w]となる。同様に、被照射体に到達する光のS偏光成分のエネルギ量Φrs[w]は、上述の式(2)により、Φrs=1.5*20=30[w]となる。したがって、被照射体に到達する光の総エネルギ量Φr[w]が、Φr=Φrp+Φrs=70[w]と求められる。
【0145】
これは、(Πp*Φp)+(Πs*Φs)[w]として計算される、実際に被照射体に到達する光の総エネルギ量である70[w]に等しい。すなわち、本開示によれば、被写体からの光の偏光の度合いによらず、被照射体に対する露出量を正確に求められることがわかった。
【0146】
(比較例1)
次に、受光部に到達する光の測光をP偏光成分およびS偏光成分を区別せずに行い、その結果をもとにして被照射体に到達する光の総エネルギ量を予測する撮像装置を想定し、偏光被写体を撮影するときに算出される露出量の評価を行った。
【0147】
この場合、撮像装置の記憶部には、例えば、ΠpおよびΠsの算術平均Πa[%]とΓpおよびΓsの算術平均Γa[%]との比率(Πa/Γa)が格納されることになる。なお、実施例1の場合と同様に、Γp=20[%]、Πp=80[%]、Γs=40[%]、Πs=60[%]とすると、(Πa/Γa)の値はおよそ2.3である。
【0148】
このとき、撮像装置の受光部に到達する光の総エネルギ量は、(Γp*Φp)+(Γs*Φs)=26[w]である。比較例1の撮像装置では、信号処理部は、受光部に到達する光の総エネルギ量と、(Πa/Γa)の値とから、被照射体に到達する光の総エネルギ量Φr[w]を予測することになる。
【0149】
すなわち、信号処理部は、被照射体に到達する光の総エネルギ量Φr[w]を、以下の式(7)により予測することになる。
Φr[w]=(Πa/Γa)*{(Γp*Φp)+(Γs*Φs)}[w] ・・・(7)
【0150】
したがって、被照射体に到達する光の総エネルギ量Φr[w]が、信号処理部により、およそ61[w]と求められる。ところが、信号処理部により予測された、被照射体に到達する光の総エネルギ量は、(Πp*Φp)+(Πs*Φs)[w]として計算される、実際に被照射体に到達する光の総エネルギ量である74[w]と等しくならない。すなわち、信号処理部は、被照射体に到達する光の総エネルギ量を正確に予測することができず、信号処理部は、該予測をもとにして設定されたシャッタのシャッタスピードおよび絞りの開きは適正な値とならない。
【0151】
(実施例2)
次に、第2の実施形態の変形例と同様の構成を備える撮像装置を想定し、偏光被写体を撮影するときに算出される露出量の評価を行った。
【0152】
撮像装置の内部に光束分離素子として配置される可動式ミラーにおいても、実施例1と同様に、Γp=20[%]、Πp=80[%]、Γs=40[%]、Πs=60[%]と想定した。したがって、撮像装置の記憶部には、(1/Γp)および(1/Γs)の値として、5.0および2.5が、それぞれに対応して格納されている。
【0153】
次に、被写体からの光により運ばれる総エネルギ量を100[w]と想定し、総エネルギ量のうち、P偏光成分の大きさを70[w]、S偏光成分の大きさを30[w]と想定した。すなわち、被写体として、被写体からの光により運ばれるエネルギ量がΦp=70[w]、Φs=30[w]の偏光被写体を想定した。
【0154】
このとき、撮像装置の受光部に到達する光のP偏光成分のエネルギ量およびS偏光成分のエネルギ量を計算すると、それぞれ、(Γp*Φp)=14[w]、(Γs*Φs)=12[w]となる。
【0155】
信号処理部により求められる、被照射体に到達する光のP偏光成分のエネルギ量Φrp[w]は、上述の式(1)において、(Πp/Γp)を(1/Γp)と置き換えることにより、Φrp=5.0*14=70[w]となる。同様に、被照射体に到達する光のS偏光成分のエネルギ量Φsp[w]は、上述の式(2)において、(Πs/Γs)を(1/Γs)と置き換えることにより、Φrs=2.5*12=30[w]となる。したがって、被照射体に到達する光の総エネルギ量Φr[w]が、Φr=Φrp+Φrs=100[w]と求められる。
【0156】
これは、実際に被照射体に到達する光の総エネルギ量(被写体からの光により運ばれる総エネルギ量)である100[w]に等しい。すなわち、一眼レフレックスカメラに本開示を適用した場合においても、被照射体に対する露出量を正確に求められることがわかった。
【0157】
(比較例2)
次に、受光部に到達する光の測光をP偏光成分およびS偏光成分を区別せずに行い、その結果をもとにして被照射体に到達する光の総エネルギ量を予測する撮像装置を想定し、偏光被写体を撮影するときに算出される露出量の評価を行った。
【0158】
この場合、撮像装置の記憶部には、例えば、ΓpおよびΓsの算術平均をΓa[%]として、比率(1/Γa)が格納されることになる。なお、実施例2の場合と同様に、Γp=20[%]、Πp=80[%]、Γs=40[%]、Πs=60[%]とすると、(1/Γa)の値はおよそ3.3である。
【0159】
このとき、撮像装置の受光部に到達する光の総エネルギ量は、(Γp*Φp)+(Γs*Φs)=26[w]である。比較例2の撮像装置では、信号処理部は、受光部に到達する光の総エネルギ量と、(1/Γa)の値とから、被照射体に到達する光の総エネルギ量Φr[w]を予測することになる。
【0160】
すなわち、信号処理部は、被照射体に到達する光の総エネルギ量Φr[w]を、以下の式(8)により予測することになる。
Φr[w]=(1/Γa)*{(Γp*Φp)+(Γs*Φs)}[w] ・・・(8)
【0161】
したがって、被照射体に到達する光の総エネルギ量Φr[w]が、信号処理部により、およそ87[w]と求められる。ところが、信号処理部により予測された、被照射体に到達する光の総エネルギ量は、実際に被照射体に到達する光の総エネルギ量(被写体からの光により運ばれる総エネルギ量)である100[w]と等しくならない。すなわち、信号処理部は、被照射体に到達する光の総エネルギ量を正確に予測することができず、信号処理部は、該予測をもとにして設定されたシャッタのシャッタスピードおよび絞りの開きは適正な値とならない。
【0162】
以上説明したように、本開示によれば、被写体からの光の偏光の度合いによらず、被照射体に対する露出量を正確に求められることができ、偏光被写体を撮影する場合であっても、適正な露出量で撮影を行うことができる。もちろん、一般被写体を撮影する場合であっても、適正な露出量で撮影を行うことができる。偏光被写体と一般被写体とが混在している場合に、適正な露出量で撮影を行うことも可能である。さらに、本開示では、P偏光成分とS偏光成分とを区別して測光を行うので、P偏光成分およびS偏光成分の区別をせずに測光を行う場合と比較して、設定される露出量の精度が向上する。
【0163】
また、撮影者は、露出量の調整を撮像装置に任せることができ、特別な知識や経験を持たない撮影者であっても、イメージ通りの画像を得ることができる。
【0164】
<4.変形例>
以上、好適な実施形態について説明してきたが、好適な具体例は、上述した説明に限定されるものではなく、各種の変形が可能である。
【0165】
例えば、上述した実施形態では、撮像装置としてカメラを例示したが、本開示は、ビデオカメラなどにも適用が可能である。
【0166】
本開示は、特別な光学部品を必要としないので、撮像装置または光量測定装置を小型かつ軽量に構成することができる。例えば、携帯情報端末(personal digital assistance(PDA))や携帯電話、スマートフォン、電子手帳、ラップトップ型コンピュータなどの電子機器と組み合わせることも可能である。
【0167】
なお、測光の方式は、特に限定されず、例えば、全面測光、中央部重点測光、多分割測光のほか、スポット測光、部分測光などが適用可能である。
【0168】
上述の実施形態において挙げた構成、方法、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、形状、材料および数値などを用いてもよい。上述の実施形態の構成、方法、形状、材料および数値などは、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。
【0169】
例えば、本開示は以下のような構成もとることができる。
(1)
入射光束を第1の光束および第2の光束に分離する光束分離素子と、
前記第1の光束が入射するとともに、前記第1の光束に関するP偏光成分の強度またはS偏光成分の強度を取得する受光部と、
前記第2の光束が入射する被照射体と、
前記受光部で取得されたP偏光成分の強度またはS偏光成分の強度から、前記第2の光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力する信号処理部と、
前記被照射体に対する前記第2の光束の入射および遮断を切り替えるシャッタと、
前記被照射体に対する前記第2の光束の到達量を調整する絞りと
を備え、
前記シャッタのシャッタスピードおよび前記絞りの開きのうちの少なくとも1つが、前記信号処理部からの出力に応じて調整される
撮像装置。
(2)
前記光束分離素子のP偏光成分に対する透過率と前記光束分離素子のP偏光成分に対する反射率との比率および前記光束分離素子のS偏光成分に対する透過率と前記光束分離素子のS偏光成分に対する反射率との比率が格納された記憶部をさらに備える
(1)に記載の撮像装置。
(3)
前記光束分離素子の反射面にたてた法線と前記入射光束の光軸とのなす角が、一定である
(1)または(2)に記載の撮像装置。
(4)
前記光束分離素子が、前記被照射体に対する前記第2の光束の入射の際に、前記入射光束から退避する
(1)または(2)に記載の撮像装置。
(5)
前記受光部が、偏光素子と受光素子とを含む
(1)ないし(4)のいずれか1項に記載の撮像装置。
(6)
前記偏光素子が、液晶素子からなる
(5)に記載の撮像装置。
(7)
前記信号処理部が、区分された波長帯域ごとの予測計算値を出力する
(1)ないし(6)のいずれか1項に記載の撮像装置。
(8)
前記受光部における、前記第1の光束に関するP偏光成分の強度またはS偏光成分の強度の取得が、前記受光部に対して前記第1の光束が入射しているときに、継続して行われる
(1)ないし(7)のいずれか1項に記載の撮像装置。
(9)
前記受光部における、前記第1の光束に関するP偏光成分の強度またはS偏光成分の強度の取得が、一定周期ごとに行われる
(1)ないし(8)のいずれか1項に記載の撮像装置。
(10)
前記被照射体が、撮像素子である
(1)ないし(9)のいずれか1項に記載の撮像装置。
(11)
前記受光部における、前記第1の光束に関するP偏光成分の強度またはS偏光成分の強度の取得が、前記撮像素子からの出力信号の画像認識の結果をもとに開始される
(10)に記載の撮像装置。
(12)
入射光束を第1の光束および第2の光束に分離する光束分離素子と、
前記第1の光束および前記第2の光束のうちの一方が入射するとともに、該一方の光束に関するP偏光成分の強度またはS偏光成分の強度を取得する受光部と、
前記受光部で取得されたP偏光成分の強度またはS偏光成分の強度から、前記第1の光束および前記第2の光束のうちの他方に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力する信号処理部と
を備える光量測定装置。
(13)
一の入射光束から光束分離素子により分離された、前記一の入射光束の一部に関するP偏光成分の強度またはS偏光成分の強度を入力として、前記光束分離素子のP偏光成分またはS偏光成分に対応する反射率または透過率に関するデータから、前記一の入射光束の残余に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力すること
をコンピュータに実行させるためのプログラムが記録された、コンピュータによる読み取りが可能な記録媒体。
(14)
第1の受光部により、一の入射光束から光束分離素子により分離された第1の光束に関するP偏光成分の強度またはS偏光成分の強度を取得することと、
信号処理部により、前記第1の受光部で取得されたP偏光成分の強度またはS偏光成分の強度から、一の入射光束から光束分離素子により分離された第2の光束に関するP偏光成分の強度またはS偏光成分の強度を予測することにより、前記第2の光束が入射する第2の受光部における露出量を算出することと
からなる露出量の算出方法。
【符号の説明】
【0170】
1,71,81,82・・・撮像装置
3,93・・・光束分離素子
5,75,95・・・受光部
7・・・被照射体
9・・・シャッタ
11・・・絞り
F・・・入射光束
21,92・・・信号処理部
23,94・・・記憶部
51,51a,51b,51c・・・偏光素子
41,41a,41b・・液晶素子
53,73a,73b・・・受光素子
83・・・半透過ミラー
84・・・サブミラー
86・・・可動式ミラー
91・・・光量測定装置

【特許請求の範囲】
【請求項1】
入射光束を第1の光束および第2の光束に分離する光束分離素子と、
前記第1の光束が入射するとともに、前記第1の光束に関するP偏光成分の強度またはS偏光成分の強度を取得する受光部と、
前記第2の光束が入射する被照射体と、
前記受光部で取得されたP偏光成分の強度またはS偏光成分の強度から、前記第2の光束に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力する信号処理部と、
前記被照射体に対する前記第2の光束の入射および遮断を切り替えるシャッタと、
前記被照射体に対する前記第2の光束の到達量を調整する絞りと
を備え、
前記シャッタのシャッタスピードおよび前記絞りの開きのうちの少なくとも1つが、前記信号処理部からの出力に応じて調整される
撮像装置。
【請求項2】
前記光束分離素子のP偏光成分に対する透過率と前記光束分離素子のP偏光成分に対する反射率との比率および前記光束分離素子のS偏光成分に対する透過率と前記光束分離素子のS偏光成分に対する反射率との比率が格納された記憶部をさらに備える
請求項1に記載の撮像装置。
【請求項3】
前記光束分離素子の反射面にたてた法線と前記入射光束の光軸とのなす角が、一定である
請求項1に記載の撮像装置。
【請求項4】
前記光束分離素子が、前記被照射体に対する前記第2の光束の入射の際に、前記入射光束から退避する
請求項1に記載の撮像装置。
【請求項5】
前記受光部が、偏光素子と受光素子とを含む
請求項1に記載の撮像装置。
【請求項6】
前記偏光素子が、液晶素子からなる
請求項5に記載の撮像装置。
【請求項7】
前記信号処理部が、区分された波長帯域ごとの予測計算値を出力する
請求項1に記載の撮像装置。
【請求項8】
前記受光部における、前記第1の光束に関するP偏光成分の強度またはS偏光成分の強度の取得が、前記受光部に対して前記第1の光束が入射しているときに、継続して行われる
請求項1に記載の撮像装置。
【請求項9】
前記被照射体が、撮像素子である
請求項1に記載の撮像装置。
【請求項10】
前記受光部における、前記第1の光束に関するP偏光成分の強度またはS偏光成分の強度の取得が、前記撮像素子からの出力信号の画像認識の結果をもとに開始される
請求項9に記載の撮像装置。
【請求項11】
前記受光部における、前記第1の光束に関するP偏光成分の強度またはS偏光成分の強度の取得が、一定周期ごとに行われる
請求項9に記載の撮像装置。
【請求項12】
入射光束を第1の光束および第2の光束に分離する光束分離素子と、
前記第1の光束および前記第2の光束のうちの一方が入射するとともに、該一方の光束に関するP偏光成分の強度またはS偏光成分の強度を取得する受光部と、
前記受光部で取得されたP偏光成分の強度またはS偏光成分の強度から、前記第1の光束および前記第2の光束のうちの他方に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力する信号処理部と
を備える光量測定装置。
【請求項13】
一の入射光束から光束分離素子により分離された、前記一の入射光束の一部に関するP偏光成分の強度またはS偏光成分の強度を入力として、前記光束分離素子のP偏光成分またはS偏光成分に対応する反射率または透過率に関するデータから、前記一の入射光束の残余に関するP偏光成分の強度の予測計算値またはS偏光成分の強度の予測計算値を出力すること
をコンピュータに実行させるためのプログラムが記録された、コンピュータによる読み取りが可能な記録媒体。
【請求項14】
第1の受光部により、一の入射光束から光束分離素子により分離された第1の光束に関するP偏光成分の強度またはS偏光成分の強度を取得することと、
信号処理部により、前記第1の受光部で取得されたP偏光成分の強度またはS偏光成分の強度から、一の入射光束から光束分離素子により分離された第2の光束に関するP偏光成分の強度またはS偏光成分の強度を予測することにより、前記第2の光束が入射する第2の受光部における露出量を算出することと
からなる露出量の算出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2012−247753(P2012−247753A)
【公開日】平成24年12月13日(2012.12.13)
【国際特許分類】
【出願番号】特願2011−121869(P2011−121869)
【出願日】平成23年5月31日(2011.5.31)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】