説明

改良されたコントラストを有するデジタル・マイクロ・ミラー・デバイス、及びそのデジタル・マイクロ・ミラー・デバイスのための方法

本発明の一実施例に従って、改良されたコントラストを有するデジタル・マイクロ・ミラー・デバイス及びそのための方法が提供される。デジタル・マイクロ・ミラー・デバイスは、基板(214)の上側表面上の複数の電流供給導電体であって、各々が上側表面を有する電流供給導電体(210)と、電流供給導電体の上側表面上に配置される低反射率金属(208)と、基板の上方に開口を形成する第1及び第2のマイクロ・ミラーとを含み、電流供給導電体の上側表面上に配置された低反射率金属(208)は、開口を介して電流供給導電体が受ける光の反射を低減させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、全般的に光学処理デバイスに関し、更に特定して言えば、改良されたコントラストを有するデジタル・マイクロ・ミラー・デバイス、及びそのデジタル・マイクロ・ミラー・デバイスのための方法に関連する。
【背景技術】
【0002】
デジタル・マイクロ・ミラー・デバイス(DMD)は、光通信及び/又はプロジェクション・ディスプレイ・システムにおいて用いることができる。DMDは、アクティブ「オン」及び「オフ」状態間を旋回する(pivot)ことによって、光学信号又は光ビームの少なくとも一部を選択的に伝達する、マイクロ・ミラーのアレイを含む。マイクロ・ミラーを旋回させるため、各マイクロ・ミラーは、CMOS基板に接続される1つ又はそれ以上の支持ポスト上に搭載されるヒンジに取り付けられる。マイクロ・ミラー及び支持ポストの下方で、CMOS基板は、DMDのマイクロ・ミラーの動きを制御するために用いられる。このCMOS基板は光学的に反射性であるが、困ったことに、マイクロ・ミラーが「オフ」状態にあるとき、このCMOS基板が露出される可能性がある。光がDMDのマイクロ・ミラー間を通ると、その光は基板の表面で反射されて、望ましくない光学アーティファクトとなり、DMDのコントラストを制限することに成り得る。
【発明の開示】
【発明が解決しようとする課題】
【0003】
DMDのコントラストを改良するため、DMDの下部構造を構成するCMOS基板の反射率を低減させる試みで、種々の方法が用いられてきている。幾つかのアプローチでは、DMD下部構造を覆うために、SiO及びTiNなどの材料で作られた多層誘電体構造を用いている。しかし、このアプローチは、充電及び寄生容量などの電気的問題を起こす可能性があるTiNの半導性のため、適用に制約がある。他のアプローチでは、幾つかのDMDに用いられる光学開口を形成するために、クロム上酸化クロム、又は他の反射性金属を用いている。クロムの使用は、環境に対する問題で厳しく制限されているため、このアプローチにも制約がある。また、DMDの露出された層内の非金属要素は、DMDの上部空間(headspaces)内のフッ素と反応して、DMDを損傷させ得る高分圧を有する化合物を形成し易いことから、非金属要素を用いる方法には制約がある。
【課題を解決するための手段】
【0004】
本発明の一実施例に従って、改良されたコントラストを有するデジタル・マイクロ・ミラー・デバイス、及びそのデジタル・マイクロ・ミラー・デバイスのための方法が提供される。デジタル・マイクロ・ミラー・デバイスは、基板の上側表面上の複数の電流供給(current−carrying)導電体であって、各々が上側表面を有する電流供給導電体と、電流供給導電体の上側表面上に配置される低反射率金属と、基板の上方に開口を形成する第1及び第2のマイクロ・ミラーとを含む。電流供給導電体の上側表面上に配置された低反射率金属は、開口を介して電流供給導電体が受ける光の反射を低減させる。
【発明の効果】
【0005】
本発明の幾つかの実施例の技術的利点の1つは、従来のDMDより改良されたコントラストを有するデジタル・マイクロ・ミラー・デバイスを含む。高反射性の電流供給導電体を基板の上側表面上に露出させておくのではなく、本発明の特定の実施例は、これらの導電体を、DMDの上部構造からの光の反射を低減させる低反射率金属で覆う。
【0006】
本発明の幾つかの実施例の別の技術的利点は、用いられる低反射率金属が、DMDの上部空間内の化合物に晒されるとき、イオン結合化合物(ionic compound)を形成し易いことである。これらのイオン結合化合物は、典型的に、共有結合化合物より分圧が低く、上部空間内の過圧に因るDMDへの損傷のリスクを低減させる。
【0007】
本発明の幾つかの実施例のさらに別の技術的利点は、DMDに用いられる低反射率金属が、本質的に低い吸収係数(absorption coefficient)を有しており、金属が少なくとも部分的に透過性を有する多層積層構造にこの低反射率金属を用いることができることである。幾つかの実施例において、これらの多層積層構造は、極めて厚い単層構造のものよりもさらに低い反射率を有し得る。
【0008】
本発明の他の技術的利点は、以下を参照すれば当業者には容易に認められるであろう。
【実施例】
【0009】
本発明及び本発明の特徴や利点を更によく理解するため、添付の図面に関連させて、これから以下の説明を参照する。
【0010】
本発明の特定の実施例に従って、図1は、デジタル・マイクロ・ミラー・デバイス(DMD)100の一部の切開図を示す。DMD100は、そのDMDのCMOS基板の導電性層の上に低反射率被覆を用いて、DMDの上部構造の反射率を低減させ、DMDのコントラスト比を改良させる。
【0011】
図1に示すように、DMD100は、傾斜する数十万ものアレイのマイクロ・ミラー104を含む微小電気機械スイッチング(MEMS)デバイスを含む。この例では、各マイクロ・ミラー104は、ほぼ13.7ミクロン四方の寸法であり、隣接するマイクロ・ミラー間にほぼ1ミクロンの間隙を有する。幾つかの例において、各マイクロ・ミラーは、13ミクロン四方より小さな寸法であってもよい。他の例において、各マイクロ・ミラーは、ほぼ17ミクロン四方の寸法であってもよい。また、各マイクロ・ミラー104は、プラス又はマイナス10度まで傾斜して、アクティブ「オン」状態又はアクティブ「オフ」状態を生成することができる。他の例では、各マイクロ・ミラー104は、アクティブ「オン」状態又は「オフ」状態のために、プラス又はマイナス12度まで傾斜してもよい。
【0012】
本実施例において、各マイクロ・ミラー104は、アクティブ「オン」状態と「オフ」状態との間で遷移して、光学信号又は光ビームの少なくとも一部を選択的に伝達する。マイクロ・ミラー104を傾斜させるため、各マイクロ・ミラー104は、ヒンジ・ポスト108上に搭載される1つ又はそれ以上のヒンジ116に取り付けられ、相補型金属酸化物半導体(CMOS)基板102の上のエア・ギャップによって間隔が空けられる。この例では、マイクロ・ミラー104は、ヨーク106が導電性コンジット(conduits)110に接触するまで、正又は負の方向に傾斜する。この例ではヨーク106を含むが、他の例ではヨーク106は省いてもよい。そのような例では、マイクロ・ミラー104は、マイクロ・ミラー104がミラー・ストップ(明示せず)に接触するまで、正又は負の方向に傾斜する。
【0013】
この特定の例において、電極112及び導電性コンジット110は、酸化物層103から外側に配置される導電性層120内に形成される。導電性層120は、例えば、アルミニウム合金又は他の適切な導電性材料を含み得る。酸化物層103は、CMOS基板102を電極112及び導電性コンジット110から絶縁するように機能する。
【0014】
導電性層120はバイアス電圧を受け、バイアス電圧は、電極112、マイクロ・ミラー104、及び/又はヨーク106間に形成される静電力の生成に少なくとも部分的に貢献する。この特定の例において、このバイアス電圧は定常状態電圧を含む。つまり、導電性層120に印加されるバイアス電圧は、DMD100が動作する間、実質的に一定のままである。この例において、このバイアス電圧は約26ボルトを含む。この例では26ボルトのバイアス電圧を用いるが、この開示の範囲から逸脱することなく、他のバイアス電圧を用いることもできる。
【0015】
この特定の例において、CMOS基板102は、DMD100に関連する制御回路を含む。この制御回路は、電極112、マイクロ・ミラー104、及び/又はヨーク106間の静電力の生成に少なくとも部分的に貢献することが可能な、任意のハードウェア、ソフトウェア、ファームウェア、又はそれらの組み合わせを含み得る。CMOS基板102に関連する制御回路は、プロセッサ(明示せず)から受けたデータに少なくとも部分的に基づいて、マイクロ・ミラー104を「オン」状態と「オフ」状態との間で選択的に遷移させるように機能する。
【0016】
この特定の例において、マイクロ・ミラー104aは、アクティブ「オン」状態に位置し、一方、マイクロ・ミラー104bは、アクティブ「オフ」状態に位置する。制御回路は、特定のマイクロ・ミラー104に関連する少なくとも1つの電極112に制御電圧を選択的に印加することによって、マイクロ・ミラー104を「オン」状態と「オフ」状態との間で遷移させる。例えば、マイクロ・ミラー104bをアクティブ「オン」状態に遷移させるには、制御回路は、電極112bから制御電圧を取り除き、電極112aに制御電圧を印加する。この例において、制御電圧は約3ボルトを含む。この例は約3ボルトの制御電圧を用いるが、本開示の範囲から逸脱することなく他の制御電圧を用いることもできる。なお、図1は、特定のDMDデバイスを図示しているが、図1及びそれに関連する記載は、単に例示の目的で提供されているのであって、決して本開示の範囲を制限すると解釈すべきではない。むしろ、本発明の教示は、任意のDMD基板又は半導体デバイスで反射される光の量を低減させるために用いることができることを理解されたい。
【0017】
上述のように、マイクロ・ミラー104が「オフ」状態にあるとき、ミラーの傾斜がマイクロ・ミラーの下の上部構造の覆いをなくすため、導電性層120は露出され得る。従来のDMDでは、ミラーによって形成される開口を介して光が通過してDMDの上部構造から反射するため、これは、DMDによって生成される光学信号又は画像の画素間に見える望ましくない反射となり得る。しかし、DMD100は、この光の反射を低減させ、DMDのコントラスト比を改良させるため、導電性層120の上側表面上に低反射率金属の被覆を特徴として備えている。本発明の教示に従ったDMDの例を示す図2A及び図2Bを参照することによって、これがさらによく理解されるであろう。
【0018】
図2Aは、本発明の特定の実施例に従ったDMD200の断面図を示す。DMD200は、1つ又はそれ以上のビーム204及びヒンジ206に取り付けられ、CMOS基板214上方のエア・ギャップによって間隔が空けられたマイクロ・ミラー202を含む。CMOS基板214の上側表面上に、複数の電極及び導電性コンジット(明示せず)が、酸化物層212から外側に配置される導電性層210内に形成される。導電性層210は、典型的にアルミニウム合金又は他の適切な導電性材料を含む。これは、光学的に反射性である導電性層210となる傾向がある。導電性層210の表面からの望ましくない反射を低減させるため、導電性層210内の電極及び導電性コンジットは、層208の低反射率金属で覆われる。
【0019】
一般に、いかなる低反射率金属も本発明に従った用途に適している。特定の実施例において、適切な低反射率金属は、これらに限定されないが、チタン、タングステン、バナジウム、又はタンタルを含む。一般に、本発明の教示に従った用途に適している低反射率金属は、比較的低いk値(屈折率虚数部とも呼ぶ)を有する。金属のk値と金属の反射率との関係は、次の式で得られる。
【0020】
【数1】

【0021】
ここでRは材料の反射係数であり、nは材料の屈折係数であり、kは材料の吸光係数(extinction coefficient)である。上記の式のk値が大きい場合、R値は1に近似する。しかし、k値が小さい場合、R値は一般に1より小さいままである。
【0022】
この関係を念頭に置き、本発明の教示に従った用途に適している低反射率金属は、典型的に、約0.2マイクロメートルから約0.8マイクロメートルまでの光の波長で約3.5より小さいk値を有する。このような低いk値は、典型的に、約0.4マイクロメートルから約0.7マイクロメートルまでの光の波長で約0.6より低い反射率を有する、適切な低反射率金属をもたらす。
【0023】
また、低反射率金属の低k値により、本発明の低反射率金属が、次の式で得られる低い吸収係数Aを有するようにすることもできる。
【0024】
【数2】

【0025】
ここで、Aは材料の吸収係数であり、kは材料の吸光係数であり、λは吸収される光の波長である。
【0026】
本発明の低反射率金属は低い吸収係数を有するため、本発明の特定の実施例は、この低反射率金属を多層積層構造の一部として用いることもできる。このような多層積層に用いられる場合、低反射率金属は、少なくとも部分的に透過性を有し得る。これらの少なくとも部分的に透過性を有する金属の多数の薄膜を組み合わせることにより、その結果の多層積層は、金属の極めて厚い単層被覆のものよりも低い反射率を有し得る。
【0027】
このような多層積層構造の一例を、同じくDMD200を示す図2Bに図示する。但し、この実施例では、「層」208は実際には、層220、222、224、及び226の低反射率金属の多数の薄膜を含む多層積層である。本実施例において、層220から226の各々は、少なくとも部分的に透過性を有し得る。上述で説明したように、これは、全体の厚みが同じ低反射率金属の単層よりも小さい総反射率(overall reflectivity)を有する層220から226となり得る。
【0028】
本発明の低反射率金属は他の利点も提供し得る。例えば、その金属性の性質により、本発明の教示に従った用途に適している低反射率金属は、フッ素又はリンを含み得る、DMDの上部空間内の成分に晒されるとき、一般に、イオン結合化合物を形成する傾向がある。低反射率金属の上部空間成分との反応によって形成されるイオン結合化合物は、典型的に、共有結合化合物よりも低い分圧を有する。このような一層低い分圧は、上部空間内の過圧に因るDMDの上部構造への損傷のリスクを低減させる助けとなる。本発明の他の利点も、当業者には明らかであろう。
【0029】
本発明の教示に従ってDMDのコントラスト比を改良する方法のフローチャートを図3に図示する。図3に示すように、フローチャート300はブロック301で開始する。ブロック302で、DMDのCMOS基板が形成される。製造されるDMDに因って、CMOS基板は、種々の異なる構造に配列される種々の異なる材料を含み得、これらはすべて本発明の教示の範囲に含まれる。
【0030】
ブロック302でCMOS基板が形成された後、DMDの導電性層が形成される。この導電性層は、DMDのマイクロ・ミラーの動きを制御するために用いられる、複数の電極及び導電性コンジットを含み、アルミニウム合金又は別の適切な導電性材料から構成されるのが典型的である。
【0031】
その後、チタン、タングステン、バナジウム、又はタンタルなどの低反射率金属が、ブロック303の導電性層の上側表面上に蒸着される。金属のこの低い反射率は、DMDの上部構造による、「オフ」状態のマイクロ・ミラー間を通る光の反射を低減させる助けとなる。このように反射が低減されるため、その結果のDMDは、一層高いコントラスト比を有し得る。
【0032】
特定の実施例において、低反射率金属は、実際には、多層積層構造の一部として蒸着されてもよい。そのような実施例では、低反射率金属の付加的な層が必要とされる。多層積層に存在する場合、本発明の低反射率金属は、たいてい少なくとも部分的に透過性を有する薄膜であるのが典型的である。幾つかの実施例において、これは、金属の極めて厚いシートのものよりも低い総反射率を有する多層積層となり得る。従って、ブロック304において、導電性層の電極及びコンジットの上に低反射率金属の任意の付加的な層を蒸着するかどうか決定が成される。低反射率金属の付加的な層が望ましい場合、付加的な層はブロック305で蒸着される。低反射率金属の付加的な層は、ブロック304で付加的な層は必要とされないという決定が成されるまで付加される。低反射率金属の所望の数の層が蒸着されると、このフローチャートはブロック307で終了する。
【0033】
本発明の方法及び装置の特定の実施例を、添付の図面に図示し前述の詳細な説明において説明してきたが、本発明は、開示された実施例に限定されず、本発明の範囲から逸脱することなく、種々の再配列、変更、及び置換が可能であることを理解されたい。
【図面の簡単な説明】
【0034】
【図1】図1は、本発明の特定の実施例に従って、デジタル・マイクロ・ミラー・デバイスの一部の切開図を示す。
【図2A】図2Aは、本発明の特定の実施例に従ったデジタル・マイクロ・ミラー・デバイスの一部の断面図を示す。
【図2B】図2Bは、本発明の特定の実施例に従ったデジタル・マイクロ・ミラー・デバイスの一部の断面図を示す。
【図3】図3は、本発明の特定の実施例に従って、デジタル・マイクロ・ミラー・デバイス基板を形成する方法のフローチャートを図示する。

【特許請求の範囲】
【請求項1】
デジタル・マイクロ・ミラー・デバイスであって、
基板の上側表面上の複数の電流供給(current−carrying)導電体であって、各々が上側表面を有する電流供給導電体、
電流供給導電体の上側表面上に配置される低反射率金属、及び
基板の上方に開口を形成する第1及び第2のマイクロ・ミラーを含み、
電流供給導電体の上側表面上に配置された低反射率金属が、開口を介して電流供給導電体が受ける光の反射を低減させる、
デジタル・マイクロ・ミラー・デバイス。
【請求項2】
請求項1に記載のデバイスであって、低反射率金属が多層積層構造を含む、デバイス。
【請求項3】
請求項1又は請求項2に記載のデバイスであって、低反射率金属が、約0.4マイクロメートルから約0.7マイクロメートルまでの光の波長で約0.6より低い反射率を有する、デバイス。
【請求項4】
請求項1又は請求項2に記載のデバイスであって、低反射率金属が、約0.2マイクロメートルから約0.8マイクロメートルまでの光の波長で約3.5より低いk値を有する、デバイス。
【請求項5】
請求項1から請求項4のいずれかに記載のデバイスであって、低反射率金属が、チタン、タングステン、バナジウム、又はタンタルを含む、デバイス。
【請求項6】
請求項1から請求項5のいずれかに記載のデバイスであって、低反射率金属が、デジタル・マイクロ・ミラー・デバイスの上部空間(headspace)の素子と反応するときイオン結合化合物(ionic compound)を形成する、デバイス。
【請求項7】
請求項1から請求項6のいずれかに記載のデバイスであって、低反射率金属が少なくとも部分的に透過性を有する、デバイス。
【請求項8】
デジタル・マイクロ・ミラー・デバイスのコントラストを改良させる方法であって、
デジタル・マイクロ・ミラー・デバイスの基板の上方に配置される第1のマイクロ・ミラー及び第2のマイクロ・ミラーによって形成される開口を介して光を受けることであって、基板は基板の上側表面上に複数の電流供給導電体を有しており、各電流供給導電体は電流供給導電体の上側表面上に配置される低反射率金属を有しており、
開口を介して受けた光を低反射率金属と接触させること、及び
開口を介して低反射率金属が受ける光の反射を少なくとも部分的に低減させること
を含む方法。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate


【公表番号】特表2008−519293(P2008−519293A)
【公表日】平成20年6月5日(2008.6.5)
【国際特許分類】
【出願番号】特願2007−539197(P2007−539197)
【出願日】平成17年10月28日(2005.10.28)
【国際出願番号】PCT/US2005/039051
【国際公開番号】WO2006/050149
【国際公開日】平成18年5月11日(2006.5.11)
【出願人】(501229528)テキサス インスツルメンツ インコーポレイテッド (111)
【Fターム(参考)】