説明

有機薄膜、有機薄膜の製造方法、電子デバイス、有機エレクトロルミネッセンス素子、表示装置及び照明装置

【課題】反応性モノマーの重合体を含有する反応溶液を用いて成膜する工程を有する有機薄膜の製造方法、該製造方法を用いて、外部取り出し量子効率が高く、且つ、発光寿命の長い有機EL素子を提供し、該有機薄膜を含む電子デバイス、有機EL素子、該有機EL素子を備えた表示装置、照明装置を提供する。
【解決手段】反応性モノマーにエネルギー付与して、該反応性モノマーの重合体を含有する反応溶液を調製し、該反応溶液を用いて成膜する工程を有することを特徴とする有機薄膜の製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機薄膜、有機薄膜の製造方法、電子デバイス、有機エレクトロルミネッセンス素子、表示装置及び照明装置に関する。
【背景技術】
【0002】
従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(以下、ELDともいう)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
【0003】
一方、有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、この励起子(エキシトン)が失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
【0004】
今後の実用化に向けた有機EL素子の開発としては、更に低消費電力で、効率よく高輝度に発光する有機EL素子が望まれている。
【0005】
例えば、特許第3093796号公報には、スチルベン誘導体、ジスチリルアリーレン誘導体またはトリススチリルアリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成する技術が開示され、特開昭63−264692号公報には、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子が開示されており、特開平3−255190号公報には、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子等が知られている。
【0006】
上記特許文献に開示されている技術では、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であることと、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。
【0007】
ところが、M.A.Baldo et al.,nature、395巻、151〜154ページ(1998年)により、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告がされて以来、M.A.Baldo et al.,nature、403巻、17号、750〜753ページ(2000年)、米国特許第6,097,147号明細書により、室温で燐光を示す材料の研究が活発になってきている。
【0008】
更に、最近発見されたリン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。
【0009】
例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304ページ(2001年)には、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討がなされている。
【0010】
また、有機EL素子は、電極と電極の間を厚さわずか0.1μm程度の有機材料の膜で構成するオールソリッド素子であり、なおかつその発光が2V〜20V程度の比較的低い電圧で達成できることから、次世代の平面ディスプレイや照明として期待されている技術である。
【0011】
更に、最近発見されたリン光発光を利用する有機ELでは、以前の蛍光発光を利用するそれに比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。
【0012】
また、有機EL素子の構成は、透明電極と対抗電極に有機層が挟まれただけの単純なものであり、平面ディスプレイの代表である液晶ディスプレイに比べ、部品点数が圧倒的に少ないため、製造コストも低く抑えられるはずであるが、現状では必ずしもそうではなく、性能的にもコスト的にも液晶ディスプレイに大きく水をあけられている。
【0013】
特にコストに対しては、生産性の悪さがその要因と考えられる。
【0014】
現在商品化されている有機ELの殆どが、低分子材料を蒸着して成膜する、いわゆる蒸着法で製造されている。この蒸着法は精製が容易な低分子化合物を有機EL材料を用いることができる(高純度材料が得やすい)こと、更に積層構造を作るのが容易なことから、効率、寿命という面で非常に優れている。
【0015】
しかし、反面、10-4Pa以下という高真空条件下で蒸着を行うため、成膜する装置に制約が加わり、実際には小さい面積の基板にしか適用できず、さらに複数層積層するとなると成膜に時間がかかりスループットが低いことが欠点である。
【0016】
特に、照明用途や大面積の電子ディスプレイに適用する場合は問題となり、有機ELがそのようなアプリケーションに実用されていないひとつの原因となっている。
【0017】
一方、有機化合物層をスピンコート、インクジェット、印刷、スプレーといったプロセスで製造する塗布法は、常圧で薄膜を作製することできさらに大面積に均一な膜を作製するのに適しており、連続生産を可能とする手段のひとつとして、有機EL材料を含む溶液を用いた方法が提案されている。
【0018】
しかしながら、高い発光効率、長寿命を同時に達成するためには、複数の機能層を積層することが望ましい。塗布法を用いて複数の層を積層するためには下層が上層の塗布液に溶解しないことが条件だが、数十nmオーダーという非常に薄い膜に対しては、わずかに溶解性を示す溶剤であっても下層の膜の一部が溶け出し、または溶媒によって界面が乱れてしまうという問題が生じる。
【0019】
このような下層材料の上層へのコンタミや界面の乱れは、素子の発光効率の低下や素子寿命の劣化を引き起こすため、改善の必要があり、これらの問題を解決するため、例えば高分子材料を用いることが提案されている。
【0020】
しかし、一般的に高分子材料は精製が難しく、特に有機エレクトロルミネッセンス素子はごくわずかな不純物が素子の発光寿命を大きく低下させる原因になるため、適用が難しい。
【0021】
また、例えば、有機エレクトロルミネッセンス素子の構成層を製膜した後に、高分子量化するという技術があり、2つ以上のビニル基を有する材料を複数の層に添加する技術が開示され、重合反応は、陰極を積層する前の有機層製膜時点で紫外線や熱の照射で行う方法(例えば、特許文献1参照。)、同一層内の2分子間でディールスアルダー反応を起こさせて架橋させる製造方法(例えば、特許文献2参照。)等が挙げられる。
【0022】
上記の技術は、いずれも製膜時または製膜直後(陰極を付ける前)に重合反応を完結させる方法であるが、有機EL素子の耐久性向上という実用上の観点からは、まだ、不十分であり、更なる素子の耐久性向上技術が求められている。
【特許文献1】特開2001−297882号公報
【特許文献2】特開2003−86371号公報
【発明の開示】
【発明が解決しようとする課題】
【0023】
本発明の目的は、反応性モノマーの重合体を含有する反応溶液を用いて成膜する工程を有する有機薄膜の製造方法、該製造方法を用いて、外部取り出し量子効率が高く、且つ、発光寿命の長い有機EL素子を提供し、該有機薄膜を含む電子デバイス、有機EL素子、該有機EL素子を備えた表示装置、照明装置を提供することである。
【課題を解決するための手段】
【0024】
本発明の上記目的は下記の構成1〜13により達成された。
【0025】
1.反応性モノマーにエネルギー付与して、該反応性モノマーの重合体を含有する反応溶液を調製し、該反応溶液を用いて成膜する工程を有することを特徴とする有機薄膜の製造方法。
【0026】
2.前記エネルギー付与が光照射により行われることを特徴とする前記1に記載の有機薄膜の製造方法。
【0027】
3.前記エネルギー付与が加熱処理により行われることを特徴とする前記1に記載の有機薄膜の製造方法。
【0028】
4.前記反応溶液に重合開始剤が含まれていないことを特徴とする前記1〜3のいずれか1項に記載の有機薄膜の製造方法。
【0029】
5.前記反応溶液の含水量が100ppm以下であることを特徴とする前記1〜4のいずれか1項に記載の有機薄膜の製造方法。
【0030】
6.前記反応溶液の溶存酸素量が100ppm以下であることを特徴とする前記1〜5のいずれか1項に記載の有機薄膜の製造方法。
【0031】
7.前記1〜6のいずれか1項に記載の有機薄膜の製造方法により製造されたことを特徴とする有機薄膜。
【0032】
8.前記7に記載の有機薄膜を用いて形成されたことを特徴とする電子デバイス。
【0033】
9.前記7に記載の有機薄膜を用いて形成されたことを特徴とする有機エレクトロルミネッセンス素子。
【0034】
10.リン光発光性化合物を含有することを特徴とする前記9に記載の有機エレクトロルミネッセンス素子。
【0035】
11.白色に発光することを特徴とする前記9または10に記載の有機エレクトロルミネッセンス素子。
【0036】
12.前記9〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
【0037】
13.前記9〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
【発明の効果】
【0038】
本発明により、反応性モノマーの重合体を含有する反応溶液を用いて成膜する工程を有する有機薄膜の製造方法、該製造方法を用いて、外部取り出し量子効率が高く、且つ、発光寿命の長い有機EL素子を提供し、該有機薄膜を含む電子デバイス、有機EL素子、該有機EL素子を備えた表示装置、照明装置を提供することができた。
【発明を実施するための最良の形態】
【0039】
本発明の有機薄膜の製造方法においては、請求項1〜6のいずれか1項に記載の構成を有することにより、反応性モノマーの重合体を含有する反応溶液を用いて成膜する工程を有する有機薄膜の製造方法を提供することができた。
【0040】
該製造方法を用いて、有機薄膜を含む電子デバイス、有機EL素子、該有機EL素子を備えた表示装置、照明装置を提供することができた。
【0041】
以下、本発明に係る各構成要素の詳細について、順次説明する。
【0042】
《有機薄膜の製造方法》
本発明の有機薄膜の製造方法について説明する。
【0043】
本発明者等は、上記の問題を種々検討した結果、有機EL素子の構成層の成膜過程に注目して検討を行った。
【0044】
従来公知の有機EL素子の製造方法としては、真空蒸着法にて有機薄膜を製造する方法が一般的に用いられているが、従来の真空蒸着法では高真空が必要であり、製造可能な部材の大きさが限定されると同時に、部材の出し入れ工程が必要であり連続生産には不向きである。
【0045】
一方、連続生産を可能とする手段として、EL材料の溶液を用いた方法が提案されており、EL(エレクトロルミネッセンス)材料としては低分子材料、高分子材料を用いることが可能であるとされている。
【0046】
しかしながら、背景技術でも述べたように、低分子材料を用いた塗布では、積層膜形成時に下層と上層の混合が押さえられず、高性能のEL素子を得ることは困難である。また、高分子材料の場合には、積層膜の形成は可能になるものの、高分子製造時の触媒等を除去が難しく、これらがEL素子寿命を劣化させる一つの要因といわれている。
【0047】
(反応溶液:反応性モノマーの重合体を含む溶液)
そこで、本発明者等は、有機EL素子材料(単に、EL材料ともいう)を合成する工程で反応性モノマーを用い、成膜前(成膜直前が好ましい)にエネルギー付与(により、前記反応性モノマーの重合体(重合物ともいう、また、単独重合体でも、共重合体でもよい))を形成することで、高純度の重合体が得られることを見出した。
【0048】
(エネルギー付与手段)
本発明に係るエネルギー付与手段としては、光照射(紫外線、赤外線、可視光線、電子線照射、中性子線照射、α線照射、X線照射等)、加熱処理等の付与手段を挙げることができるが、中でも、紫外線照射や加熱処理が好ましく用いられる。
【0049】
加熱処理としては、50℃〜200℃の範囲が好ましく、また、加熱時間は製造効率アップの観点から、1秒〜30分の範囲が好ましい。
【0050】
また、紫外線処理に用いる光源としては、例えば、スポット光源 LIGHTNINGCURE LC8(浜松ホトニクス製)が挙げられる。
【0051】
(高純度の重合体)
本発明において、『高純度』とは、例えば、重合反応に用いる、従来公知の重合開始剤、連鎖移動剤、重合促進剤、重合反応停止剤、重合遅延剤等の重合体合成に用いられる、種々の添加剤を反応溶液が含まないことを意味する。
【0052】
ここで、『種々の添加剤を含まない』とは、反応溶液において、前記添加剤の含有量が0.01質量%以下であることを意味し、好ましくは、0.01質量%以下である。
【0053】
反応溶液中の添加剤の含有量は、市販のLC−MS(液体クロマトグラフ−質量分析計)を用いて測定可能である。
【0054】
(反応溶液中の含水量)
本発明に係る反応溶液の含水量としては、100ppm以下であることが好ましく、更に好ましくは、50ppm以下である。
【0055】
ここで、反応溶液の含水量は、市販のカールフィッシャー水分計により分析することができる。
【0056】
(反応溶液中の溶存酸素量)
本発明に係る反応溶液の溶存酸素量としては、100ppm以下であることが好ましく、更に好ましくは、50ppm以下である。
【0057】
ここで、反応溶液の溶存酸素量は、市販の溶存酸素計により分析することができる。
【0058】
(反応性モノマー)
本発明に係る反応性モノマーについて説明する。
【0059】
本発明に係る反応性モノマーは、重合反応性基を有する有機EL素子材料であり、後述する有機EL素子の構成層を形成する材料に重合反応性基を導入した化合物を用いることができる。
【0060】
ここで、重合反応性基とは、ラジカル重合反応、イオン重合反応、縮重合反応等を起こすことが可能な基であればよく、例えば、ビニル基、ビニルオキシ基、アクリロイル基、メタクリロイル基、メルカプト基、ヒドロキシ基、カルボキシ基、シアネート基、イソシアネート基、チオシアネート基、イソチオシアネート基、オキシラン(エチレンオキシド)から導出される基(エポキシ基)、トリメチレンオキシド(オキセタン)から導出される基等を挙げることができる。
【0061】
以下、反応性モノマーの具体例を示すが、本発明はこれらに限定されない。
【0062】
【化1】

【0063】
【化2】

【0064】
【化3】

【0065】
【化4】

【0066】
【化5】

【0067】
【化6】

【0068】
【化7】

【0069】
【化8】

【0070】
【化9】

【0071】
【化10】

【0072】
【化11】

【0073】
【化12】

【0074】
【化13】

【0075】
【化14】

【0076】
【化15】

【0077】
【化16】

【0078】
【化17】

【0079】
【化18】

【0080】
尚、上記の反応性モノマーの具体例の中で、化合物1−1〜1−26は、重合性反応基を有するホスト化合物として好ましく用いられ、化合物2−1〜2−33は、重合性反応基を有する発光ドーパント(単に、ドーパントともいう)として好ましく用いられる。
【0081】
また、化合物3−1〜3−21は、重合性反応基を有する電子輸送材料として好ましく用いられ、化合物4−1〜4−20は、重合性反応基を有する正孔輸送材料として好ましく用いられる。
【0082】
上記の反応性モノマーは更に置換基を有していてもよく、該置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、ナフチル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。尚、これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
【0083】
《有機薄膜》
得られた高純度の、反応性モノマーの重合体を含む反応溶液を成膜工程にそのまま利用することで、従来の重合反応に用いられる種々の添加剤(重合反応に用いる、従来公知の重合開始剤、連鎖移動剤、重合促進剤、重合反応停止剤、重合遅延剤等)を含まない、高純度の重合体を用いた有機薄膜を形成することができる。
【0084】
このようにして得られた本発明の有機薄膜は、本発明の有機EL素子や本発明の電子デバイス等に好適に用いることができる。
【0085】
《電子デバイス》
本発明の電子デバイスについて説明する。
【0086】
本発明の電子デバイスは、本発明の有機薄膜を用いて種々の電子デバイスが形成可能であるが、中でも、光が関与する素子が好ましく用いられる。
【0087】
光が関与する素子としては、例えば、液晶表示素子、有機感光体薄膜を用いた電子写真、有機光電池、光化学ホールバーニング(PHB)記録素子、有機エレクトロルミネッセンス素子(有機EL素子)、ラングミュア・ブロジェット(LB)膜を用いた各種光機能素子等が挙げられるが、特に好ましくは、有機EL素子が挙げられる。
【0088】
以下、本発明の電子デバイスの中で、好ましい態様である、有機EL素子について更に詳しく説明する。
【0089】
《有機EL素子》
本発明の有機薄膜の製造方法により得られた有機薄膜を有する、本発明の有機EL素子について説明する。
【0090】
本発明の有機薄膜の製造方法により、高純度の低分子を出発物質とする有機薄膜(単層膜でも、積層膜でもよい)の形成が可能となり、この方法で製造した有機EL素子は、不純物等の含有を抑制することができるので、有機EL素子の発光効率の向上、素子寿命の改善などが可能となる。
【0091】
《有機EL素子の構成層》
本発明の有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
【0092】
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
本発明の有機EL素子においては、青色発光層の発光極大波長は430nm〜480nmにあるものが好ましく、緑色発光層は発光極大波長が510nm〜550nm、赤色発光層は発光極大波長が600nm〜640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよい。更に、発光層間には非発光性の中間層を有していてもよい。本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
【0093】
本発明の有機EL素子を構成する各層について説明する。
【0094】
《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
【0095】
発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲に調整することが好ましく、さらに好ましくは2nm〜200nmの範囲に調整され、特に好ましくは、10nm〜20nmの範囲である。
【0096】
発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により製膜して形成することができる。
【0097】
本発明の有機EL素子の発光層には、発光ホスト化合物と、発光ドーパント(リン光ドーパント(リン光発光性ドーパントともいう)や蛍光ドーパント等)の少なくとも1種類とを含有することが好ましい。
【0098】
(ホスト化合物(発光ホスト等ともいう))
本発明に用いられるホスト化合物について説明する。
【0099】
ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
【0100】
ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
【0101】
また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でも良い。
【0102】
併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。
【0103】
公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。
【0104】
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
【0105】
(発光ドーパント)
本発明に係る発光ドーパントについて説明する。
【0106】
本発明に係る発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができるが、より発光効率の高い有機EL素子を得る観点からは、本発明の有機EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材料ということもある)としては、上記のホスト化合物を含有すると同時に、リン光ドーパントを含有することが好ましい。
【0107】
(リン光ドーパント)
本発明に係るリン光ドーパントについて説明する。
【0108】
本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
【0109】
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
【0110】
リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
【0111】
リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
【0112】
本発明に係るリン光ドーパントとしては、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
【0113】
以下に、リン光ドーパントとして用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。
【0114】
【化19】

【0115】
【化20】

【0116】
【化21】

【0117】
【化22】

【0118】
【化23】

【0119】
【化24】

【0120】
(蛍光ドーパント(蛍光性化合物ともいう))
蛍光ドーパント(蛍光性化合物)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
【0121】
次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。
【0122】
《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
【0123】
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
【0124】
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
【0125】
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。
【0126】
《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
【0127】
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
【0128】
本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
【0129】
正孔阻止層には、前述のホスト化合物として挙げたアザカルバゾール誘導体を含有することが好ましい。
【0130】
また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
【0131】
イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。
【0132】
(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
【0133】
(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
【0134】
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nm〜100nmであり、更に好ましくは5nm〜30nmである。
【0135】
《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
【0136】
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
【0137】
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
【0138】
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
【0139】
更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
【0140】
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
【0141】
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
【0142】
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
【0143】
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
【0144】
《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
【0145】
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0146】
また8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
【0147】
その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
【0148】
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
【0149】
また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
【0150】
本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
【0151】
《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
【0152】
陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
【0153】
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm〜1000nm、好ましくは10nm〜200nmの範囲で選ばれる。
【0154】
《陰極》
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
【0155】
陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
【0156】
また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
【0157】
また、陰極に上記金属を1nm〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
【0158】
《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
【0159】
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
【0160】
樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m2・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、10-3ml/(m2・24h・MPa)以下、水蒸気透過度が、10-5g/(m2・24h)以下の高バリア性フィルムであることが好ましい。
【0161】
バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
【0162】
バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
【0163】
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
【0164】
本発明の有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。
【0165】
ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
【0166】
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
【0167】
《封止》
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
【0168】
封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
【0169】
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
【0170】
本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24h・MPa)以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のものであることが好ましい。
【0171】
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
【0172】
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
【0173】
なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
【0174】
また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
【0175】
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
【0176】
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
【0177】
《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
【0178】
《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
【0179】
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。
【0180】
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
【0181】
本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
【0182】
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
【0183】
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
【0184】
また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
【0185】
全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
【0186】
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
【0187】
回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
【0188】
このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。
【0189】
回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
【0190】
《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
【0191】
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
【0192】
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
【0193】
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
【0194】
《有機EL素子の作製方法》
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明する。
【0195】
まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
【0196】
次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。
【0197】
これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。
【0198】
本発明に係る有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
【0199】
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは、50nm〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
【0200】
また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
【0201】
《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
【0202】
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
【0203】
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
【0204】
また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000Cd/m2でのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。
【実施例】
【0205】
以下、実施例により本発明を説明するが、本発明はこれらに限定されない。尚、実施例に用いられる化合物を下記に示す。
【0206】
【化25】

【0207】
実施例1
有機EL素子の作製は、下記の塗布溶液1−1〜1−5を各々調製した後、該塗布用液を用いて、各有機EL素子を作製した。
【0208】
《塗布溶液1−1〜1−5の調製》:光照射により重合体形成
窒素雰囲気下、CBP(600mg)及びIr−1(30mg)を脱水ジクロロエタン60mlに溶解し、撹拌下高圧水銀灯にて紫外光を120秒間照射し、塗布溶液1−1を調製した。
【0209】
次いで、塗布溶液1−1の調製において、発光層に用いる化合物を表1に記載のように変更した以外は同様にして、塗布溶液1−2〜1−5を各々調製した。
【0210】
得られた、塗布溶液1−2〜1−5の一部を、市販のLC−MS(液体クロマトグラフ−質量分析計)にて分析したところ、含有モノマーの重合体の生成を確認することができたが、塗布溶液1−1は紫外光の照射前後で組成に変化は認められなかった。
【0211】
また、これらの塗布溶液の含水量及び溶存酸素量を測定したところ、それぞれ10ppm以下であった。
【0212】
《有機EL素子1−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。
【0213】
この基板を市販のスピンコータに取り付け、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。
【0214】
乾燥処理終了後、再び基板をスピンコータに取り付け、塗布溶液1−1を用い、1000rpm、30秒の条件下、スピンコートして有機薄膜(膜厚40nm)を形成し、60℃で1時間真空乾燥し、発光層とした。
【0215】
次に、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにバソキュプロイン(BCP)を200mg入れ、また、別のモリブデン製抵抗加熱ボートにAlq3を200mg入れ、真空蒸着装置に取り付けた。
【0216】
真空槽を4×10-4Paまで減圧した後、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層に蒸着して、更に膜厚10nmの正孔阻止層を設けた。
【0217】
続いて、Alq3の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で正孔阻止層上に蒸着して、膜厚40nmの電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。
【0218】
引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1−1を作製した。
【0219】
《有機EL素子1−2〜1−5の作製》
有機EL素子1−1の作製において、塗布溶液1−1を塗布溶液1−2〜1−5に置き換えて有機薄膜を形成した以外は同様にして、有機EL素子1−2〜1−5を各々作製した。
【0220】
《有機EL素子1−1〜1−5の評価》
以下のようにして有機EL素子1−1〜1−5の評価を行った。
【0221】
得られた有機EL素子1−1〜1−15を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図1、図2に示すような照明装置を形成して評価した。
【0222】
図1は照明装置の概略図を示し、有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。
【0223】
図2は照明装置の断面図を示し、図2において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
【0224】
《外部取りだし量子効率》
有機EL素子1−1〜1−5の各々について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2の定電流を印加した時の外部取り出し量子効率(%)を測定し、下記の表1に示す。測定には、分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。
【0225】
尚、表1の外部取りだし量子効率の測定結果は、有機EL素子1−1の測定値を100とした時の相対値で表した。
【0226】
《発光寿命》
2.5mA/cm2の一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、半減寿命時間(τ05)として寿命の指標とした。測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。
【0227】
尚、表1に示す発光寿命の測定結果は、有機EL素子1−1の測定値を100とした時の相対値で表した。
【0228】
得られた結果を表1に示す。
【0229】
【表1】

【0230】
表1から、比較の有機EL素子に比べて、本発明の有機EL素子は、長寿命化が達成されていることが明らかである。
【0231】
実施例2
《塗布溶液2−1〜2−3の調製》:加熱処理により重合体形成
窒素雰囲気下、例示化合物4−1(600mg)を脱水キシレン60mlに溶解し、130℃で30分加熱し、塗布溶液2−1を調製した。
【0232】
続いて、窒素雰囲気下、例示化合物1−21(600mg)及び例示化合物2−25(30mg)を脱水キシレン60mlに溶解し、130℃で30分加熱し、塗布溶液2−2を調製した。
【0233】
更に、窒素雰囲気下、例示化合物3−14(600mg)を脱水キシレン60mlに溶解し、130℃で30分加熱し、塗布溶液2−3を調製した。
【0234】
調製した塗布溶液2−1〜2−3の各々一部を、実施例1に記載と同様にして、市販のLC−MS(液体クロマトグラフ−質量分析計)にて分析し、含有モノマーの重合体の生成を確認することができた。また、これらの塗布溶液の含水量及び溶存酸素量を測定したところ、それぞれ10ppm以下であった。
【0235】
《有機EL素子2−1の作製》:青色発光素子
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。
【0236】
この基板を市販のスピンコータに取り付け、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。
【0237】
乾燥処理終了後、再び基板をスピンコータに取り付け、塗布溶液2−1を用いて、1000rpm、30秒の条件下、スピンコートにより、有機薄膜として正孔輸送層を設け、続いて、塗布溶液2−2を用いて、1000rpm、30秒の条件下、スピンコートにより、有機薄膜として発光層を設け、更に、塗布溶液2−3を用いて、1000rpm、30秒の条件下、スピンコートにて正孔阻止層を設けた。
【0238】
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにAlq3を200mg入れ、真空蒸着装置に取り付けた。
【0239】
真空槽を4×10-4Paまで減圧した後、Alq3の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層上に蒸着して、更に膜厚40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
【0240】
引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子2−1を作製した。
【0241】
この素子に通電したところ青色の発光が得られ、有機EL表示装置として使用出来ることが判った。
【0242】
実施例3
《有機EL素子3−1の作製》:白色照明装置の作製
実施例1の有機EL素子1−4の作製において、例示化合物2−19(30mg)をIr−1(9mg)、Ir−9(9mg)、Ir−14(12mg)に置き換えた以外は同様にして有機薄膜(発光層)を形成し、有機EL素子3−1を作製した。
【0243】
この素子に通電したところほぼ白色の光が得られ、照明装置として使用出来ることが判った。
【図面の簡単な説明】
【0244】
【図1】照明装置の概略図である。
【図2】照明装置の断面図である。
【符号の説明】
【0245】
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤

【特許請求の範囲】
【請求項1】
反応性モノマーにエネルギー付与して、該反応性モノマーの重合体を含有する反応溶液を調製し、該反応溶液を用いて成膜する工程を有することを特徴とする有機薄膜の製造方法。
【請求項2】
前記エネルギー付与が光照射により行われることを特徴とする請求項1に記載の有機薄膜の製造方法。
【請求項3】
前記エネルギー付与が加熱処理により行われることを特徴とする請求項1に記載の有機薄膜の製造方法。
【請求項4】
前記反応溶液に重合開始剤が含まれていないことを特徴とする請求項1〜3のいずれか1項に記載の有機薄膜の製造方法。
【請求項5】
前記反応溶液の含水量が100ppm以下であることを特徴とする請求項1〜4のいずれか1項に記載の有機薄膜の製造方法。
【請求項6】
前記反応溶液の溶存酸素量が100ppm以下であることを特徴とする請求項1〜5のいずれか1項に記載の有機薄膜の製造方法。
【請求項7】
請求項1〜6のいずれか1項に記載の有機薄膜の製造方法により製造されたことを特徴とする有機薄膜。
【請求項8】
請求項7に記載の有機薄膜を用いて形成されたことを特徴とする電子デバイス。
【請求項9】
請求項7に記載の有機薄膜を用いて形成されたことを特徴とする有機エレクトロルミネッセンス素子。
【請求項10】
リン光発光性化合物を含有することを特徴とする請求項9に記載の有機エレクトロルミネッセンス素子。
【請求項11】
白色に発光することを特徴とする請求項9または10に記載の有機エレクトロルミネッセンス素子。
【請求項12】
請求項9〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
【請求項13】
請求項9〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2008−207520(P2008−207520A)
【公開日】平成20年9月11日(2008.9.11)
【国際特許分類】
【出願番号】特願2007−48777(P2007−48777)
【出願日】平成19年2月28日(2007.2.28)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】