説明

欠陥検査方法、半導体装置の製造方法及び欠陥検査装置

【課題】欠陥検出の精度を向上させることのできる欠陥検査方法を提供する。
【解決手段】ウェハ上に欠陥があるか否かを検査する第1の欠陥検査処理(ステップS11)を実行した後、その第1の欠陥検査処理にて検出された欠陥により、不良チップを判定する(ステップS12,S13)。続いて、不良チップを除いて、その不良チップに隣接するチップに欠陥があるか否かを、第1の欠陥検査処理よりも検査感度を上げて検査する(ステップS16)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、欠陥検査方法、半導体装置の製造方法及び欠陥検査装置に関するものである。
【背景技術】
【0002】
近年の半導体装置の製造工程では、導電パターンの高集積化が進んでいる。このため、導電パターンに異物等が付着して回路がショートしていないか等を確認する欠陥検査の重要性が増している。
【0003】
従来の欠陥検査は、半導体装置の製造過程において半導体ウェハ上に付着した異物や半導体パターンの不良等の欠陥をインラインで検査していた。このような検査工程では、欠陥検査装置によって欠陥の座標が取得され、欠陥が検出された箇所については、光学顕微鏡や走査型電子顕微鏡などによる詳細な観察が行われる。このインライン欠陥検査で得られた欠陥情報を用いて、プロセス条件の調整やプロセス状態の問題点を感知するといった製造工程へのフィードバックが行われる。
【0004】
ここで、欠陥の有無を判定する方法としては、半導体ウェハ表面の外観を撮像し、画像データに基づいて得られる輝度信号を利用することが知られている(例えば、特許文献1参照)。この判定方法では、検査対象となる部分の輝度信号と、比較基準となる部分の輝度信号との差分が予め設定された欠陥検出用の閾値以上であれば欠陥であると判定していた。
【0005】
また、欠陥の有無を判定する別の方法としては、半導体ウェハ表面にレーザ光を照射し、そのレーザ照射によって生じる散乱光を利用することが知られている(例えば、特許文献2参照)。この判定方法では、検出した散乱光の強度が予め設定された欠陥検出用の閾値以上であれば欠陥であると判定していた。
【0006】
これらの判定方法では、半導体ウェハの表面からの散乱光の強度や画像データの輝度を閾値と比較し、その比較結果から欠陥を検出している。このため、閾値が大きすぎると、本来検出すべき欠陥を検出することができなくなる。その一方で、閾値が小さすぎると、実際には欠陥が無いにも関わらず、欠陥であると誤検出してしまうことがある。例えば各チップ間の境界領域では散乱光の強度が大きくなるため、閾値を小さく設定した場合には、上記境界領域に欠陥があると誤検出してしまう。そこで、従来は、複数の標準的なサンプルを作成して、その検査結果から経験的に閾値を設定していた。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2010−226049号公報
【特許文献2】特開2002−303587号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、上述のように閾値が設定される場合には、各チップ間の境界領域からの散乱光強度よりも低くなるように上記閾値が設定されるため、本来検出すべき真の欠陥からの散乱光強度が上記境界領域からの散乱光強度よりも小さい場合には、その真の欠陥を欠陥として検出することができない。この点において、なお改善の余地を残すものとなっていた。
【課題を解決するための手段】
【0009】
本発明の一観点によれば、ウェハ上に欠陥があるか否かを検査する第1の検査工程と、前記第1の検査工程にて検出された欠陥により、不良チップを判定する第1の判定工程と、前記不良チップを除いて、前記不良チップに隣接するチップに欠陥があるか否かを、前記第1の検査工程よりも検査感度を上げて検査する第2の検査工程と、を有する。
【発明の効果】
【0010】
本発明の一観点によれば、欠陥検出の精度を向上させることができるという効果を奏する。
【図面の簡単な説明】
【0011】
【図1】半導体装置の製造システムを示すブロック図。
【図2】欠陥検査システムを示すブロック図。
【図3】欠陥検査装置を示すブロック図。
【図4】レビュー装置を示すブロック図。
【図5】欠陥管理装置を示すブロック図。
【図6】ウェハを示す平面図。
【図7】半導体装置の製造方法を示すフローチャート。
【図8】欠陥検査方法を示すフローチャート。
【図9】(a)〜(d)は、欠陥検査方法の説明図。
【図10】(a)〜(c)は、欠陥検査方法の説明図。
【図11】(a)〜(d)は、欠陥検査方法の説明図。
【図12】(a)、(b)は、欠陥検査方法の説明図。
【図13】(a)〜(c)は、欠陥検査方法の説明図。
【図14】(a)、(b)は、変形例の欠陥検査方法の説明図。
【発明を実施するための形態】
【0012】
(第1実施形態)
以下、第1実施形態を図1〜図13に従って説明する。
図1に示すように、半導体装置の製造システム1では、半導体装置の製造工程の順に多数(ここでは、k個)の製造装置A1〜Akが配置されている。これら製造装置A1〜Akは、ポッド(FOUPとも言う。)2に収容されて搬送される半導体基板(ウェハ)Wに対して所定の製造処理を施す。すなわち、製造装置A1〜Akでは、例えばイオン注入工程、不純物活性化工程、化学気相成長工程、レジストパターン形成工程、エッチング工程、アッシング工程や化学機械研磨工程等の製造処理が行われる。また、製造装置A1〜Akは、1つ又は複数の処理装置(図示略)を有している。例えばレジストパターンを形成する製造装置は、レジスト塗布装置と、加熱装置と、露光装置と、現像装置とを有している。なお、製造装置A1〜Akの中には、同じ製造装置が含まれることもある。
【0013】
図6に、製造装置A1〜Akによる製造処理の終了したウェハWの平面図を示している。ウェハWの表面には、多数のチップ10が規則的に、ここでは行列状に形成されている。なお、ある1つのチップ10内に形成されたパターン、例えば素子分離領域のパターン、ゲート電極のパターンや配線のパターン等は、他のチップ内に形成されたパターンと同一である。
【0014】
図1に示すように、製造システム1は、ウェハW上の欠陥をインライン(製造工程内)で検査する欠陥検査システム20を有している。この欠陥検査システム20は、各製造工程のうちの所定工程後、例えば電気的不良への影響度が大きいと予想されるキープロセス工程(素子分離形成工程、ゲート電極形成工程、導体プラグ形成工程や配線形成工程など)の後のウェハWに対して欠陥検査処理を行う。本例では、欠陥検査システム20は、素子分離形成工程が実施される製造装置A21から搬送されたウェハWに対してインライン欠陥検査を行い、欠陥検査後のウェハWを製造装置A22に搬送する。また、欠陥検査システム20は、ポリゲート電極形成工程が実施される製造装置A41から搬送されたウェハWに対してインライン欠陥検査を行い、欠陥検査後のウェハWを製造装置A42に搬送する。
【0015】
この欠陥検査システム20は、歩留まりに影響する致命的な欠陥(致命欠陥)を検出すると、その検出した致命欠陥の位置情報等を示す致命欠陥データを欠陥管理装置60に出力する。
【0016】
欠陥管理装置60は、欠陥検査システム20及び電気的特性検査装置80を統括的に制御する。この欠陥検査システム20から入力される致命欠陥の位置情報に基づいて、その致命欠陥を含むチップを不良チップとして判定する。また、欠陥管理装置60は、上記判定された不良チップの位置情報を含む不良チップ情報をデータベース70に格納する。欠陥管理装置60は、不良チップ情報に基づいて、不良チップと隣接する隣接チップを検査対象としたインライン欠陥検査を実行させるための制御信号を、欠陥検査システム20に出力する。また、欠陥管理装置60は、不良チップを除くチップを、電気的特性検査を実行する検査領域に設定し、その検査領域に対して電気的特性検査を実行させるための制御信号を電気的特性検査装置80に出力する。
【0017】
電気的特性検査装置80は、最後の製造工程が実施される製造装置Akから搬送されてきたウェハW、つまりプロセスアウト後のウェハW上の各チップ10に対して電気的特性検査を行う。具体的には、電気的特性検査装置80は、欠陥管理装置60からの制御信号に基づいて、インライン欠陥検査で不良チップと判定されたチップを除くチップに対して電気的特性検査を行う。より具体的には、電気的特性検査装置80は、例えばウェハW上の検査対象の各チップ10の電極パッドにプローブを当て、半導体集積回路設計時に作成したテストパターンを入力し、このとき得られる出力信号からチップの特性を調べる。また、電気的特性検査装置80は、チップの動作不良が確認されたときは、そのチップの座標データを取得する。そして、電気的特性検査装置80は、ウェハWの検査対象となる全てのチップについて同様の検査を行い、動作不良を起している全てのチップの座標データを取得し、そのデータを欠陥管理装置60に出力する。
【0018】
次に、欠陥検査システム20の内部構成例を説明する。
図2に示すように、欠陥検査システム20は、欠陥の有無、個数、密度、形状、サイズ、座標等を示す検査データを出力する欠陥検査装置30と、その検査データを用いて欠陥についての評価、具体的にはSEMレビューを行うレビュー装置50とを有している。
【0019】
欠陥検査装置30は、前工程の製造装置A21(A41)からウェハWが搬送されると、そのウェハWに対して所定の欠陥検査を行う。具体的には、欠陥検査装置30は、例えばウェハWにレーザを照射し、その散乱光を検出するレーザ散乱測定により、上記検査データを取得する。欠陥検査装置30は、取得した検査データをレビュー装置50に送信する。そして、検査終了後のウェハWは、例えば上記欠陥検査において欠陥が検出された場合にはレビュー装置50に搬送され、そのレビュー装置50においてSEMレビューが行われる。また、検査終了後のウェハWは、レビュー装置50によるSEMレビューが不要である場合には、次工程の製造装置A22(A42)に搬送される。
【0020】
レビュー装置50は、欠陥検査装置30から搬送されてきたウェハWに対して、上記検査データを用いて、上記検出された欠陥について、SEMレビューを行う。レビュー装置50は、SEMレビューの結果に基づいて、上記検出された欠陥を所定のクラスに分類し、その欠陥が致命的な欠陥であるか否かを判定する。このレビュー装置50は、致命欠陥の位置情報を上記欠陥管理装置60(図1参照)に出力する。そして、SEMレビュー終了後のウェハWは、次工程の製造装置A22(A42)に搬送される。
【0021】
次に、欠陥検査装置30の内部構成例を説明する。
図3に示すように、欠陥検査装置30は、外観検査部31と、データ処理部35とを備えている。外観検査部31は、ステージ32と、レーザ光源33と、光検出部34とを備えている。
【0022】
ステージ32の上には、前工程の製造装置A21(A41)から搬送されてきたウェハWが保持される。レーザ光源33から出射したレーザ光B1がウェハWの表面に斜め方向から入射される。光検出部34は、ウェハWの表面からの散乱光B2を検出する。レーザ光源33から出射したレーザ光B1を、ウェハWの表面上で2次元的に走査することにより、ウェハWの表面上における散乱光B2の強度分布を得ることができる。
【0023】
データ処理部35は、制御部36と、出力部37と、入力部38と、記憶部39と、通信部40とを有している。制御部36は、図示は省略しているが、CPU(Central Processing Unit)、ROM(Read Only Memory)やRAM(Random Access Memory)を有している。この制御部36は、記憶部39に記憶されている欠陥検査用のプログラムを実行することで各種の機能を実現する。本実施形態の制御部36は、欠陥検出部36Aと、感度制御部36Bと、検査領域設定部36Cとに機能分割できる。
【0024】
欠陥検出部36Aは、外観検査部31の各部の動作を制御して、ウェハW表面の欠陥検出を行い、上記検査データを取得する。具体的には、欠陥検出部36Aは、レーザ光源33からレーザ光B1をウェハW表面に照射させ、そのレーザ照射によって光検出部34で検出された散乱光B2の強度を光検出部34から取得し、その散乱光B2の強度が所定の閾値よりも高いものを欠陥として検出する。
【0025】
この欠陥検出部36Aは、前工程の製造装置A21(A41)から搬送されてきたウェハWに対して、第1の欠陥検査処理をはじめに実行する。また、欠陥検出部36Aは、欠陥管理装置60からの制御信号に基づいて、第2の欠陥検査処理を実行する。
【0026】
感度制御部36Bは、第2の欠陥検査処理を実行する際に、第1の欠陥検査処理時よりも検査感度が高くなるように制御する。具体的には、感度制御部36Bは、不良チップと隣接する隣接チップに対してのみ欠陥検査を実行する際に、第1の欠陥検査処理時よりも欠陥検出用の閾値が低くなるように制御する。
【0027】
検査領域設定部36Cは、欠陥管理装置60からの制御信号や不良チップ情報に基づいて、欠陥検出部36Aにて欠陥検査処理(欠陥検出処理)を実行する検査領域を設定する。具体的には、検査領域設定部36Cは、第1の欠陥検査処理を実行する際に、不良チップ情報に基づいて、不良チップを除くチップを検査領域に設定する。また、検査領域設定部36Cは、第2の欠陥検査処理を実行する際に、直前の欠陥検査処理、つまり第1の欠陥検査処理にて検出された不良チップに隣接するチップのみを検査領域に設定する。
【0028】
出力部37は、記憶部39に記憶された検査データを、例えばウェハW上の欠陥の存在位置を示したマップの形式で、表示装置や印刷装置等に出力する。入力部38は、例えば作業者が操作するキーボードやマウス装置である。
【0029】
記憶部39には、欠陥検出部36Aによる欠陥検出の結果、つまり検査データが記憶される。この記憶部39は、例えばHDD(Hard Disk Drive)などの記憶装置や外付けの記憶装置である。なお、記憶部39は、図3では欠陥検査装置30に内蔵した形で図示しているが、例えば欠陥検査装置30からアクセス可能なネットワーク上のコンピュータに設けてもよい。
【0030】
通信部40は、記憶部39に記憶された検査データ(例えば、欠陥の位置座標等)を、レビュー装置50に送信する。この通信部40は、有線又は無線の通信手段である。
次に、レビュー装置50の内部構成例を説明する。
【0031】
図4に示すように、レビュー装置50は、ウェハWの表面の拡大画像を取得する拡大検査部51と、その拡大検査部51の制御とデータ処理を行うデータ処理部52とを有している。データ処理部52は、制御部53と、出力部54と、入力部55と、記憶部56と、通信部57とを有している。
【0032】
通信部57は、欠陥検査装置30から送信された検査データを受信し、その受信した検査データを記憶部56に格納する。なお、通信部57は、有線又は無線の通信手段である。
【0033】
制御部53は、図示は省略しているが、CPU(Central Processing Unit)、ROM(Read Only Memory)やRAM(Random Access Memory)を有している。この制御部53は、記憶部56に記憶されているSEMレビュー用のプログラムを実行することで各種の機能を実現する。本実施形態の制御部53は、SEM制御部53Aと、欠陥判定部53Bとに機能分割できる。
【0034】
SEM制御部53Aは、記憶部56に記憶された検査データを用い、該当する欠陥を拡大検査部51、ここでは走査型電子顕微鏡(Scanning Electron Microscope:SEM)によって測定し、その測定結果を示すSEMデータ(SEM画像)を生成する。具体的には、SEM制御部53Aは、拡大検査部51を制御してウェハWの表面を電子ビームで走査し、表面から放出される2次電子を観測することにより、2次元画像情報(SEMデータ)を生成する。そして、SEM制御部53Aは、生成したSEMデータを記憶部56に格納する。
【0035】
欠陥判定部53Bは、記憶部56に記憶されたSEMデータを用いて、欠陥の有無及び欠陥の種別を判定し、その判定結果を示す判定データを生成する。具体的には、欠陥判定部53Bは、データベース化したSEMデータ(欠陥画像)を、事前に定めた画像認識ルールに基づいて分析し、欠陥を発生原因ごとに分類する。例えば欠陥の分類の種類には、例えば異物の付着、パターン不良、STI(Shallow Trench Isolation)のスクラッチ、層間絶縁膜のスクラッチなどがある。さらに、欠陥は、欠陥起因によりチップが不良となる確率が高い致命的な場合には致命欠陥、不良となる確率が低い場合には非致命欠陥とも分類される。このような分類は、一般に、SEM画像を用いた半導体ウェハの欠陥自動分類技術(Automatic Defect Classification:ADC)と呼ばれている。なお、上記画像認識ルールは、製品種別及び工程ごとに定義されている。
【0036】
また、欠陥判定部53Bは、致命欠陥の有無及び座標等を示す致命欠陥データを欠陥管理装置60に出力する。欠陥判定部53Bは、生成した判定データを記憶部56に格納する。なお、記憶部56に記憶された判定データは、例えば欠陥の発生原因の追及や解析などに用いられる。これにより、欠陥の発生原因となる製造プロセスに対して適切な対策を施すことが可能となる。
【0037】
出力部54は、SEM制御部53Aによって生成されたSEMデータに対し所定の処理を施し、表示装置や印刷装置等に出力する。また、入力部55により特定の欠陥情報についての出力指令が入力されたときに、該当する欠陥情報が記憶部56から読み出され、その欠陥情報が出力部54に出力される。なお、入力部55は、例えば作業者が操作するキーボードやマウス装置である。
【0038】
次に、欠陥管理装置60の内部構成例を説明する。
図5に示すように、欠陥管理装置60は、処理装置61と、その処理装置61に接続される、メモリ62、入力装置63、表示装置64、記憶装置65、ドライブ装置66及び通信装置67とを備えている。
【0039】
処理装置61は、メモリ62を利用してプログラムを実行し、欠陥検査処理に必要な機能を実現する。プログラムは、処理装置61を、欠陥検査システム20及び電気的特性検査装置80を制御する各種手段として機能させるためのものである。メモリ62には、各種機能を提供するために必要なプログラムとデータが格納されている。このメモリ62としては、通常、キャッシュ・メモリ、システム・メモリ及びディスプレイ・メモリ等を含む。
【0040】
入力装置63は、ユーザからの要求や指示、パラメータの入力に用いられる。この入力装置63としては、例えばキーボードやマウス装置等が用いられる。表示装置64は、不良チップ情報を、例えばウェハW上の不良チップの存在位置を示したマップの形式で表示させるのに用いられる。この表示装置64としては、例えばCRT、LCD、PDP等が用いられる。
【0041】
記憶装置65は、通常、磁気ディスク装置、光ディスク装置、光磁気ディスク装置等を含む。この記憶装置65には、上述のプログラムとデータが格納される。処理装置61は、入力装置63による指示に応答してプログラムやデータをメモリ62へ転送し、それを実行する。また、記憶装置65はデータベースとしても使用される。なお、この記憶装置65に、不良チップ情報を格納するようにしてもよい。すなわち、データベース70を欠陥管理装置60に内蔵させるようにしてもよい。
【0042】
処理装置61が実行するプログラムは、記憶媒体68にて提供される。ドライブ装置66は、記憶媒体68を駆動し、その記憶内容にアクセスする。処理装置61は、ドライブ装置66を介して記憶媒体68からプログラムを読み出し、それを記憶装置65にインストールする。
【0043】
記憶媒体68としては、メモリカード、フレキシブルディスク、光ディスク(例えばCD−ROM、DVD−ROM)、光磁気ディスク(例えばMO、MD)等、任意のコンピュータ読み取り可能な記憶媒体を使用することができる。この記憶媒体68に、上述のプログラムを格納しておき、必要に応じて、メモリ62にロードして使用することもできる。
【0044】
なお、記憶媒体68には、通信媒体を介してアップロード又はダウンロードされたプログラムを記録した媒体、ディスク装置を含む。さらに、コンピュータによって直接実行可能なプログラムを記録した記憶媒体だけでなく、一旦他の記憶媒体(ハードディスク等)にインストールすることによって実行可能となるようなプログラムを記録した記憶媒体や、暗号化されたり、圧縮されたりしたプログラムを記録した記憶媒体も含む。
【0045】
通信装置67は、欠陥管理装置60をネットワークに接続するために用いられる。通信装置67は、通信に伴うデータ変換等を行って、他の装置(欠陥検査装置30、レビュー装置50、データベース70や電気的特性検査装置80)との間でプログラムやデータの送受信を行う。また、欠陥管理装置60は、外部の情報提供者のデータベース等からネットワークを介して、上述のプログラムとデータを受け取り、必要に応じて、メモリ62にロードして使用することもできる。
【0046】
次に、半導体装置の製造方法について説明する。
図7に示すように、ウェハ処理が開始されると、まず、ウェハWに対して所定の製造処理が施される(ステップS1)。ここでは、ウェハWが製造装置A1→…→A21の順に搬送されて、そのウェハWに対して製造装置A1〜A21による製造処理が施される。そして、製造装置A21による製造処理が終了すると、ウェハWが欠陥検査システム20に搬送され、その欠陥検査システム20によってウェハW上の欠陥がインラインで検査される(ステップS2)。このとき、致命欠陥が検出されると、欠陥管理装置60において、その致命欠陥を含むチップが不良チップと判定され、その不良チップの座標等を示す不良チップ情報がデータベース70に格納される。
【0047】
続いて、欠陥検査終了後のウェハWが製造装置A22→…→A41の順に搬送されて、そのウェハWに対して製造装置A22〜A41による製造処理が施される(ステップS3)。そして、製造装置A41による製造処理が終了すると、ウェハWが欠陥検査システム20に搬送され、その欠陥検査システム20によってウェハW上の欠陥がインラインで検査される(ステップS4)。このとき、上記ステップS2のインライン欠陥検査において、不良チップ(致命欠陥)が検出された場合には、まず、不良チップ情報に基づいて、不良チップと判定されたチップを除く領域を検査領域に設定して欠陥検査が行われる。また、本工程において、致命欠陥が検出されると、その致命欠陥を含むチップ、つまり不良チップの座標等を示す不良チップ情報がデータベース70に追加される。
【0048】
次いで、欠陥検査終了後のウェハWが製造装置A42→…→Akの順に搬送されて、そのウェハWに対して製造装置A42〜Akによる製造処理が施される(ステップS5)。そして、製造装置Akによる製造処理が終了すると、ウェハW上に所望の回路パターンを有する多数の半導体集積回路が形成されたことになる。
【0049】
このようにウェハ処理が終了した後に、欠陥管理装置60では、各チップの電気的特性を検査する際の検査領域の設定が行われる(ステップS6)。ここでは、不良チップ情報に基づいて、上記インライン欠陥検査(ステップS2,S4)で不良チップと判定されたチップを除くチップが検査領域に設定される。続いて、欠陥管理装置60は、上記検査領域のチップに対して電気的特性検査を実行させるための制御信号を生成する。そして、電気的特性検査装置80は、欠陥管理装置60からの制御信号に基づいて、検査領域に設定されたチップに対して電気的特性検査を行う(ステップS7)。この検査において動作不良が確認されたチップは不良チップと判定され、その不良チップの位置情報等のデータが欠陥管理装置60に出力される。欠陥管理装置60では、電気的特性検査で検出された不良チップの位置情報等を示す不良チップ情報が生成され、その不良チップ情報がデータベース70に追加される。そして、データベース70に格納された不良チップ情報に基づいて、不良チップと判定されたチップが最終的にリジェクトされる(ステップS8)。
【0050】
次に、インライン欠陥検査処理の詳細を図8〜図13に従って説明する。まず、ステップS2におけるインライン欠陥検査処理の詳細について説明する。
図8に示すように、まず、欠陥検査装置30の検査領域設定部36Cによって、欠陥検査を実施する検査領域の設定が行われる(ステップS10)。ここでは、不良チップ情報が未だ生成されていないため、ウェハW上の全てのチップ領域が検査領域に設定される。
【0051】
次に、欠陥検査装置30の欠陥検出部36Aによって第1の欠陥検査処理が実行される(ステップS11)。具体的には、欠陥検出部36Aは外観検査部31を制御し、例えばウェハWの表面の上側左端から検査(レーザ光照射)を開始し、ウェハW表面の全面に螺旋状にレーザ光を走査する。欠陥検出部36Aは、この走査(レーザ光照射)による散乱光の強度を取得し、予め設定されている第1の閾値T1(図9(b)、(d)参照)と比較して、上記散乱光強度が第1の閾値T1以上であるか否かを判定する。ここで、上記第1の閾値T1は、図9(a)、(b)に示すように、各チップ10間の境界領域からの散乱光強度C1(図9(b)参照)よりも高くなるように設定されている。これは、仮に第1の閾値T1が散乱光強度C1よりも低く設定された場合には(図9(b)の破線参照)、チップ10間の境界領域に欠陥が存在すると誤検出してしまうため、このような誤検出を防止するために第1の閾値T1は散乱光強度C1よりも高く設定されている。すなわち、第1の欠陥検査処理は、疑似欠陥を検出しないように検査感度を低くした状態で実施される。
【0052】
次に、欠陥検出部36Aは、上記判定結果に基づいて、散乱光強度が第1の閾値T1以上となった場合に、その散乱光強度に対応する領域に欠陥が存在すると判定し、その領域の座標等を取得する。ここで、欠陥情報としては、例えばウェハW上の欠陥の有無、個数、密度、形状、サイズ、位置座標、欠陥からの散乱光強度等が取得される。例えば図9(c)に示すように、チップ10内、具体的にはチップ10A,10B,10Cに欠陥11A,11B,11C(黒塗の楕円参照)が存在する場合には、そのチップ10A〜10Cの領域(欠陥11A〜11C)からの散乱光強度は図9(d)に示すように高くなる。このとき、欠陥11Aからの散乱光強度が第1の閾値T1以上となるため、チップ10Aの領域内で欠陥11Aが検出される。但し、欠陥11B,11Cからの散乱光強度は、欠陥の存在しない領域のそれよりも高くなるものの、第1の閾値T1未満である。このため、これら欠陥11B,11Cは、第1の欠陥検査処理では欠陥として検出することができない。すなわち、図9の例では、第1の欠陥検査処理において欠陥11Aのみが欠陥として検出される。
【0053】
そして、欠陥検出部36Aは、レーザ光によるウェハW全面の走査を終了した段階、例えばレーザ光がウェハWの下側右側に到達した段階で第1の欠陥検査処理を終了する。
次に、上記第1の欠陥検査処理において欠陥が検出された場合には、レビュー装置50において、その欠陥がSEMレビューされ、そのSEMレビューで生成されたSEMデータに基づいてADCが行われる(ステップS12)。このADCにおいて、各欠陥が致命欠陥であるか否かが判定される。ここでは、図10(a)に示すように、ウェハW上の1つの欠陥11Aが致命欠陥として判定される。
【0054】
続いて、上記ステップS11,S12において致命欠陥が検出されたか否かが判定される(ステップS13)。ここでは、図10(a)に示すように、1つの致命欠陥11Aが検出されているため、ステップS14に移る。なお、上記ステップS11,S12において致命欠陥が全く検出されなかった場合には、当該ウェハWに対するインライン欠陥検査を終了する。
【0055】
次に、ステップS14において、欠陥管理装置60は、レビュー装置50からの致命欠陥データ、ここでは致命欠陥11Aの座標位置等に基づいて、その致命欠陥11Aを含むチップ10A(図10(b)参照)を不良チップと判定する。そして、欠陥管理装置60は、その不良チップの位置情報等を示す不良チップ情報を生成し、その不良チップ情報をデータベース70に格納する(ステップS14)。
【0056】
続いて、欠陥管理装置60は、第2の欠陥検査処理を実行させるための制御信号を生成し、その制御信号を欠陥検査装置30に出力する。すると、欠陥検査装置30の検査領域設定部36Cは、不良チップ情報に基づいて、上記第1の欠陥検査処理にて検出された不良チップ(ここでは、不良チップ10A)と隣接するチップ10B,10Cのみを検査領域に設定する。また、感度制御部36Bは、上記第1の欠陥検査処理時よりも欠陥検出用の閾値が低くなるように設定する。具体的には、感度制御部36Bは、欠陥検出用の閾値を、上記第1の閾値T1よりも低い第2の閾値T2(図11(b)、(d)参照)に設定する。このように検査感度を上げて不良チップの隣接領域を検査するのは、その不良チップが大きな傷に起因して発生した不良チップである場合には、その傷の発生メカニズムから、例えばウェハWに加わった力の加重や力の方向から隣接領域にも傷が発生している可能性が高いためである。
【0057】
次に、欠陥検査装置30の欠陥検出部36Aによって第2の欠陥検査処理が実行される(ステップS16)。具体的には、欠陥検出部36Aは、検査領域に設定されたチップ10B,10Cの領域に対して、高い検査感度(第2の閾値T2)で欠陥検査処理を実行する。例えば欠陥検出部36Aは、チップ10B,10A,10Cの領域に対してレーザ光を走査し、検査領域であるチップ10B,10Cの領域からの散乱光のみを取得し、その取得した散乱光強度が第2の閾値T2以上であるか否かを判定する。
【0058】
次に、欠陥検出部36Aは、上記判定結果に基づいて、散乱光強度が第2の閾値T2以上となった場合に、その散乱光強度に対応する領域に欠陥が存在すると判定し、その領域の座標等を取得する。例えば図11(a)に示すように、検査領域であるチップ10B,10C内に存在する欠陥11B,11C(黒塗の楕円参照)からの散乱光強度が共に、図11(b)に示すように、第2の閾値T2以上となる。このため、チップ10B,10Cの領域内で欠陥11B,11Cが検出される。このような第2の欠陥検査処理によって、第1の欠陥検査処理において検出することのできなかった欠陥11B,11Cを検出することができる。
【0059】
次に、上記第2の欠陥検査処理において欠陥が検出された場合には、レビュー装置50において、その欠陥がSEMレビューされ、そのSEMレビューで生成されたSEMデータに基づいてADCが行われる(ステップS17)。このADCにおいて、各欠陥が致命欠陥であるか否かが判定される。ここでは、図12(a)に示すように、欠陥11B,11Cが致命欠陥として判定される。
【0060】
続いて、上記ステップS16,S17において2つの致命欠陥11B,11Cが検出されているため(ステップS18でYES)、欠陥管理装置60は、致命欠陥11B,11Cの座標位置等に基づいて、それら致命欠陥11B,11Cを含むチップ10B,10C(図12(b)参照)を不良チップと判定する。そして、欠陥管理装置60は、その不良チップの位置情報等を示す不良チップ情報を生成し、その不良チップ情報をデータベース70に追加する(ステップS19)。なお、図12(b)に示した不良チップ情報は、第1の欠陥検査処理にて生成された不良チップ情報と、第2の欠陥検査処理にて生成された不良チップ情報とを重ね合わせたものである。
【0061】
次に、ステップS4におけるインライン欠陥検査処理の詳細について説明する。
まず、欠陥検査装置30の検査領域設定部36Cは、不良チップ情報に基づいて、欠陥検査を実施する検査領域を設定する(ステップS10)。ここでは、図12(b)に示す不良チップ情報に基づいて、不良チップ10A〜10Cを除くチップ領域が検査領域に設定される。
【0062】
次に、欠陥検査装置30の欠陥検出部36Aによって第2の欠陥検査処理が実行される(ステップS11)。具体的には、欠陥検出部36Aは、検査領域に設定されたチップに対して、低い検査感度(第1の閾値T1)で欠陥検査処理を実行する。例えば欠陥検出部36Aは、ウェハW表面の全面に螺旋状にレーザ光を走査し、検査領域から除外されたチップ10A〜10Cの領域からの散乱光を取得せず、その他のチップ領域、つまり検査領域からの散乱光のみを取得する。そして、欠陥検出部36Aは、取得した散乱光強度が第1の閾値T1以上となった場合に、その散乱光強度に対応する領域に欠陥が存在すると判定する。
【0063】
次に、レビュー装置50において、第1の欠陥検査処理で検出された欠陥がSEMレビューされ、その欠陥が致命欠陥であるか否かが判定される。ここでは、図13(a)に示すように、チップ10D内に存在する欠陥11Dのみが致命結果として判定される。なお、このとき、仮にチップ10A〜10Cの領域に欠陥11A〜11Cとは別の欠陥が存在しても、チップ10A〜10Cの領域は検査領域から除外されているため、第1の欠陥検査処理にて上記別の欠陥が検出されることもなく、その欠陥がSEMレビューされることもない。
【0064】
続いて、上記ステップS11,S12において1つの致命欠陥11Dが検出されているため(ステップS13でYES)、欠陥管理装置60は、致命欠陥11Dを含むチップ10Dを不良チップと判定する。そして、欠陥管理装置60は、その不良チップの位置情報等を示す不良チップ情報を生成し、その不良チップ情報をデータベースに追加する(ステップS14)。ここで、図13(b)は、当該ステップS14で生成された不良チップ情報を示している。また、図13(c)は、図13(b)に示した不良チップ情報と、図12(b)に示した不良チップ情報、つまり先のステップS2のインライン欠陥検査において生成された不良チップ情報とを重ね合わせた不良チップ情報を示している。
【0065】
その後、ステップS2のインライン欠陥検査と同様に、第2の欠陥検査処理が実行される。ここでは、図11(c)に示すように、不良チップ10Dと隣接するチップ10E,10Fのみが検査領域に設定され、高い検査感度(第2の閾値T2)で欠陥検査処理が実行される。このとき、チップ10E,10Fには欠陥が存在しないため、図11(d)に示すように、チップ10E,10Fからの散乱光の強度は第2の閾値T2未満となる。ちなみに、この欠陥検査処理では、チップ10E,10Fの間に存在するチップ10Dを除いて、チップ10E,10Fの領域のみを検査領域に設定し、チップ10D,10E間の境界領域及びチップ10D,10F間の境界領域についても検査領域から除外している。このため、散乱光強度が高くなるチップ間の境界領域からの散乱光は検出されないため、その領域に欠陥が存在すると誤検出されることも抑制される。
【0066】
そして、第2の欠陥検査処理で欠陥が検出されない場合には、SEMレビューもされず、当該ウェハWに対するインライン欠陥検査が終了される。
なお、本実施形態において、欠陥検出部36Aは第1の検査部及び第2の検査部の一例、致命欠陥11A〜11Cは致命的な欠陥の一例、ステップS10,S11は第1の検査工程の一例、ステップS12は第1の判定工程の一例、ステップS13は第1の生成工程の一例である。また、ステップS15,S16は第2の検査工程の一例、ステップS17は第2の判定工程の一例、ステップS19は第2の生成工程の一例、ステップS6,S7は第3の検査工程の一例、製造装置A21,A41による製造工程は第1の製造工程の一例、製造装置A22,A42による製造工程は第2の製造工程の一例である。
【0067】
以上説明した本実施形態によれば、以下の効果を奏することができる。
(1)低い検査感度でウェハW全体を検査した際に致命欠陥が検出された場合に、その致命欠陥を含む不良チップと隣接するチップに欠陥があるか否かを、高い検査感度で検査するようにした。ここで、低い検査感度で検出された不良チップが大きな傷に起因して発生した不良チップである場合には、その傷の発生メカニズムから、不良チップの隣接領域にも傷が発生している可能性が高い。すなわち、低い検査感度で検出された不良チップと隣接するチップ領域には、致命欠陥が存在する可能性が高い。このため、上記方法によれば、致命欠陥の発生している可能性が高い領域を高感度で検査することができ、高精度に致命欠陥を検出することができる。これにより、欠陥検出の精度を向上させることができる。
【0068】
(2)低い検査感度で検査する第1の欠陥検査処理における検査領域を、前工程までに検出された不良チップを除くウェハW上のチップ領域に設定するようにした。このため、前工程までに不良チップ、つまり救済不可と判定されたチップについての欠陥検査を省略することができる。さらに、仮に前工程までに検出された致命欠陥とは別の欠陥(非致命欠陥も含む)が不良チップに発生している場合には、その別の欠陥が第1の欠陥検査処理で検出されないため、その別の欠陥については第1の欠陥検査処理の後工程であるSEMレビューも省略することができる。これにより、インライン欠陥検査の処理時間を短縮することができる。
【0069】
(3)電気的特性検査における検査領域を、インライン欠陥検査で検出された不良チップを除くウェハW上のチップ領域に設定するようにした。これにより、インライン欠陥検査で不良チップ、つまり救済不可と判定されたチップについての電気的特性検査を省略することができるため、電気的特性検査の処理時間を短縮することができる。
【0070】
(4)ウェハ処理途中のインライン欠陥検査において、最終的にリジェクトされるチップの情報を示す不良チップ情報を生成するようにした。このとき、欠陥管理装置60において、欠陥検査システム20の検査結果(致命欠陥の位置情報)に基づいて、致命欠陥を含む不良チップが自動的に判定され、その不良チップの位置情報等を示す不良チップ情報が自動的に生成される。また、このようにウェハ処理途中に生成された不良チップ情報を、ウェハ処理終了後の電気的特性検査で共有するようにし、さらにリジェクト処理の際にも利用するようにした。これにより、ウェハ処理終了後に、例えばレビュー装置50の出力部54に出力される、ウェハW上の致命欠陥の存在位置を示した欠陥マップを参照して、作業者の手入力などによってリジェクト対象のチップを決定する操作が不要となる。
【0071】
(他の実施形態)
なお、上記実施形態は、これを適宜変更した以下の態様にて実施することもできる。
・上記実施形態のインライン欠陥検査では、第2の欠陥検査処理を1回実行するようにしたが、その第2の欠陥検査処理を2回以上実行するようにしてもよい。例えば図14(a)に示すように、第1の欠陥検査処理(ステップS11)及びSEMレビュー・ADC(ステップS12)でチップ10Aが不良チップと判定され、1回目の第2の欠陥検査処理(ステップS16)及びSEMレビュー・ADC(ステップS17)でチップ10B,10Cが不良チップと判定されたとする。このとき、1回目の第2の欠陥検査処理で不良チップと判定されたチップ10B,10Cとそれぞれ隣接するチップ10G,10Hを検査領域に設定し、欠陥検出用の閾値を第2の閾値T2に設定し、2回目の第2の欠陥検査処理を実行するようにしてもよい。
【0072】
・あるいは、複数回実行される第2の欠陥検査処理において、欠陥検出用の閾値が段階的に小さくなるように設定するようにしてもよい。
・上記実施形態では、第1の欠陥検査処理(ステップS11)及びSEMレビュー・ADC(ステップS12)で不良チップと判定されたチップと隣接するチップのうち、レーザ光の走査方向に沿って隣接するチップのみを、第2の欠陥検査処理の検査領域に設定するようにした。これに限らず、図14(b)に示すように、第1の欠陥検査処理でチップ12Aが不良チップと判定された場合に、レーザ光の走査方向に沿ってチップ12Aと隣接するチップ12B,12Cと併せて、そのレーザ光の走査方向とは直交する方向に沿ってチップ12Aと隣接するチップ12D,12Eを、第2の欠陥検査処理の検査領域に設定してもよい。この場合において、チップ12D,12Eを検査する際には、例えば図14(b)の破線矢印で示すように、レーザ光の走査方向を、チップ12D→12A→12Eと順に走査する方向に変更した上で、第2の欠陥検査処理を実行すればよい。
【0073】
・上記実施形態のレビュー装置50において、致命欠陥の位置情報等に基づいて不良チップ情報を生成するようにしてもよい。この場合にも、その生成した不良チップ情報を、欠陥検査システム20及び電気的特性検査装置80が共有するデータベース70に格納する。また、欠陥検査装置30は、レビュー装置50から致命欠陥の有無を示す情報を取得した際に、第2の欠陥検査処理を実行するようにしてもよい。さらに、電気的特性検査装置80は、データベース70に格納された不良チップ情報に基づいて、不良チップを除くチップを検査対象に設定し、その検査対象のチップに対して電気的特性を検査するようにしてもよい。以上のように変更することにより、欠陥管理装置60を省略することができる。
【0074】
・上記実施形態では、レビュー装置50としてSEMレビューを実施する装置に具体化したが、欠陥及びその周囲の拡大画像が得られる他の装置に具体化してもよい。
・上記実施形態における欠陥検査システム20に、欠陥管理装置60を含めるようにしてもよい。
【0075】
・上記実施形態では、機能試験として電気的特性検査を例に挙げたが、その他の機能試験の際に、データベース70に格納された不良チップ情報を利用するようにしてもよい。
・上記実施形態では、所定の製造工程後(キープロセス工程後)のみにインライン欠陥検査を実行するようにしたが、例えば全ての製造工程後にインライン欠陥検査を実行するようにしてもよい。
【符号の説明】
【0076】
W ウェハ
A1〜Ak 製造装置
20 欠陥検査システム
30 欠陥検査装置
36 制御部
36A 欠陥検出部
36B 感度制御部
36C 検査領域設定部
50 レビュー装置
60 欠陥管理装置
70 データベース
80 電気的特性検査装置

【特許請求の範囲】
【請求項1】
ウェハ上に欠陥があるか否かを検査する第1の検査工程と、
前記第1の検査工程にて検出された欠陥により、不良チップを判定する第1の判定工程と、
前記不良チップを除いて、前記不良チップに隣接するチップに欠陥があるか否かを、前記第1の検査工程よりも検査感度を上げて検査する第2の検査工程と、
を有することを特徴とする欠陥検査方法。
【請求項2】
前記判定工程の後に、前記不良チップの位置情報を示す不良チップ情報を生成する第1の生成工程を有し、
前記第2の検査工程の後に、
前記第2の検査工程にて検出された欠陥により、不良チップを判定する第2の判定工程と、
前記第2の判定工程にて判定された前記不良チップの位置情報を前記不良チップ情報に追加する第2の生成工程と、
を有することを特徴とする請求項1に記載の欠陥検査方法。
【請求項3】
前記第1の検査工程は、前工程までに生成された前記不良チップ情報に基づいて、前記不良チップを除くウェハ上に欠陥があるか否かを検査することを特徴とする請求項2に記載の欠陥検査方法。
【請求項4】
前記欠陥は、前記ウェハ上に照射されたレーザ光の散乱光の強度が所定の閾値以上であるか否かを判定することにより検出され、
前記第2の検査工程では、前記第1の検査工程よりも前記閾値を低く設定することを特徴とする請求項1〜3のいずれか1つに記載の欠陥検査方法。
【請求項5】
ウェハに対して所定の製造処理を施す第1の製造工程と、
前記第1の製造工程後のウェハ上に欠陥があるか否かを、請求項1〜4のいずれか1つに記載の欠陥検査方法にて検査する工程と、
前記検査後のウェハに対して、前記第1の製造工程の次工程の製造処理を施す第2の製造工程と、
を有することを特徴とする半導体装置の製造方法。
【請求項6】
前記ウェハに対する全ての製造処理が終了した後に、前記不良チップを除く前記ウェハ上のチップに対して、電気的特性検査を含む機能試験を行う第3の検査工程を有することを特徴とする請求項5に記載の半導体装置の製造方法。
【請求項7】
ウェハ上に欠陥があるか否かを検査する第1の検査工程を実行する第1の検査部と、
前記第1の検査工程にて検出された欠陥により不良チップと判定されたチップが存在する場合に、前記不良チップを除いて、前記不良チップに隣接するチップを検査領域に設定する検査領域設定部と、
前記第1の検査工程にて検出された欠陥により前記不良チップと判定されたチップが存在する場合に、前記第1の検査工程時よりも検査感度を高く設定する感度制御部と、
前記検査領域設定部で設定された検査領域に欠陥があるか否かを、前記感度制御部で設定された検査感度で検査する第2の検査工程を実行する第2の検査部と、
を有することを特徴とする欠陥検査装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate