説明

水冷ケーブル及び真空加熱装置

【課題】高真空雰囲気中において、放出ガスによって圧力を低下させること無く、また、周辺環境を汚染させること無く使用することが可能な可撓性を有する水冷ケーブル及び水冷ケーブルを備えた真空加熱装置を提供する。
【解決手段】水冷ケーブル20は、冷却水を流通する冷却水通路20cを有して、真空雰囲気中で冷却水及び電源を供給するためのもので、電源を供給するための導線20aと、導線20aとの間に冷却水通路20cを有して外装され、耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成された略管状の被覆管20bとを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、真空雰囲気で冷却水及び電源を供給する水冷ケーブル、及び、該水冷ケーブルを備えた真空加熱装置に関する。
【背景技術】
【0002】
交流電流による電磁誘導加熱により真空雰囲気で被処理物を加熱する装置の代表例として、金属や合金を加熱して溶解させる真空誘導溶解炉がある。真空誘導溶解炉は、外気に対して気密にされた真空槽と、該真空槽内で金属導体を螺旋上に巻回した誘導加熱コイルと、該誘導加熱コイルの内側に被処理物である被溶解金属を収容するルツボと、誘導加熱コイルに交流電力を供給する給電手段とを備えている。そして、給電手段から誘導加熱コイルに交流電流を供給することで、交流磁界が生じ、磁束密度の大きいルツボの内部に収容された被溶解金属には、誘導電流(渦電流)が生じることとなる。これにより、被溶解金属は、発熱して溶解することとなり、収容しているルツボを傾動させることで、真空槽内で隣接して配置された鋳型に流し込まれることとなる。ここで、誘導加熱コイルは、自らも昇温してしまうため、コイル線材内部に中空部を有して、常に冷却水が供給されている。
【0003】
また、誘導加熱コイルに交流電力を供給する給電手段としては、導線と、導線との間に冷却水通路を有して外装されたゴム管とで構成された水冷ケーブルが使用されている(例えば、特許文献1参照)。この水冷ケーブルによれば、導線によって電源供給を行うとともに、その外周はゴム管によって絶縁されている。また、導線とゴム管とで構成されて可撓性を有するので、ルツボの移動とともに追従させることが可能である。さらに、導線とゴム管との間の冷却水通路に冷却水を通水させることで、自らの導線及びゴム管を冷却するとともに、冷却水を誘導加熱コイルに供給することが可能となっている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第3850547号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1の水冷ケーブルでは、外周側にゴム管を配設しているため、真空槽内で高温、真空雰囲気に曝されるとゴムの内部からガスを放出する傾向が大きく、放出ガス量を10−4Pa・m/s・mより低く保つことが困難である(「真空ハンドブック」による)。また、圧力が10−5Pa以下である高真空雰囲気とする場合には、ベーキングとして、真空槽、真空槽の内部に配置するルツボや水冷ケーブルなどを加熱して脱ガス処理を行う必要があるが、水冷ケーブルのゴム管は、ベーキングに必要な少なくとも65℃以上温度まで昇温可能な耐熱性のゴム材を選択しても、加熱によりガスの放出が著しくなってしまう。このため、上記水冷ケーブルを使用した場合には、被処理物を加熱する真空雰囲気としては、到達圧力を10−5Pa以下にすることが困難であり、真空槽の内部でガスが放出されて、被処理物が汚染されて品質が低下してしまう問題があった。
【0006】
この発明は、上述した事情に鑑みてなされたものであって、高真空雰囲気中において、放出ガスによって圧力を低下させること無く、また、周辺環境を汚染させること無く使用することが可能な可撓性を有する水冷ケーブル及び水冷ケーブルを備えた真空加熱装置を提供するものである。
【課題を解決するための手段】
【0007】
上記課題を解決するために、この発明は以下の手段を提案している。
本発明は、冷却水を流通する冷却水通路を有して、真空雰囲気中で冷却水及び電源を供給するための水冷ケーブルであって、電源を供給するための導線と、該導線との間に前記冷却水通路を有して外装され、耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成された略管状の被覆管とを有することを特徴としている。
【0008】
この発明に係る水冷ケーブルによれば、導線を電気的に接続することにより、電源を供給するとともに、導線と被覆管との間の冷却水通路によって冷却水を供給することが可能である。ここで、被覆管が、耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成されていることにより、可撓性及び絶縁性を確保するとともに、ベーキングを行うための耐熱性を付与することができ、また、放出ガスの低減を図ることができる。
【0009】
また、本発明の真空加熱装置は、真空槽と、該真空槽の内部を真空雰囲気に排気可能な排気手段と、前記真空槽の内部で被処理物を加熱する加熱手段と、前記真空槽の外部から内部へ冷却水及び電源を供給する上記の水冷ケーブルとを備えることを特徴としている。
【0010】
この発明に係る真空加熱装置によれば、水冷ケーブルによって、真空槽の内部における放出ガスの発生を抑え、高真空雰囲気として冷却水及び電源を供給することができる。このため、放出ガスによって汚染されてしまうこと無く被処理物を高真空雰囲気で加熱することができる。
【0011】
また、上記の真空加熱装置は、前記真空槽の内部に設けられ、前記水冷ケーブルによって電源が供給される前記加熱手段である誘導加熱コイルと、該誘導加熱コイルの内側に配設され、内部に前記被処理物を収容するルツボとを備え、該ルツボの内部に収容された前記被処理物を溶解させる真空誘導溶解炉であることがより好ましい。
【0012】
この発明に係る真空加熱装置によれば、水冷ケーブルによって誘導加熱コイルに電源を供給することで、ルツボの内部に収容された被処理物に誘導電流を生じさせて発熱させ、真空誘導溶解炉として高真空雰囲気で被処理物を溶解することができる。この際、上記水冷ケーブルによって放出ガスの発生を抑えることができることで、被処理物や被処理物が溶解した溶湯が放出ガスによって汚染されてしまうのを防止し、溶解品質を確保することができる。
【0013】
また、上記の真空加熱装置は、前記真空槽の内部に設けられ、冷却水を通水させる冷却水配管を備え、該冷却水配管は、耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成されていることがより好ましい。
この発明に係る真空加熱装置によれば、冷却水配管も耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成されていることで、放出ガスの発生をより効果的に抑えつつ、真空槽の内部を冷却することができる。
【0014】
また、上記の真空加熱装置は、前記水冷ケーブル及び前記冷却水配管は、外皮の材質がフッ素系ゴム、シリコンゴム、テフロン(登録商標)のいずれかで構成されていることがより好ましい。
この発明に係る真空加熱装置によれば、水冷ケーブル及び冷却水配管の外皮の材質がフッ素系ゴム、シリコンゴム、テフロン(登録商標)のいずれかで構成されていることで、放出ガスの発生をさらに効果的に抑えつつ、真空槽の内部を冷却することができる。
【発明の効果】
【0015】
本発明の水冷ケーブルによれば、被覆管が、耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成されていることで、可撓性を有するとともに、高真空雰囲気中において、放出ガスによって圧力を低下させること無く、また、周辺環境を汚染させること無く使用することができる。
また、本発明の真空加熱装置によれば、上記水冷ケーブルを備えることで、高真空雰囲気中において、放出ガスで汚染してしまうこと無く、被処理物を加熱処理することができる。
【図面の簡単な説明】
【0016】
【図1】この発明の実施形態の真空誘導溶解炉の概要を示す全体図である。
【図2】この発明の実施形態の真空誘導溶解炉において、真空槽内部の詳細を示す断面図である。
【図3】この発明の実施形態の水冷ケーブルの(a)側断面図及び(b)正断面図である。
【発明を実施するための形態】
【0017】
図1から図3は、この発明に係る実施形態を示している。図1及び図2は、真空雰囲気で、被処理物を加熱処理する真空加熱装置の一例として、金属等を溶解する真空誘導溶解炉を示している。図1及び図2に示すように、真空誘導溶解炉1は、内部2aを気密に閉塞する真空槽2と、真空槽2の内部2aを所定の圧力となるまで排気可能な排気手段である真空ポンプ3と、溶解処理する金属等の被処理物Wが収容されるルツボ4を有する溶解炉5と、ルツボ4を加熱する加熱手段6とを備える。真空槽2は、二重ジャケット構造を呈していて、空間2bに図示しない供給手段によって温水を供給することで内部2aを100度近傍まで加熱することが可能となっている。また、真空槽2には、覗き窓2cが設けられていて、外部から内部2aを観察可能となっている。また、真空ポンプ3は、本実施形態では到達圧力が10−5Pa以下の高真空雰囲気となるまで排気可能な性能を有している。
【0018】
溶解炉5のルツボ4は、底付きの筒状の部材で、例えば黒鉛などによって形成されている。溶解炉5の上方には、溶解炉5を傾動させる傾動機構7が設けられている。傾動機構7は、溶解炉5の上端を回転可能に支持する支持部7aと、一端が溶解炉5の下端に接続された牽引ワイヤ7bと、牽引ワイヤ7bの他端側が巻回されたドラム7cと、ドラム7cを回転させる図示しない駆動部とを有する。ドラム7cは、図示しない駆動部を駆動させることで、回転して牽引ワイヤ7bを巻き取ることが可能であり、これにより溶解炉5を立設した状態から支持部7aを中心として回転、傾斜した状態にさせて、ルツボ4の開口部4aが下方に向くようにすることが可能である。溶解炉5が傾斜した状態において、ルツボ4の開口部4aの下方には、載置台10が設けられていて、ルツボ4から載置台10に載置された鋳型Mへルツボ4の内部の溶湯を流し込むことが可能となっている。なお、鋳型Mの上部には、タンディッシュM1が設けられている。また、載置台10の下部には、ガイド11aによって載置台10を水平移動させる鋳型移動機構11が設けられていて、溶湯が流し込まれた鋳型Mを回収して、新しい鋳型Mに置き換えることが可能となっている。
【0019】
加熱手段6は、ルツボ4に断熱材12を介して外装された誘導加熱コイル13と、真空槽2の外部に設けられ、誘導加熱コイル13に高周波電流を供給する高周波電源14と、真空槽2の外部からフランジ2dを介して内部2aへ配設され、高周波電源14と誘導加熱コイル13とを電気的に接続する配線15a、15bとで構成されている。フランジ2dにおいて、配線15a、15bには、図示しないOリングが外嵌されていて、フランジ2dと図示しないOリングによって真空槽2の気密性が確保されている。そして、高周波電源14から配線15a、15bを介して誘導加熱コイル13に高周波電流を供給することで、交流磁界が生じ、特に磁束密度の大きいルツボ4の内部に収容された金属等の被処理物には誘導電流(渦電流)が発生することになる。このため、被処理物は、誘導電流により発熱して溶解することとなる。
【0020】
ここで、配線15a、15bは、図3に示す水冷ケーブル20によって構成されている。同様に、誘導加熱コイル13は、水冷銅パイプが螺旋状に巻回されていることによって構成されている。図3に示すように、水冷ケーブル20は、電源を供給するための可撓性を有する導線20aと、導線20aとの間に隙間を有して外装された略管状の被覆管20bとを有する。そして、水冷ケーブル20は、導線20aと被覆管20bとの隙間を冷却水通路20cとして、冷却水を流通させることが可能である。
【0021】
水冷ケーブル20において、導線20aは、銅線などの撚り線である。また、被覆管20bは、耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成されている。これにより、導体20aと外部との絶縁を図るための絶縁性、水冷ケーブル20全体として可撓性、並びに、外部温度に対する耐熱性を有している。より具体的には、水冷ケーブル20をベーキングとして最低限必要な65℃以上に加熱することが可能となり、特にベーキングとしてより好ましい100℃近傍まで加熱することが可能となるものである。また、被覆管20bが耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成されていることで、水冷ケーブル20からのガス放出量が低く抑えられ、10−5Pa以下の高真空雰囲気を達成することが可能となる。ここで、このような水冷ケーブル20の外皮の材質としては、フッ素系ゴム、シリコンゴム、テフロン(登録商標)のいずれかであることがより好ましい。外皮の材質として採用されるゴム材としては、気体(窒素、酸素及び水蒸気)の透過係数及び放出係数が低く、炭化水素の放出が少ない(低分子成分及び蒸気圧の高い添加剤が少ない)ものがより好ましい。フッ素系ゴムとしては、例えば、フッ化ビニリデン系やテトラフルオロエチレン−プロピレン系や、テトラフルオロエチレン−パープルオロビニルエーテル系などがある。
【0022】
そして、図1及び図2に示すように、水冷ケーブル20で形成された配線15a、15bは、外部において導線20aが高周波電源14に電気接続されている。このため、配線15a、15bのそれぞれの導線20aと誘導加熱コイル13とによって、高周波電流を導通させることが可能となっている。また、真空槽2の外部において、配線15a、15bの基端には、それぞれの冷却水通路20cに冷却水を供給する冷却水供給部21が接続されている。また、誘導加熱コイル13の冷却水通路20cは、中間部において冷却水配管22a、22bと接続されている。冷却水配管22a、22bは、水冷ケーブル20の被覆管20c同様に耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成されていて可撓性を有している。そして、冷却水配管22a、22bは、真空槽2の内部2aからフランジ2dを介して外部へ配設されている。このため、冷却水供給部21から供給された冷却水を、配線15a、15bのそれぞれの冷却水通路20cから誘導加熱コイル13の冷却水通路20cに流通させて、冷却水配管22a、22bのそれぞれから外部へ排出させることが可能である。なお、フランジ2dにおいて、冷却水配管22a、22bにも図示しないOリングが外嵌されていて、真空槽2の気密が図られている。
【0023】
次に、この実施形態の真空加熱誘導炉1を使用して金属等の被処理物Wを溶解してインゴットを製造する工程の詳細について説明する。図1及び図2に示すように、まず、材料投入工程として、溶解炉5のルツボ4に溶解する金属等の被処理物Wを投入する。次に、ベーキング工程として、真空槽2の内部2aの脱ガス処理を行う。すなわち、まず、真空ポンプ3によって真空槽2の内部2aを排気して、例えば圧力を10−1Pa程度に設定する。次に、図示しない供給手段によって真空槽2の空間2bに温水を供給することで真空槽2の内部2aを加熱する。この際、真空槽2の内部2aの温度環境が、少なくとも65℃以上とし、より好ましくは100℃近傍となるまで加熱する。この際、配線15a、15bへの冷却水の供給は停止している。これにより、配線15a、15b、誘導加熱コイル13、及び、冷却水配管22a、22bのベーキングも行われる。ここで、配線15a、15b及び誘導加熱コイル13について、被覆管20bが、耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成された水冷ケーブル20によって構成されていて、また、冷却水配管22a、22bも耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成されていることで、温度環境を65℃以上に設定することが可能となっている。そして、目標の温度まで昇温したら、設定した温度環境及び真空雰囲気で一定時間保持する。保持する時間としては、溶解炉5、被処理物W、また、鋳型Mなどの材質にもよるが、数時間から数十時間である。なお、この時の真空槽2の内部2aの圧力を計測することで、どの程度、真空槽2の内部2aで放出ガスが発生したかを検出することができる。
【0024】
そして、ベーキング工程完了後、真空槽2を冷却することで、真空槽2の内部2aに配設された各構成からのガス放出が収まることとなり、真空槽2の内部2aを10−5Pa以下の高真空雰囲気となるまで排気することができる。次に加熱工程として、加熱手段6によってルツボ4の内部に収容された被処理物Wを加熱し、溶解させる。すなわち、まず、冷却水供給部21から冷却水を配管15a、15bの冷却水通路20cに供給する。供給された冷却水は、配管15a、15bの各冷却水通路20cから誘電加熱コイル13の冷却水通路20cを流通して冷却水配管22a、22bを介して外部に排出される。この状態で、高周波電源14をオンとすることで、高周波電源14から配線15a、15を介して誘導加熱コイル13に高周波電流が供給される。このため、ルツボ4に収容された被処理物Wは、発生する交流磁界によって加熱し、溶融することとなる。この際、配線15a、15b及び誘導加熱コイル13の各導線20aも、供給される高周波電流によって昇温することとなるが、各冷却水通路20cに流通する冷却水によって冷却され、温度上昇を抑えることができる。なお、上記においては、高真空雰囲気のまま加熱工程を実施するものとしたが、被処理物Wの種類によっては、アルゴンガスなどの不活性ガスを真空槽2の内部2aに導入して、減圧不活性ガス雰囲気で加熱工程を行い、被処理物Wを溶解させても良い。
【0025】
そして、加熱工程によって被処理物Wを溶解させたら、次に鋳込み工程として、被処理物Wによる溶湯を、ルツボ4から鋳型Mへ流し込む。すなわち、傾動機構7を駆動して、溶解炉5を傾斜させる。この際、溶解炉5のルツボ4に外装されている誘導加熱コイル13には配線15a、15b及び冷却水配管22a、22bが接続されているが、配線15a、15は水冷ケーブル20で構成され可撓性を有していて、また、冷却水配管22a、22bも可撓性を有しているため、ルツボ4とともに追従させることができる。これによりルツボ4に収容された溶湯は、開口部4aからダンディッシュM1に投入され、鋳型Mへ流れ込むこととなり、インゴットが製造されることとなる。
【0026】
以上のように、本実施形態の誘導溶解炉1では、配線15a、15bに水冷ケーブル20を使用していることで、65℃以上の温度環境としてベーキング工程を実施することが可能であり、放出ガス量を10−4Pa・m/s・mより低く抑え、真空槽2の内部2aを10−5Pa以下の高真空雰囲気として、被処理物Wの加熱工程を実施することが可能である。また、放出ガス量を10−4Pa・m/s・mより低く抑えることで、被処理物Wが放出ガスによって汚染されてしまうのを防ぐことができ、被処理物Wによる溶解材の品質の向上、また、高純度金属材料においてはその特性を維持した溶解が可能となる。
【実施例】
【0027】
上記実施形態で使用した水冷ケーブル20について性能評価を行った。ここで、本実施例の水冷ケーブル20において、被覆管20bはフッ素ゴムで形成されている。そして、この水冷ケーブル20について、ベーキングを実施しない状態及びベーキングを実施した状態それぞれについて、常温として、真空槽2の内部2aを排気して、到達圧力及び放出ガス量を計測した。また、真空槽2の内部2aに存在する気体について分圧を計測した。計測結果を表1に示す。なお、ベーキングについては、温度環境を95℃として、12時間保持することにより行った。
【0028】
<比較例1>
また、上記実施例と比較するものとして、比較例1として市販のゴム管について、常温で、同様の計測を行った。市販のゴム管としては、天然ゴム、スチレンゴム、スチレンブタジエンゴム、クロロプレンゴム、ブチルゴムなどで形成されたもの、あるいは、これらを層状に構成したものがあるが、本比較例では、スチレンブタジエンゴムで形成されたものを使用した。なお、比較例1では、65℃以上に加熱することができないことから、ベーキングを実施しない状態で行っている。
【0029】
<比較例2>
また、上記実施例と比較するものとして、比較例2として耐熱ゴム管について、ベーキング時において同様の計測を行った。耐熱ゴム管としては、ネオプレンゴム、ニトリルゴム、クロロプレンゴム、ブチルゴム、シリコンゴム、エチレンプロピレンジエンゴムなどで形成されたもの、あるいは、これらを層状に構成したものがあるが、本比較例では、内層がニトリルゴム、外層がニトリルゴムとクロロプレンゴムとでそれぞれ形成された層状構造体のものを使用した。なお、ベーキングの条件は、実施例と同様である。
【0030】
【表1】

【0031】
表1に示すように、実施例の水冷ケーブル20では、ベーキング後においては、到達圧力を10−5Pa以下とし、また、放出ガス量を10−4Pa・m/s・m以下とすることができた。一方、比較例1の市販のゴム管では、到達圧力が4.6×10−4Paとなる雰囲気までしか排気することができず、放出ガス量も2.4×10−4Pa・m/s・mとなってしまった。また、実施例の水冷ケーブル20では、水(HO)、炭化水素(HC)の分圧の低減が可能であり、特にベーキング後の炭化水素(HC)の分圧は、比較例1に対して約1/100まで下げることができた。一方、比較例1では、真空槽2の内部2aの雰囲気中において、炭化水素が主成分となってしまい、溶解に影響を与えてしまう。また、比較例2の耐熱ゴム管については、ベーキング中に激しくガスが放出され、真空槽2の内部2aに油成分が付着する状況となってしまった。さらに、ベーキングを終了させても圧力が低下せず、放出された油成分によって真空槽2の内部2aが汚染される結果となってしまった。
【0032】
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
【0033】
なお、上記実施形態では、水冷ケーブル20によって供給される冷却水を排出させるものとして、フッ素系ゴムで形成された冷却水配管を使用したが、これに限るものでは無く、このような冷却水配管は、真空槽2の内部2aにおける様々な冷却回路に好適なものである。また、上記実施形態では、真空加熱装置の一例として、水冷ケーブル20を使用した真空誘導溶解炉1について説明したが、これに限るものでは無い。高真空雰囲気において被処理物を加熱処理する様々な真空加熱装置において、水冷ケーブル20は同様の効果をもたらすものであり、さらには水冷ケーブル20は、真空加熱装置に限らず、高真空雰囲気において電源供給及び冷却を行う様々な用途に適用可能なものである。
【符号の説明】
【0034】
1 真空誘導溶解炉(真空加熱装置)
2 真空槽
2a 内部
3 真空ポンプ(排気手段)
4 ルツボ
6 加熱手段
13 誘導加熱コイル
20 水冷ケーブル
20a 導線
20b 被覆管
20c 冷却水通路
W 被処理物

【特許請求の範囲】
【請求項1】
冷却水を流通する冷却水通路を有して、真空雰囲気中で冷却水及び電源を供給するための水冷ケーブルであって、
電源を供給するための導線と、
該導線との間に前記冷却水通路を有して外装され、耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成された略管状の被覆管とを有することを特徴とする水冷ケーブル。
【請求項2】
真空槽と、
該真空槽の内部を真空雰囲気に排気可能な排気手段と、
前記真空槽の内部で被処理物を加熱する加熱手段と、
前記真空槽の外部から内部へ冷却水及び電源を供給する請求項1に記載の水冷ケーブルとを備えることを特徴とする真空加熱装置。
【請求項3】
請求項2に記載の真空加熱装置において、
前記真空槽の内部に設けられ、前記水冷ケーブルによって電源が供給される前記加熱手段である誘導加熱コイルと、
該誘導加熱コイルの内側に配設され、内部に前記被処理物を収容するルツボとを備え、
該ルツボの内部に収容された前記被処理物を溶解させる真空誘導溶解炉であることを特徴とする真空加熱装置。
【請求項4】
請求項2または請求項3に記載の真空加熱装置において、
前記真空槽の内部に設けられ、冷却水を通水させる冷却水配管を備え、
該冷却水配管は、耐熱温度が100℃以上で、少なくとも外皮の放出ガス量が10−4Pa・m/s・m以下の可撓性を有する絶縁材料で形成されていることを特徴とする真空加熱装置。
【請求項5】
請求項4に記載の真空加熱装置において、
前記水冷ケーブル及び前記冷却水配管は、外皮の材質がフッ素系ゴム、シリコンゴム、テフロン(登録商標)のいずれかで構成されていることを特徴とする真空加熱装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−76843(P2011−76843A)
【公開日】平成23年4月14日(2011.4.14)
【国際特許分類】
【出願番号】特願2009−226670(P2009−226670)
【出願日】平成21年9月30日(2009.9.30)
【出願人】(000002059)シンフォニアテクノロジー株式会社 (1,111)
【出願人】(594208536)
【Fターム(参考)】