説明

液晶表示装置

【課題】簡易な構成で、視野角コントラストに加えて、視野角色味変化が著しく改善されたIPSモードやFFSモードの液晶表示装置に用いるポリマーフィルムを提供する。
【解決手段】 RthおよびReが下記式(1)〜(4)の関係を満たすポリマーフィルム。
−25nm≦Rth(548)≦25nm ・・・式(1)
0≦Rth(446)−Rth(548)≦50 ・・・式(2)
0≦Rth(548)−Rth(629)≦20 ・・・式(3)
0nm≦Re(548)≦5nm ・・・式(4)
式中、Rth(λ)は波長λnmで測定したRthの値を表す。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特定のレターデーションおよび波長分散特性を有するポリマーフィルム、およびこれを用いる偏光板保護フィルム、偏光板、および液晶表示装置に関する。
【背景技術】
【0002】
従来、モニター用液晶表示装置としては、2枚の直交した偏光板の間に、ネマチック液晶をツイスト配列させた液晶層を挟み、電界を基板に対して垂直な方向にかける方式、いわゆるTNモードが広く用いられている。しかし、この方式では、黒表示時に液晶が基板に対して立ち上がるために、斜めから見ると液晶性化合物による複屈折が発生し、光漏れが起こる。この問題に対して、液晶性化合物がハイブリッド配向したフィルムを用いることで、液晶セルを光学的に補償し、この光漏れを防止する方式が実用化されている。しかし、前記方式を用いても液晶セルを問題なく完全に光学的に補償することは非常に難しく、画面下方向での階調反転が抑えきれないという問題を生じていた。
【0003】
かかる問題を解決するため、横電界を液晶に対して印加する、いわゆるIPSモードやFFSモードによる液晶表示装置や、誘電率異方性が負の液晶を垂直配向してパネル内に形成した突起やスリット電極によって配向分割した垂直配向(VA)モードが提案され、実用化されている。近年、これらのパネルはモニター用途に留まらず、テレビ用途として開発が進められており、それに伴って画面の輝度が大きく向上してきている。このため、これらの動作モードで従来問題とされていなっかった、黒表示時の対角位斜め入射方向での僅かな光漏れや視角による色味変化が表示品質の低下の原因として顕在化してきた。
【0004】
この視角依存性を改善する手段の一つとして、液晶層と偏光板の間に複屈折特性を有する光学補償材料を配置することがIPSやFFSモードにおいても検討されている。例えば、傾斜時の液晶層のレターデーションの増減を補償する作用を有する光軸を互いに直交した複屈折媒体を基板と偏光板との間に配置することで、白表示または中間調表示を斜め方向から直視した場合の色付きが改善できることが開示されている(特許文献1参照)。また、負の固有複屈折を有するスチレン系ポリマーやディスコティック液晶性化合物からなる光学補償フィルムを使用した方法(特許文献2、3、4参照)や光学補償フィルムとして複屈折が正で光学軸がフィルムの面内にある膜と複屈折が正で光学軸がフィルムの法線方向にある膜とを組み合わせる方法(特許文献5参照)、レターデーションが二分の一波長の二軸性の光学補償シートを使用する方法(特許文献6参照)、偏光板の保護膜として負のレターデーションを有する膜を使い、この表面に正のレターデーションを有する光学補償層を設ける方式(特許文献7参照)が提案されている。
さらに偏光板保護フィルムの有するレターデーションを低減させることにより、視野角依存性を改良する方法も提案されている(特許文献8参照)。
【0005】
しかし、前記方式は斜め方向からのコントラスト改善には、ある程度の効果はあるものの、黒表示および中間調の表示において、視角による色味変化改善に対しては、不充分な特性しか得られておらず、更なる改良が求められていた。
【0006】
【特許文献1】特開平9−80424号公報
【特許文献2】特開平10−54982号公報
【特許文献3】特開平11−202323号公報
【特許文献4】特開平9−292522号公報
【特許文献5】特開平11−133408号公報
【特許文献6】特開平11−305217号公報
【特許文献7】特開平10−307291号公報
【特許文献8】特開2006−30937号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明は前記諸問題に鑑みなされたものであって、簡易な構成で、視野角コントラストに加えて、視野角色味変化が著しく改善されたIPSモードやFFSモードの液晶表示装置等を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは鋭意検討した結果、特に低レターデーションフィルムフィルムで、かつ短波長ほどRthが大きくなる特性(以下、「順波長分散特性」ということがある)を有するポリマーフィルムを偏光板保護膜に使用すると液晶表示装置の視角による色味変化を大幅に低減できることを見出し、本発明を完結するに至った。
すなわち上記課題は、以下の手段によって解決された。
(1) RthおよびReが下記式(1)〜(4)の関係を満たすポリマーフィルム。
−25nm≦Rth(548)≦25nm ・・・式(1)
0≦Rth(446)−Rth(548)≦50 ・・・式(2)
0≦Rth(548)−Rth(629)≦20 ・・・式(3)
0nm≦Re(548)≦5nm ・・・式(4)
式中、Rth(λ)は波長λnmで測定したRthの値を表す。
(2)セルロースアシレートを主として含む(1)に記載のポリマーフィルム。
(3)250nm〜400nmの波長領域に少なくとも1つの吸収極大を有する化合物を1質量%〜30質量%含有する(1)または(2)に記載のポリマーフィルム。
(4)アシル置換度が2.90〜3.00のセルロースアシレートを主として含む(1)〜(3)のいずれか1項に記載のポリマーフィルム。
(5)総アシル置換度が2.70〜3.00の混合脂肪酸セルロースエステルを主として含む(1)〜(3)のいずれか1項に記載のポリマーフィルム。
(6)下記式(B)で表される化合物を少なくとも1種含有する、(1)〜(5)のいずれか1項に記載のポリマーフィルム。
式(B)
【化1】

(式(B)中、R1およびR2は、それぞれ、アルキル基またはアリール基を表す。)
(7)重量平均分子量が500〜10,000のアクリル系ポリマーを含有する、(1)〜(6)のいずれか1項に記載のポリマーフィルム。
(8)(1)〜(7)のいずれか1項に記載のポリマーフィルムを含む偏光板保護フィルム。
(9)偏光子と、該偏光子の少なくとも片側に配置された保護フィルムとを有し、該保護フィルムが、(1)〜(7)のいずれか1項に記載のポリマーフィルムである偏光板。
(10)液晶セルおよびその両側に配置された二枚の偏光板を有する液晶表示装置であって、前記偏光板が偏光子およびその両側に配置された2枚の保護フィルムからなり、前記偏光板の前記液晶セル側保護フィルムの少なくとも1枚が(1)〜(7)のいずれか1項に記載の偏光板保護フィルムである液晶表示装置。
(11)前記液晶セルがIPSモードである(10)に記載の液晶表示装置。
【発明の効果】
【0009】
本発明によれば、色味視野角依存性の小さい液晶表示装置を提供することができる。
【発明を実施するための最良の形態】
【0010】
以下において、本発明の内容について詳細に説明する。尚、本願明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
【0011】
本発明は波長546nmにおけるRthが−25nm〜25nmの範囲にあり、かつ順波長分散特性を有するポリマーフィルム(以下、「順波長分散低レターデーションフィルム」ということがある)を偏光板保護フィルムとして用いるものである。まず、本発明の順波長分散低レターデーションフィルムについて詳しく説明する。
【0012】
《順波長分散低レターデーションフィルム》
[フィルムのレターデーション]
本発明の順波長分散低レターデーションフィルムは下記式(1)〜(4)の関係を満たす。
−25nm≦Rth(548)≦25nm ・・・式(1)
0≦Rth(446)−Rth(548)≦50 ・・・式(2)
0≦Rth(548)−Rth(629)≦20 ・・・式(3)
0nm≦Re(548)≦5nm ・・・式(4)
式(1)においてRth(548)は−10nm〜10nmが好ましく、−5nm〜5nmがより好ましい。
また、式(2)においてRth(446)−Rth(548)は5nm〜30nmがさらに好ましく、10nm〜25nmが最も好ましい。
また、式(3)においてRth(548)−Rth(629)は0nm〜15nmがさらに好ましく2nm〜10nmが最も好ましい。
また、式(4)においてRe(548)は0nm〜3nm〜がさらに好ましい。
【0013】
本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
測定されるフィルムが1軸または2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRが算出する。
尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値および入力された膜厚値を基に、以下の式(1)および式(2)よりRthを算出することもできる。
【化2】

−−−式(1)
注記:
上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値をあらわす。
式(1)におけるnxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnxおよびnyに直交する方向の屈折率を表す。
【0014】
Rth=((nx+ny)/2−nz)×d −−− 式(2)
測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレタデーション値と平均屈折率の仮定値および入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記の測定において、平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHまたはWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx−nz)/(nx−ny)がさらに算出される。
【0015】
本発明の順波長分散低レターデーションフィルムとしては様々なポリマーフィルムが使用できるが、原材料が安価であることおよび偏光板加工適性の点からセルロースアシレートを主として含むセルロースアシレートフィルムが特に好ましい。セルロースアシレートを「主として含む」とはフィルム総重量に対してセルロースアシレートが、例えば、70質量%以上、好ましくは、80質量%以上含まれていることを示す。本明細書において以下「主として含む」とは同様の意味を表すものとする。
【0016】
〔セルロースアシレート〕
次に、本発明に用いることのできるセルロースアシレートについて説明する。
セルロースアシレートの置換度は、セルロースの構成単位((β)1,4−グリコシド結合しているグルコース)に存在している、3つの水酸基がアシル化されている割合を意味する。本発明においてセルロースアシレートの置換度(アシル化度)は、例えば、置換度はC13−NMRにおけるアシル基中のカルボニル炭素のピーク強度から求めることができる。
【0017】
本発明におけるセルロースアシレートは、アシル置換度が2.90〜3.00であるセルロースアセテートが好ましい。前記アシル置換度は2.93〜2.97がさらに好ましい。
【0018】
本発明において、もう一つの好ましいセルロースアシレートは、総アシル置換度が2.70〜3.00の混合脂肪酸エステルである。さらに好ましくは総アシル置換度が2.80〜3.00であり、アセチル基の炭素原子数が3〜4のアシル基を有する混合脂肪酸エステルである。前記混合脂肪酸エステルのアシル置換度は2.85〜2.97がさらに好ましい。また炭素原子数が3〜4のアシル基の置換度は0.1〜2.0が好ましく0.3〜1.5がさらに好ましい。
【0019】
さらに、本発明のもう1つの好ましいセルロースアシレートは、アセチル基およびこれと異なるアシル基(以下置換基B)を有する混合エステルであり、かつアシル基Bの下記式(1)で表される分極率異方性が2.5×10−24cm3以上であるものである。
【0020】
数式(1):Δα=αx−(αy+αz)/2
(式中、αxは、分極率テンソルを対角化後に得られる固有値の内、最大の成分であり;αyは、分極率テンソルを対角化後に得られる固有値の内、二番目に大きい成分であり;αzは、分極率テンソルを対角化後に得られる固有値の内、最小の成分である。)
置換基の分極率異方性はGaussian03(Revision B.03、米ガウシアン社ソフトウェア)を用いて計算できる。本発明において、分極率異方性はB3LYP/6−31G*レベルで最適化された構造を用いて、セルロースの構成単位であるβ−グルコース環上の水酸基に連結する置換基を水酸基の酸素原子を含む部分構造としてB3LYP/6−311+G**レベルで分極率を計算し、得られた分極率テンソルを対角化した後、対角成分より算出した。
【0021】
本発明のセルロースアシレートの置換基Bの前記分極率異方性はさらに好ましくは4.0×10−24cm3〜300×10−24cm3であり、6.0×10−24cm3〜300×10−24cm3が最も好ましい。分極率異方性の大きい置換基としては芳香族アシル基が、疎水化効果が大きくかつフィルムの自由体積が広がりにくいため特に好ましい
【0022】
さらに、置換基Bおよびアセチル基の置換度は下記関係式を満たすことが好ましい。
DSB2+DSB3−DSB6≧−0.1 ・・・式(A1)
DSA2+DSA3+DSA6>DSB2+DSB3+DSB6 ・・・式(A2)
1.5≦DSA2+DSA3+DSA6+DSB2+DSB3+DSB6≦3.0・・・式(A3)
ここで、DSAβはアセチル基のβ位の置換度、DSBβは置換基Bのβ位の置換度をそれぞれ表す。
式(A1)はさらに好ましくは、
DSB2+DSB3−DSB6≧0
であり、最も好ましくは、
DSB2+DSB3−DSB6≧0.2
である。
また、式(A2)はさらに好ましくは、
DSA2+DSA3+DSA6>DSB2+DSB3+DSB6+0.5
であり、最も好ましくは、
DSA2+DSA3+DSA6>DSB2+DSB3+DSB6+1.0
である。
式(A3)はさらに好ましくは、
2.0≦DSA2+DSA3+DSA6+DSB2+DSB3+DSB6≦3.0
であり、最も好ましくは、
2.4≦DSA2+DSA3+DSA6+DSB2+DSB3+DSB6≦3.0
である。
置換度が上記関係を満たすことにより、より膜厚方向のレターデーションが小さく、また透水性や含水率を低減させたセルロースアシレートフィルムが得られる。
【0023】
本発明のセルロースアシレートの置換基Bは一般式(I)で表される基が特に好ましい。
【0024】
【化3】

【0025】
まず、前記一般式(I)について説明する。一般式(I)中、Xは置換基を示す。前記置換基の例には、ハロゲン原子、シアノ基、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、カルボンアミド基、スルホンアミド基、ウレイド基、アラルキル基、ニトロ、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、カルバモイル基、スルファモイル基、アシルオキシ基、アルケニル基、アルキニル基、アルキルスルホニル基、アリールスルホニル基、アルキルオキシスルホニル基、アリールオキシスルホニル基、アルキルスルホニルオキシ基およびアリールオキシスルホニル基、−S−R、−NH−CO−OR、−PH−R、−P(−R)2、−PH−O−R、−P(−R)(−O−R)、−P(−O−R)2、−PH(=O)−R−P(=O)(−R)2、−PH(=O)−O−R、−P(=O)(−R)(−O−R)、−P(=O)(−O−R)2、−O−PH(=O)−R、−O−P(=O)(−R)2−O−PH(=O)−O−R、−O−P(=O)(−R)(−O−R)、−O−P(=O)(−O−R)2、−NH−PH(=O)−R、−NH−P(=O)(−R)(−O−R)、−NH−P(=O)(−O−R)2、−SiH2−R、−SiH(−R)2、−Si(−R)3、−O−SiH2−R、−O−SiH(−R)2および−O−Si(−R)3が含まれる。上記Rは脂肪族基、芳香族基またはヘテロ環基である。
【0026】
前記一般式(I)中、nは置換基の数であり、0〜5の整数を示す。前記置換基の数(n)は、1〜5であることが好ましく、1〜4であることがより好ましく、1〜3であることがさらに好ましく、1または2であることが最も好ましい。前記で示される置換基としては、ハロゲン原子、シアノ基、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、カルボンアミド基、スルホンアミド基およびウレイド基が好ましく、ハロゲン原子、シアノ基、アルキル基、アルコキシ基、アリールオキシ基、アシル基およびカルボンアミド基がより好ましく、ハロゲン原子、シアノ、アルキル基、アルコキシ基およびアリールオキシ基がさらに好ましく、ハロゲン原子、アルキル基およびアルコキシ基が最も好ましい。
【0027】
上記ハロゲン原子には、フッ素原子、塩素原子、臭素原子およびヨウ素原子が含まれる。上記アルキル基は、環状構造または分岐を有していてもよい。アルキル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがより好ましく、1〜6であることがさらに好ましく、1〜4であることが最も好ましい。アルキル基の例には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert−ブチル基、ヘキシル基、シクロヘキシル基、オクチル基および2−エチルヘキシル基が含まれる。上記アルコキシ基は、環状構造あるいは分岐を有していてもよい。アルコキシ基の炭素原子数は、1〜20であることが好ましく、1〜12であることがより好ましく、1〜6であることがさらに好ましく、1〜4であることが最も好ましい。アルコキシ基は、さらに別のアルコキシ基で置換されていてもよい。アルコキシ基の例には、メトキシ基、エトキシ基、2−メトキシエトキシ基、2−メトキシ−2−エトキシエトキシ基、ブチルオキシ基、ヘキシルオキシ基およびオクチルオキシ基が含まれる。
【0028】
上記アリール基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。アリール基の例には、フェニル基およびナフチル基が含まれる。上記アリールオキシ基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。アリールオキシ基の例には、フェノキシ基およびナフトキシ基が含まれる。上記アシル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。アシル基の例には、ホルミル基、アセチル基およびベンゾイル基が含まれる。上記カルボンアミド基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。カルボンアミド基の例には、アセトアミド基およびベンズアミド基が含まれる。上記スルホンアミド基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。スルホンアミド基の例には、メタンスルホンアミド基、ベンゼンスルホンアミド基およびp−トルエンスルホンアミド基が含まれる。上記ウレイド基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。ウレイド基の例には、(無置換)ウレイドが含まれる。
【0029】
上記アラルキル基の炭素原子数は、7〜20であることが好ましく、7〜12であることがさらに好ましい。アラルキル基の例には、ベンジル基、フェネチル基およびナフチルメチル基が含まれる。上記アルコキシカルボニル基の炭素原子数は、2〜20であることが好ましく、2〜12であることがさらに好ましい。アルコキシカルボニル基の例には、メトキシカルボニルが含まれる。上記アリールオキシカルボニル基の炭素原子数は、7〜20であることが好ましく、7〜12であることがさらに好ましい。アリールオキシカルボニル基の例には、フェノキシカルボニル基が含まれる。上記アラルキルオキシカルボニル基の炭素原子数は、8〜20であることが好ましく、8〜12であることがさらに好ましい。アラルキルオキシカルボニル基の例には、ベンジルオキシカルボニル基が含まれる。上記カルバモイル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。カルバモイル基の例には、(無置換)カルバモイル基およびN−メチルカルバモイル基が含まれる。上記スルファモイル基の炭素原子数は、20以下であることが好ましく、12以下であることがさらに好ましい。スルファモイル基の例には、(無置換)スルファモイル基およびN−メチルスルファモイル基が含まれる。上記アシルオキシ基の炭素原子数は、1〜20であることが好ましく、2〜12であることがさらに好ましい。アシルオキシ基の例には、アセトキシ基およびベンゾイルオキシ基が含まれる。
【0030】
上記アルケニル基の炭素原子数は、2〜20であることが好ましく、2〜12であることがさらに好ましい。アルケニル基の例には、ビニル基、アリル基およびイソプロペニル基が含まれる。上記アルキニル基の炭素原子数は、2〜20であることが好ましく、2〜12であることがさらに好ましい。アルキニル基の例には、チエニル基が含まれる。上記アルキルスルホニル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。上記アリールスルホニル基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。上記アルキルオキシスルホニル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。上記アリールオキシスルホニル基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。上記アルキルスルホニルオキシ基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。上記アリールオキシスルホニル基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。
【0031】
さらに、芳香族環に置換する置換基の数が2個以上の時、該置換基は互いに同じでも異なっていてもよいし、互いに連結して縮合多環化合物(例えば、ナフタレン基、インデン基、インダン基、フェナントレン基、キノリン基、イソキノリン基、クロメン基、クロマン基、フタラジン基、アクリジン基、インドール基、インドリン基など)を形成してもよい。一般式(I)で表される芳香族アシル基の具体例は下記に示す通りであるが、好ましいのは、No.1、3、5、6、8、13、18、28、より好ましいのはNo.1、3、6、13である。
【0032】
【化4】

【0033】
【化5】

【0034】
【化6】

【0035】
【化7】

【0036】
本発明で用いられるセルロースアシレートは、350〜800の質量平均重合度を有することが好ましく、370〜600の質量平均重合度を有することがさらに好ましい。また本発明で用いられるセルロースアシレートは、70,000〜230,000の数平均分子量を有することが好ましく、75,000〜230,000の数平均分子量を有することがさらに好ましく、78,000〜120,000の数平均分子量を有することが最も好ましい。
【0037】
本発明で用いられるセルロースアシレートは、アシル化剤として酸無水物や酸塩化物を用いて合成できる。前記アシル化剤が酸無水物である場合は、反応溶媒として有機酸(例えば、酢酸)や塩化メチレンが使用される。また、触媒として、硫酸のようなプロトン性触媒を用いることができる。アシル化剤が酸塩化物である場合は、触媒として塩基性化合物を用いることができる。工業的に最も一般的な合成方法では、セルロースをアセチル基および他のアシル基に対応する有機酸(酢酸、プロピオン酸、酪酸)またはそれらの酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)を含む混合有機酸成分でエステル化してセルロースエステルを合成する。
【0038】
セルロース混合アシレートを得る方法としては、アシル化剤として2種のカルボン酸無水物を混合または逐次添加により反応させる方法、2種のカルボン酸の混合酸無水物(例えば、酢酸・プロピオン酸混合酸無水物)を用いる方法、カルボン酸と別のカルボン酸の酸無水物(例えば、酢酸とプロピオン酸無水物)を原料として反応系内で混合酸無水物(例えば、酢酸・プロピオン酸混合酸無水物)を合成してセルロースと反応させる方法、置換度が3に満たないセルロースアシレートを一旦合成し、酸無水物や酸ハライドを用いて、残存する水酸機をさらにアシル化する方法などを用いることができる。
【0039】
この方法においては、綿花リンターや木材パルプのようなセルロースは、酢酸のような有機酸で活性化処理した後、硫酸触媒の存在下で、上記のような有機酸成分の混合液を用いてエステル化する場合が多い。有機酸無水物成分は、一般にセルロース中に存在する水酸基の量に対して過剰量で使用する。このエステル化処理では、エステル化反応に加えてセルロース主鎖(β−1,4−グリコシド結合)の加水分解反応(解重合反応)が進行する。主鎖の加水分解反応が進むとセルロースエステルの重合度が低下し、製造するセルロースエステルフィルムの物性が低下する。そのため、反応温度のような反応条件は、得られるセルロースエステルの重合度や分子量を考慮して決定することが好ましい。
【0040】
重合度の高い(分子量の大きい)セルロースエステルを得るためには、エステル化反応工程における最高温度を50℃以下に調節することが重要である。最高温度は、好ましくは35〜50℃、さらに好ましくは37〜47℃に調節する。反応温度が35℃以上であれば、エステル化反応が円滑に進行するので好ましい。また、反応温度が50℃以下であれば、セルロースエステルの重合度が低下するなどの不都合が生じないので好ましい。
【0041】
エステル化反応の後、温度上昇を抑制しながら反応を停止すると、さらに重合度の低下を抑制でき、高い重合度のセルロースエステルを合成できる。すなわち、反応終了後に反応停止剤(例えば、水、酢酸)を添加すると、エステル化反応に関与しなかった過剰の酸無水物は、加水分解して対応する有機酸を副成する。この加水分解反応は激しい発熱を伴い、反応装置内の温度が上昇する。反応停止剤の添加速度が大きすぎることがなければ、反応装置の冷却能力を超えて急激に発熱して、セルロース主鎖の加水分解反応が著しく進行し、得られるセルロースエステルの重合度が低下するなどの問題が生じることはない。また、エステル化の反応中に触媒の一部はセルロースと結合しており、その大部分は反応停止剤の添加中にセルロースから解離する。このとき反応停止剤の添加速度が大きすぎなければ、触媒が解離するために充分な反応時間が確保され、触媒の一部がセルロースに結合した状態で残るなどの問題は生じにくい。強酸の触媒が一部結合しているセルロースエステルは安定性が非常に悪く、製品の乾燥時の熱などで容易に分解して重合度が低下する。これらの理由により、エステル化反応の後、好ましくは4分以上、さらに好ましくは4〜30分の時間をかけて反応停止剤を添加して、反応を停止することが望ましい。なお、反応停止剤の添加時間が30分以下であれば、工業的な生産性の低下などの問題が生じないので好ましい。
【0042】
反応停止剤としては、一般に酸無水物を分解する水やアルコールが用いられている。ただし、本発明では、各種有機溶媒への溶解性が低いトリエステルを析出させないために、水と有機酸との混合物が、反応停止剤として好ましく用いられる。以上のような条件でエステル化反応を実施すると、質量平均重合度が500以上である高分子量セルロースエステルを容易に合成することができる。
【0043】
〔波長分散制御剤〕
本発明におけるセルロースアシレートフィルムは波長分散制御剤を含有することが好ましい。ここで、「波長分散制御剤」とはフィルムのレターデーションの波長分散を調節する化合物である。
【0044】
本発明における波長分散制御剤は250nm〜400nmの波長範囲に吸収極大を有することが好ましい。さらに好ましくは、270nm〜380nmの波長範囲に吸収極大を有することである。
本発明において波長分散調節剤の吸収極大はメチレンクロライド、メタノール、テトラヒドロフラン等の有機溶剤に0.01g/L〜0.1g/Lの濃度で溶解し、例えば(株)島津製作所製の分光光度計UV−3500等を用いて吸収スペクトルを測定することにより求めることができる。
【0045】
本発明に好ましく用いられる波長分散制御剤の具体例としては、一般式(III)〜(VI)で示される化合物が好ましい。
【0046】
【化8】

(式中、Q1およびQ2はそれぞれ芳香族環を表す。Xは置換基を表し、Yは酸素原子、硫黄原子または窒素原子を表す。XYは水素原子であっても良い。)
ここで、Q1およびQ2はそれぞれXY以外の置換基を有していてもよい。
【0047】
【化9】

(式中、R1、R2、R3、R4およびR5はそれぞれ一価の有機基であり、R1、R2およびR3の少なくとも1つは総炭素原子数10〜20の無置換の分岐または直鎖のアルキル基である。)
【0048】
【化10】

(式中、R1、R2、R4およびR5はそれぞれ一価の有機基であり、R6は分岐のアルキル基である。)
【0049】
また、特開2003−315549号公報に記載されているように、一般式(VI)で示される化合物も好ましく使用することができる。
【0050】
【化11】

(式中、R0およびR1はそれぞれ水素原子、炭素原子数1〜25のアルキル基、炭素原子数7〜9のフェニルアルキル基、無置換または炭素原子数1〜4のアルキル基置換のフェニル基、置換または無置換のオキシカルボニル基、もしくは置換または無置換のアミノカルボニル基を表す。R2〜R5およびR19〜R23はそれぞれ水素原子、もしくは炭素原子数2〜20の置換または無置換のアルキル基を表す。)
【0051】
さらには、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などが挙げられる。
【0052】
一般式(III)で示される化合物としては、例えば、ベンゾフェノン系化合物が挙げられる。
【0053】
また、ベンゾトリアゾール系波長分散制御剤としての具体例を下記に列記するが、本発明で用いることができるベンゾトリアゾール系波長分散制御剤はこれらに限定されない。2−(2'−ヒドロキシ−5'−メチルフェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−3',5'−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−3'−tert−ブチル−5'−メチルフェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−3',5'−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2'−ヒドロキシ−3'−(3'',4'',5'',6''−テトラヒドロフタルイミドメチル)−5'−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2'−ヒドロキシ−3'−tert−ブチル−5'−メチルフェニル)−5−クロロベンゾトリアゾール、2,4−ジヒドロキシベンゾフェノン、2,2'−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)、(2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、2(2'−ヒドロキシ−3',5'−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、(2(2'−ヒドロキシ−3',5'−ジ−tert−アミルフェニル)−5−クロロベンゾトリアゾール、2,6−ジ−tert−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N'−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−イソシアヌレイトなどが挙げられる。特に(2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、2(2'−ヒドロキシ−3',5'−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、(2(2'−ヒドロキシ−3',5'−ジ−tert−アミルフェニル)−5−クロロベンゾトリアゾール、2,6−ジ−tert−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N'−ビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジンなどのヒドラジン系の金属不活性剤やトリス(2,4−ジ−tert−ブチルフェニル)フォスファイトなどの燐系加工安定剤を併用してもよい。これらの化合物の添加量は、セルロースアシレートに対して質量割合で1ppm〜1.0%が好ましく、10〜1000ppmがさらに好ましい。
【0054】
次に下記一般式(VII)で表される波長分散制御剤について詳しく説明する。
一般式(VII) Q1−Q2−OH
(式中、Q1は1,3,5−トリアジン環、Q2は芳香族環を表す。)
一般式(VII)としてさらに好ましくは下記一般式(VII−A)で表される化合物である。
【0055】
【化12】

【0056】
(VII−A)式中さらに好ましくは、R1は炭素原子数1〜18のアルキル基;炭素原子数5〜12のシクロアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;フェニル基、OH、炭素原子数1〜18のアルコキシ基、炭素原子数5〜12のシクロアルコキシ基、炭素原子数3〜18のアルケニルオキシ基、ハロゲン原子、−COOH、−COOR4、−O−CO−R5、−O−CO−O−R6、−CO−NH2、−CO−NHR7、−CO−N(R7)(R8)、CN、NH2、NHR7、−N(R7)(R8)、−NH−CO−R5、フェノキシ基、炭素原子数1〜18のアルキル基で置換されたフェノキシ基、フェニル−炭素原子数1〜4のアルコキシ基、炭素原子数6〜15のビシクロアルコキシ基、炭素原子数6〜15のビシクロアルキルアルコキシ基、炭素原子数6〜15のビシクロアルケニルアルコキシ基、または炭素原子数6〜15のトリシクロアルコキシ基で置換された炭素原子数1〜18のアルキル基;OH、炭素原子数1〜4のアルキル基、炭素原子数2〜6のアルケニル基または−O−CO−R5 で置換された炭素原子数5〜12のシクロアルキル基;グリシジル基;−CO−R9 または−SO2 −R10を表すか;あるいはR1 は1以上の酸素原子で中断されたおよび/またはOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換された炭素原子数3〜50のアルキル基を表すか;あるいはR1は−A;−CH2−CH(XA)−CH2−O−R12;−CR13R'13−(CH2m−X−A;−CH2−CH(OA)−R14;−CH2−CH(OH)−CH2−XA;
【化13】

−CR15R'15−C(=CH2)−R"15;−CR13R'13−(CH2m−CO−X−A;−CR13R'13−(CH2m−CO−O−CR15R'15−C(=CH2)−R"15または−CO−O−CR15R'15−C(=CH2)−R"15(式中、Aは−CO−CR16=CH−R17を表す。)で表される定義の一つを表し;基R2は、互いに独立して、炭素原子数6〜18のアルキル基;炭素原子数2〜6のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;COOR4;CN;−NH−CO−R5;ハロゲン原子;トリフルオロメチル基;−O−R3を表し;R3はR1に対して与えられた定義を表し;R4は炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基を表すか;あるいはR4は1以上の−O−、−NH−、−NR7−、−S−で中断されたおよびOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換されていてもよい、炭素原子数3〜50のアルキル基を表し;R5はH;炭素原子数1〜18のアルキル基;炭素原子数2〜18のアルケニル基;炭素原子数5〜12のシクロアルキル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数6〜15のビシクロアルキル基;炭素原子数6〜15のビシクロアルケニル基;炭素原子数6〜15のトリシクロアルキル基を表し;R6はH;炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基を表し;R7およびR8は互いに独立して炭素原子数1〜12のアルキル基;炭素原子数3〜12のアルコキシアルキル基;炭素原子数4〜16のジアルキルアミノアルキル基を表すか;または炭素原子数5〜12のシクロアルキル基を表し;あるいはR7およびR8は一緒になって炭素原子数3〜9のアルキレン基、炭素原子数3〜9のオキサアルキレン基または炭素原子数3〜9のアザアルキレン基を表し;R9は炭素原子数1〜18のアルキル基;炭素原子数2〜18のアルケニル基;フェニル基;炭素原子数5〜12のシクロアルキル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数6〜15のビシクロアルキル基;炭素原子数6〜15のビシクロアルキルアルキル基、炭素原子数6〜15のビシクロアルケニル基;または炭素原子数6〜15のトリシクロアルキル基を表し;R10は炭素原子数1〜12のアルキル基;フェニル基;ナフチル基;または炭素原子数7〜14のアルキルフェニル基を表し;基R11は互いに独立してH;炭素原子数1〜18のアルキル基;炭素原子数3〜6のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;ハロゲン原子;炭素原子数1〜18のアルコキシ基を表し;R12は炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数3〜8のアルケノキシ基、ハロゲン原子またはトリフルオロメチル基で1〜3回置換されたフェニル基を表すか;または炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基;炭素原子数6〜15のトリシクロアルキル基;炭素原子数6〜15のビシクロアルキル基;炭素原子数6〜15のビシクロアルキルアルキル基;炭素原子数6〜15のビシクロアルケニルアルキル基;−CO−R5を表し;またはR12は1以上の−O−、−NH−、−NR7−、−S−で中断されたおよびOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換されていてもよい、炭素原子数3〜50のアルキル基を表し;R13およびR'13は互いに独立してH;炭素原子数1〜18のアルキル基;フェニル基を表し;R14は炭素原子数1〜18のアルキル基;炭素原子数3〜12のアルコキシアルキル基;フェニル基;フェニル−炭素原子数1〜4のアルキル基を表し;R15、R'15およびR"15は互いに独立してHまたはCH3を表し;R16はH;−CH2−COO−R4;炭素原子数1〜4のアルキル基;またはCNを表し;R17はH;−COOR4;炭素原子数1〜17のアルキル基;またはフェニル基を表し;Xは−NH−;−NR7−;−O−;−NH−(CH2p−NH−;または−O−(CH2q−NH−を表し;およびmは0〜19の整数を表し;nは1〜8の整数を表し;pは0〜4の整数を表し;qは2〜4の整数を表す;但し一般式(VII−A)中、R1、R2およびR11の少なくとも1つが2個以上の炭素原子を含む、である。
【0057】
さらに一般式(VII−A)の化合物を説明する。
アルキル基としての基R1〜R10、R12〜R14、R16およびR17は、枝分かれもしくは枝分かれされたアルキル基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、第二ブチル基、イソブチル基、第三ブチル基、2−エチルブチル基、n−ペンチル基、イソペンチル基、1−メチルペンチル基、1,3−ジメチルブチル基、n−ヘキシル基、1−メチルヘキシル基、n−ヘプチル基、イソヘプチル基、1,1,3,3−テトラメチルブチル基、1−メチルヘプチル基、3−メチルヘプチル基、n−オクチル基、2−エチルヘキシル基、1,1,3−トリメチルヘキシル基、1,1,3,3−テトラメチルペンチル基、ノニル基、デシル基、ウンデシル基、1−メチルウンデシル基、ドデシル基、1,1,3,3,5,5−ヘキサメチルヘキシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基またはオクタデシル基である。
【0058】
炭素原子数5〜12のシクロアルキル基としてのR1、R3〜R9およびR12は例えばシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基である。好ましいのもはシクロペンチル基、シクロヘキシル基、シクロオクチル基およびシクロドデシル基である。
【0059】
アルケニル基としてのR6、R9、R11およびR12は特にアリル基、イソプロペニル基、2−ブテニル基、3−ブテニル基、イソブテニル基、n−ペンタ−2,4−ジエチル基、3−メチル−ブテ−2−エニル基、n−オクテ−2−エニル基、n−ドデセ−2−エニル基、イソ−ドデセニル基、n−ドデセ−2−エニル基およびn−オクタデセ−4−エニル基が含まれる。
【0060】
置換されたアルキル基、シクロアルキル基またはフェニル基の置換基の数は1以上であり、結合している炭素原子において(α−位において)または他の炭素原子において置換基をもつことができ;置換基がヘテロ原子によって(例えばアルコキシ基)結合する場合、その置換基の結合位置は好ましくはα−位以外であり、また、置換されたアルキル基の炭素原子数は好ましくは2以上、より好ましくは3以上である。2以上の置換基は好ましくは異なる炭素原子と結合する。
【0061】
−O−、−NH−、−NR7−、−S−により中断されたアルキル基はこれらの基の1以上で中断されていてもよく、それぞれの場合一般に一つの結合中に1つの基が挿入されており、およびヘテロ−ヘテロ結合、例えばO−O、S−S、NH−NH等は生じず;中断されたアルキル基がさらに置換されている場合、置換基は一般にヘテロ原子に対してα位にない。1つの基の中で2以上の−O−、−NH−、−NR7−、−S−のタイプの中断する基が生じる場合、それらは一般に同一である。
【0062】
アリール基は、一般に芳香族炭化水素基であり、例えばフェニル基、ビフェニルイル基またはナフチル基であり、好ましくはフェニル基およびビフェニルイル基である。アルアルキルは一般にアリール基、特にフェニル基により置換されたアルキル基であり;従って炭素原子数7〜20のアルアルキルは、例えばベンジル基、α−メチルベンジル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基およびフェニルヘキシル基を含み;炭素原子数7〜11のフェニルアルキル基は好ましくはベンジル基、α−メチルベンジル基およびα,α−ジメチルベンジル基である。
【0063】
アルキルフェニル基およびアルキルフェノキシ基はそれぞれアルキル基で置換されたフェニル基またはフェノキシ基である。
【0064】
ハロゲン置換基となるハロゲン原子はフッ素原子、塩素原子、臭素原子、またはヨウ素原子であり、より好ましいものはフッ素原子または塩素原子であり特に塩素原子であることが好ましい。
【0065】
炭素原子数1〜20のアルキレン基は例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基等である。ここにアルキル鎖はまた枝分かれでき、例えばイソプロピレン基である。
【0066】
炭素原子数4〜12のシクロアルケニル基は、例えば、2−シクロブテニ−2−イル基、2−シクロペンテニ−1−イル基、2,4−シクロペンタジエニ−1−イル基、2−シクロヘキセ−1−イル基、2−シクロヘプテニ−1−イル基、または2−シクロオクテニ−1−イル基である。
【0067】
炭素原子数6〜15のビシクロアルキル基は、例えば、ボルニル基、ノルボルニル基、[2.2.2]ビシクロオクチル基である。ボルニル基およびノルボルニル基、特にボルニル基およびノルボルニ−2−イル基が 好ましい。
【0068】
炭素原子数6〜15のビシクロアルコキシ基は、例えばボルニルオキシ基またはノルボルニ−2−イルオキシ基である。
【0069】
炭素原子数6〜15のビシクロアルキル−アルキル基または−アルコキシ基は、ビシクロアルキル基で置換されたアルキル基またはアルコキシ基で、炭素原子の総数が6〜15であるものであり;具体例はノルボルナン−2−メチル基およびノルボルニル−2−メトキシ基である。
【0070】
炭素原子数6〜15のビシクロアルケニル基は、例えば、ノルボルネニル基、ノルボルナジエニル基である。好ましいものは、ノルボルネニル基、特にノルボルネ−5−エン基である。
【0071】
炭素原子数6〜15のビシクロアルケニルアルコキシ基は、ビシクロアルケニル基で置換されたアルコキシ基で、炭素原子の総数が6〜15であるものであり;例えばノルボルネ−5−エン−2−メトキシ基である。
【0072】
炭素原子数6〜15のトリシクロアルキル基は、例えば、1−アダマンチル基、2−アダマンチル基である。好ましいものは1−アダマンチル基である。
【0073】
炭素原子数6〜15のトリシクロアルコキシ基は、例えば、アダマンチルオキシ基である。炭素原子数3〜12のヘテロアリール基は、好ましくは、ピリジニル基、ピリミジニル基、トリアジニル基、ピロリル基、フラニル基、チオフェニルまたはキノリニル基である。
【0074】
一般式(VII−A)で表される化合物はさらに好ましくは、R1は炭素原子数1〜18のアルキル基;炭素原子数5〜12のシクロアルキル基;炭素原子数3〜12のアルケニル基;フェニル基;フェニル基、OH、炭素原子数1〜18のアルコキシ基、炭素原子数5〜12のシクロアルコキシ基、炭素原子数3〜18のアルケニルオキシ基、ハロゲン原子、−COOH、−COOR4、−O−CO−R5、−O−CO−O−R6、−CO−NH2、−CO−NHR7、−CO−N(R7)(R8)、CN、NH2、NHR7、−N(R7)(R8)、−NH−CO−R5、フェノキシ基、炭素原子数1〜18のアルキル基で置換されたフェノキシ基、フェニル−炭素原子数1〜4のアルコキシ基、ボルニルオキシ基、ノルボルニ−2−イルオキシ基、ノルボルニル−2−メトキシ基、ノルボルネ−5−エン−2−メトキシ基、アダマンチルオキシ基で置換された炭素原子数1〜18のアルキル基;OH、炭素原子数1〜4のアルキル基、炭素原子数2〜6のアルケニル基および/または−O−CO−R5で置換された炭素原子数5〜12のシクロアルキル基;グリシジル基;−CO−R9または−SO2−R10を表すか;あるいはR1は1以上の酸素原子で中断されたおよび/またはOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換された炭素原子数3〜50のアルキル基を表すか;あるいはR1は−A;−CH2−CH(XA)−CH2−O−R12;−CR13R'13−(CH2m−X−A;−CH2−CH(OA)−R14;−CH2−CH(OH)−CH2−XA;
【0075】
【化14】

−CR15R'15−C(=CH2)−R"15;−CR13R'13−(CH2m−CO−X−A;−CR13R'13−(CH2m−CO−O−CR15R'15−C(=CH2)−R"15または−CO−O−CR15R'15−C(=CH2)−R"15(式中、Aは−CO−CR16=CH−R17を表す。)で表される定義の一つを表し;基R2は炭素原子数6〜18のアルキル基;炭素原子数2〜6のアルケニル基;フェニル基;−O−R3または−NH−CO−R5を表し;ならびに基R3は互いに独立してR1に対して与えられた定義を表し;R4は炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基を表すか;あるいはR4は1以上の−O−、−NH−、−NR7−、−S−で中断されおよびOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換されていてもよい、炭素原子数3〜50のアルキル基を表し;R5はH;炭素原子数1〜18のアルキル基;炭素原子数2〜18のアルケニル基;炭素原子数5〜12のシクロアルキル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;ノルボルニ−2−イル基;ノルボルネ−5−エニ−2−イル基;アダマンチル基を表し;R6はH;炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基を表し;R7およびR8は互いに独立して炭素原子数1〜12のアルキル基;炭素原子数3〜12のアルコキシアルキル基;炭素原子数4〜16のジアルキルアミノアルキル基を表すか;または炭素原子数5〜12のシクロアルキル基を表し;あるいはR7およびR8は一緒になって炭素原子数3〜9のアルキレン基;炭素原子数3〜9のオキサアルキレン基または炭素原子数3〜9のアザアルキレン基を表し;R9は炭素原子数1〜18のアルキル基;炭素原子数2〜18のアルケニル基;フェニル基;炭素原子数5〜12のシクロアルキル基;炭素原子数7〜11のフェニルアルキル基;ノルボルニ−2−イル基;ノルボルネ−5−エニ−2−イル基;アダマンチル基を表し;R10は炭素原子数1〜12のアルキル基;フェニル基;ナフチル基;または炭素原子数7〜14のアルキルフェニル基を表し;基R11は互いに独立してH;炭素原子数1〜18のアルキル基;または炭素原子数7〜11のフェニルアルキル基を表し;R12は炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数3〜8のアルケノキシ基、ハロゲン原子またはトリフルオロメチル基で1〜3回置換されたフェニル基を表すか;または炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基;1−アダマンチル基;2−アダマンチル基;ノルボルニル基;ノルボルナン−2−メチル−;−CO−R5を表し;またはR12は1以上の−O−、−NH−、−NR7−、−S−で中断されたおよびOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換されていてもよい、炭素原子数3〜50のアルキル基を表し;R13およびR'13は互いに独立してH;炭素原子数1〜18のアルキル基;フェニル基を表し;R14は炭素原子数1〜18のアルキル基;炭素原子数3〜12のアルコキシアルキル基;フェニル基;フェニル−炭素原子数1〜4のアルキル基を表し;R15、R'15およびR"15は互いに独立してHまたはCH3を表し;R16はH;−CH2−COO−R4;炭素原子数1〜4のアルキル基;またはCNを表し;R17はH;−COOR4;炭素原子数1〜17のアルキル基;またはフェニル基を表し;Xは−NH−;−NR7−;−O−;−NH−(CH2p−NH−;または−O−(CH2q−NH−を表し;およびmは0〜19の整数を表し;nは1〜8の整数を表し;pは0〜4の整数を表し;qは2〜4の整数を表す、である。
【0076】
一般式(VII)および(VII−A)で表される化合物は慣用の方法により、例えば欧州特許第434608号公報またはH.BrunettiおよびC.E.Luthi, Helv. Chim.Acta 55, 1566(1972) による刊行物に示される方法に従ってまたはそれと同様に、相当するフェノールへのハロトリアジンのフリーデル−クラフツ付加によって、公知の化合物と同様に得ることができる。
【0077】
次に、一般式(VII)および(VII−A)で表される化合物の好ましい例を下記に示すが、本発明で用いることができる化合物はこれらの具体例に限定されるものではない。
【0078】
【化15】

【0079】
【化16】

【0080】
また、その他にも旭電化、プラスチック用添加剤概要、「アデカスタブ」のカタログにある光安定剤も使用できる。チバ・スペシャル・ケミカルズのチヌビン製品案内にある光安定剤、紫外線吸収剤も使用できる。SHIPROKASEI KAISYAのカタログにあるSEESORB、SEENOX、SEETECなども使用できる。城北化学工業のUV吸収剤、酸化防止剤も使用することができる。共同薬品のVIOSORB、吉富製薬の紫外線吸収剤も使用することができる。
【0081】
さらに、本発明における波長分散制御剤としては、特開2001−166144号公報および特開2003−3446556号公報に記載の円盤状化合物も好ましく用いることができる。
【0082】
また、下記一般式(VIII)で表される化合物も本発明における波長分散制御剤として好ましく用いることができる。以下において一般式(VIII)で表される化合物について詳細に説明する。
【0083】
一般式(VIII)
【化17】

【0084】
一般式(VIII)中、Ar1、Ar2およびAr3はそれぞれアリール基または芳香族ヘテロ環を表し、L1およびL2はそれぞれ単結合または2価の連結基を表す。nは3以上の整数を表し、それぞれAr2、L2は同一であっても異なっていても良い。
Ar1、Ar2およびAr3はそれぞれアリール基または芳香族ヘテロ環を表し、Ar1、Ar2およびAr3で表されるアリール基として好ましくは炭素原子数6〜30のアリール基であり、単環であってもよいし、さらに他の環と縮合環を形成してもよい。また、可能な場合には置換基を有してもよく、置換基としては後述の置換基Tが適用できる。
一般式(VIII)中、Ar1、Ar2およびAr3で表されるアリール基としてより好ましくは炭素原子数6〜20、特に好ましくは炭素原子数6〜12のアリール基であり、例えばフェニル基、p−メチルフェニル基、ナフチル基などが挙げられる。
【0085】
一般式(VIII)中、Ar1、Ar2およびAr3で表される芳香族ヘテロ環としては酸素原子、窒素原子あるいは硫黄原子のうち少なくとも1つを含む芳香族ヘテロ環であればいずれのヘテロ環でもよいが、好ましくは5ないし6員環の酸素原子、窒素原子あるいは硫黄原子のうち少なくとも1つを含む芳香族ヘテロ環である。また、可能な場合にはさらに置換基を有してもよい。置換基としては後述の置換基Tが適用できる。
【0086】
一般式(VIII)中、Ar1、Ar2およびAr3で表される芳香族ヘテロ環の具体例としては、例えば、フラン環、ピロール環、チオフェン環、イミダゾール環、ピラゾール環、ピリジン環、ピラジン環、ピリダジン環、トリアゾール環、トリアジン環、インドール環、インダゾール環、プリン環、チアゾリン環、チアゾール環、チアジアゾール環、オキサゾリン環、オキサゾール環、オキサジアゾール環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、アクリジン環、フェナントロリン環、フェナジン環、テトラゾール環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンゾトリアゾール環、テトラザインデン環、ピロロトリアゾール環、ピラゾロトリアゾール環などが挙げられる。芳香族ヘテロ環として好ましくは、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンゾトリアゾール環である。
【0087】
一般式(VIII)中、L1およびL2は単結合または2価の連結基を表し、2価の連結基の例として好ましくは、−NR7−(R7は水素原子、置換基を有していても良いアルキル基またはアリール基を表す)で表される基、−SO2−、−CO−、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、−O−、−S−、−SO−およびこれらの2価基を2つ以上組み合わせて得られる基を挙げることができ、その中でより好ましいものは−O−、−CO−、−SO2NR7−、−NR7SO2−、−CONR7−、−NR7CO−、−COO−、および−OCO−、アルキニレン基であり、最も好ましくは−CONR7−、−NR7CO−、−COO−、および−OCO−、アルキニレン基である。
【0088】
一般式(VIII)で表される化合物において、Ar2はL1およびL2と結合するがAr2がフェニレン基である場合、L1−Ar2−L2およびL2−Ar2−L2はそれぞれパラ位(1,4−位)の関係にあることが最も好ましい。
【0089】
nは3以上の整数を表し、好ましくは3〜7であり、より好ましくは3〜5である。
【0090】
一般式(VIII)で表される化合物のうち好ましいものは一般式(IX)で表される化合物である。ここで一般式(IX)について詳しく説明する。
一般式(IX)
【化18】

【0091】
11、R12、R13、R14、R15、R16、R21、R22、R23およびR24はそれぞれ水素原子または置換基を表す。Ar2はアリール基または芳香族ヘテロ環を表し、L2およびL3は単結合または2価の連結基を表す。nは3以上の整数を表し、それぞれAr2、L2は同一であっても異なっていても良い。
【0092】
Ar2、L2、およびnは一般式(VIII)の例と同一であり、L3は単結合または2価の連結基を表し、2価の連結基の例として好ましくは、−NR7−(R7は水素原子、置換基を有していても良いアルキル基またはアリール基を表す)で表される基、アルキレン基、置換アルキレン基、−O−、およびこれらの2価基を2つ以上組み合わせて得られる基であり、その中でもより好ましいものは−O−、−NR7−、−NR7SO2−、および−NR7CO−である。
【0093】
11、R12、R13、R14、R15およびR16はそれぞれ水素原子または置換基を表し、好ましくは水素原子、アルキル基、アリール基であり、より好ましくは、水素原子、炭素原子数1〜4のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基など)、炭素原子数6〜12のアリール基(例えば、フェニル基、ナフチル基)であり、さらに好ましくは炭素原子数1〜4のアルキル基である。
【0094】
22、R23およびR24はそれぞれ水素原子または置換基を表し、好ましくは、水素原子、アルキル基、アルコキシ基、水酸基であり、より好ましくは、水素原子、アルキル基(好ましくは炭素原子数1〜4、より好ましくはメチル基)である。
【0095】
以下に前述の置換基Tについて説明する。
置換基Tとして好ましくはハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素原子数1〜30のアルキル基、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、2−エチルヘキシル基)、シクロアルキル基(好ましくは、炭素原子数3〜30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基)、ビシクロアルキル基(好ましくは、炭素原子数5〜30の置換もしくは無置換のビシクロアルキル基、つまり、炭素原子数5〜30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1.2.2]ヘプタン−2−イル基、ビシクロ[2.2.2]オクタン−3−イル基)、アルケニル基(好ましくは炭素原子数2〜30の置換または無置換のアルケニル基、例えば、ビニル基、アリル基)、シクロアルケニル基(好ましくは、炭素原子数3〜30の置換もしくは無置換のシクロアルケニル基、つまり、炭素原子数3〜30のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2−シクロペンテン−1−イル基、2−シクロヘキセン−1−イル基)、ビシクロアルケニル基(置換もしくは無置換のビシクロアルケニル基、好ましくは、炭素原子数5〜30の置換もしくは無置換のビシクロアルケニル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビシクロ[2.2.1]ヘプト−2−エン−1−イル基、ビシクロ[2.2.2]オクト−2−エン−4−イル基)、アルキニル基(好ましくは、炭素原子数2〜30の置換または無置換のアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(好ましくは炭素原子数6〜30の置換もしくは無置換のアリール基、例えばフェニル基、p−トリル基、ナフチル基)、ヘテロ環基(好ましくは5または6員の置換もしくは無置換の、芳香族もしくは非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基であり、さらに好ましくは、炭素原子数3〜30の5もしくは6員の芳香族のヘテロ環基である。例えば、2−フリル基、2−チエニル基、2−ピリミジニル基、2−ベンゾチアゾリル基)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(好ましくは、炭素原子数1〜30の置換もしくは無置換のアルコキシ基、例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基、n−オクチルオキシ基、2−メトキシエトキシ基)、アリールオキシ基(好ましくは、炭素原子数6〜30の置換もしくは無置換のアリールオキシ基、例えば、フェノキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基)、シリルオキシ基(好ましくは、炭素原子数3〜20のシリルオキシ基、例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基)、ヘテロ環オキシ基(好ましくは、炭素原子数2〜30の置換もしくは無置換のヘテロ環オキシ基、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基)、アシルオキシ基(好ましくはホルミルオキシ基、炭素原子数2〜30の置換もしくは無置換のアルキルカルボニルオキシ基、炭素原子数6〜30の置換もしくは無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基)、カルバモイルオキシ基(好ましくは、炭素原子数1〜30の置換もしくは無置換のカルバモイルオキシ基、例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基)、アルコキシカルボニルオキシ基(好ましくは、炭素原子数2〜30の置換もしくは無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基)、アリールオキシカルボニルオキシ基(好ましくは、炭素原子数7〜30の置換もしくは無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基)、アミノ基(好ましくは、アミノ基、炭素原子数1〜30の置換もしくは無置換のアルキルアミノ基、炭素原子数6〜30の置換もしくは無置換のアニリノ基、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N−メチル−アニリノ基、ジフェニルアミノ基)、アシルアミノ基(好ましくは、ホルミルアミノ基、炭素原子数1〜30の置換もしくは無置換のアルキルカルボニルアミノ基、炭素原子数6〜30の置換もしくは無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基)、アミノカルボニルアミノ基(好ましくは、炭素原子数1〜30の置換もしくは無置換のアミノカルボニルアミノ基、例えば、カルバモイルアミノ基、N,N−ジメチルアミノカルボニルアミノ基、N,N−ジエチルアミノカルボニルアミノ基、モルホリノカルボニルアミノ基)、アルコキシカルボニルアミノ基(好ましくは炭素原子数2〜30の置換もしくは無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチルーメトキシカルボニルアミノ基)、アリールオキシカルボニルアミノ基(好ましくは、炭素原子数7〜30の置換もしくは無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ基、p-クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基)、スルファモイルアミノ基(好ましくは、炭素原子数0〜30の置換もしくは無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基)、アルキルおよびアリールスルホニルアミノ基(好ましくは炭素原子数1〜30の置換もしくは無置換のアルキルスルホニルアミノ基、炭素原子数6〜30の置換もしくは無置換のアリールスルホニルアミノ基、例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5−トリクロロフェニルスルホニルアミノ基、p−メチルフェニルスルホニルアミノ基)、メルカプト基、アルキルチオ基(好ましくは、炭素原子数1〜30の置換もしくは無置換のアルキルチオ基、例えばメチルチオ基、エチルチオ基、n−ヘキサデシルチオ基)、アリールチオ基(好ましくは炭素原子数6〜30の置換もしくは無置換のアリールチオ基、例えば、フェニルチオ基、p−クロロフェニルチオ基、m−メトキシフェニルチオ基)、ヘテロ環チオ基(好ましくは炭素原子数2〜30の置換または無置換のヘテロ環チオ基、例えば、2−ベンゾチアゾリルチオ基、1−フェニルテトラゾール−5−イルチオ基)、スルファモイル基(好ましくは炭素原子数0〜30の置換もしくは無置換のスルファモイル基、例えば、N−エチルスルファモイル基、N−(3−ドデシルオキシプロピル)スルファモイル基、N,N−ジメチルスルファモイル基、N−アセチルスルファモイル基、N−ベンゾイルスルファモイル基、N−(N'−フェニルカルバモイル)スルファモイル基)、スルホ基、アルキルおよびアリールスルフィニル基(好ましくは、炭素原子数1〜30の置換または無置換のアルキルスルフィニル基、6〜30の置換または無置換のアリールスルフィニル基、例えば、メチルスルフィニル基、エチルスルフィニル基、フェニルスルフィニル基、p−メチルフェニルスルフィニル基)、アルキルおよびアリールスルホニル基(好ましくは、炭素原子数1〜30の置換または無置換のアルキルスルホニル基、6〜30の置換または無置換のアリールスルホニル基、例えば、メチルスルホニル基、エチルスルホニル基、フェニルスルホニル基、p−メチルフェニルスルホニル基)、アシル基(好ましくはホルミル基、炭素原子数2〜30の置換または無置換のアルキルカルボニル基、炭素原子数7〜30の置換もしくは無置換のアリールカルボニル基、例えば、アセチル基、ピバロイルベンゾイル基)、アリールオキシカルボニル基(好ましくは、炭素原子数7〜30の置換もしくは無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル基、o−クロロフェノキシカルボニル基、m−ニトロフェノキシカルボニル基、p−tert−ブチルフェノキシカルボニル基)、アルコキシカルボニル基(好ましくは、炭素原子数2〜30の置換もしくは無置換アルコキシカルボニル基、例えば、メトキシカルボニル基、エトキシカルボニル基、tert−ブトキシカルボニル基、n−オクタデシルオキシカルボニル基)、カルバモイル基(好ましくは、炭素原子数1〜30の置換もしくは無置換のカルバモイル基、例えば、カルバモイル基、N−メチルカルバモイル基、N,N−ジメチルカルバモイル基、N,N−ジ−n−オクチルカルバモイル基、N−(メチルスルホニル)カルバモイル基)、アリールおよびヘテロ環アゾ基(好ましくは炭素原子数6〜30の置換もしくは無置換のアリールアゾ基、炭素原子数3〜30の置換もしくは無置換のヘテロ環アゾ基、例えば、フェニルアゾ基、p−クロロフェニルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基)、イミド基(好ましくは、N−スクシンイミド基、N−フタルイミド基)、ホスフィノ基(好ましくは、炭素原子数2〜30の置換もしくは無置換のホスフィノ基、例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基)、ホスフィニル基(好ましくは、炭素原子数2〜30の置換もしくは無置換のホスフィニル基、例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基)、ホスフィニルオキシ基(好ましくは、炭素原子数2〜30の置換もしくは無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基)、ホスフィニルアミノ基(好ましくは、炭素原子数2〜30の置換もしくは無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基)、シリル基(好ましくは、炭素原子数3〜30の置換もしくは無置換のシリル基、例えば、トリメチルシリル基、tert−ブチルジメチルシリル、フェニルジメチルシリル基)を表わす。 上記の置換基の中で、水素原子を有するものは、これを取り去りさらに上記の基で置換されていても良い。そのような官能基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。その例としては、メチルスルホニルアミノカルボニル基、p−メチルフェニルスルホニルアミノカルボニル基、アセチルアミノスルホニル基、ベンゾイルアミノスルホニル基が挙げられる。
また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
【0096】
以下に一般式(VIII)および一般式(IX)で表される化合物に関して具体例を挙げて詳細に説明するが、本発明は以下の具体例によって何ら限定されることはない。
【0097】
【化19】

【0098】
【化20】

【0099】
【化21】

【0100】
【化22】

【0101】
【化23】

【0102】
【化24】

【0103】
【化25】

【0104】
【化26】

【0105】
【化27】

【0106】
【化28】

【0107】
【化29】

【0108】
【化30】

【0109】
【化31】

【0110】
【化32】

【0111】
【化33】

【0112】
【化34】

【0113】
本発明の波長分散制御剤の添加は予めセルロースアシレートの混合溶液を作製するときに添加してもよいが、セルロースアシレートのドープを予め作製し、流延までのいずれかの時点で添加されてもよい。後者の場合、セルロースアシレートを溶剤に溶解させたドープ液と、紫外線吸収剤と少量のセルロースアシレートとを溶解させた溶液をインライン添加、混合を行うためには、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器 Hi-Mixer)等のインラインミキサー等が好ましく用いられる。後添加する波長分散制御剤には、同時にマット剤を混合しても良いし、そのレターデーション制御剤、可塑剤、劣化防止剤、剥離促進剤等の添加物を混合しても良い。インラインミキサーを用いる場合、高圧下で濃縮溶解することが好ましく、加圧容器の種類は特に問うところではなく、所定の圧力に耐えることができ、加圧下で加熱、撹拌ができればよい。加圧容器はそのほか圧力計、温度計などの計器類を適宜配設する。加圧は窒素ガスなどの不活性気体を圧入する方法や、加熱による溶剤の蒸気圧の上昇によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。溶剤を添加しての加熱温度は、使用溶剤の沸点以上で、かつ該溶剤が沸騰しない範囲の温度が好ましく例えば30〜150℃の範囲に設定するのが好適である。又、圧力は設定温度で、溶剤が沸騰しないように調整される。溶解後は冷却しながら容器から取り出すか、または容器からポンプ等で抜き出して熱交換器などで冷却し、これを製膜に供する。このときの冷却温度は常温まで冷却してもよいが、沸点より5〜10℃低い温度まで冷却し、その温度のままキャスティングを行うほうが、ドープ粘度を低減できるためより好ましい。
【0114】
また、本発明における波長分散制御剤は、単独あるいは2種類以上混合して用いることができる。本発明における波長分散制御剤の添加量はセルロースアシレート100質量部に対して、1.0〜30質量%が好ましく、1.5〜20質量%がさらに好ましく、2.0〜12質量%が最も好ましい。
本発明における波長分散制御剤の添加方法は、アルコールやメチレンクロライド、ジオキソランの有機溶媒に波長分散制御剤を溶解してから、セルロースアシレート溶液(ドープ)に添加してもよいし、または直接ドープ組成中に添加してもよい。
【0115】
(レターデーション低減剤)
本発明で採用する低レターデーションフィルムが、低レターデーションセルロースアシレートフィルムである場合、レターデーション低減剤として、セルロースアシレートフィルムとの親和性が高い化合物を含むことが好ましい。
本発明におけるレターデーション低減剤としては、下記一般式(X)で表される化合物が、レターデーション低減効果が大きく好ましい。
【0116】
以下に一般式(X)で表される化合物に関して詳細に説明する。
【化35】

(一般式(X)中、R1およびR2は、それぞれ、アルキル基またはアリール基を表す。)
また、R1およびR2の炭素原子数の総和が10以上であることが特に好ましい。置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が特に好ましい。また、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数1〜25のものが好ましく、6〜25のものがより好ましく、6〜20のもの(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、アミル基、イソアミル基、tert−アミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ビシクロオクチル基、ノニル基、アダマンチル基、デシル基、tert−オクチル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、ジデシル基)が特に好ましい。
アリール基としては炭素原子数が6〜30のものが好ましく、6〜24のもの(例えば、フェニル基、ビフェニル基、テルフェニル基、ナフチル基、ビナフチル基、トリフェニルフェニル基)が特に好ましい。
一般式(X)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。ここで、Priはイソプロピル基を表す。
【0117】
【化36】

【0118】
【化37】

【0119】
また、重量平均分子量が500〜10,000のアクリル系ポリマーも本発明のレターデーション低減剤として好ましく用いることができる。ポリマーの重量平均分子量が500〜10,000のものであれば、セルロースアシレートとの相溶性が良好で、製膜中において蒸発も揮発も起こらない。特に、芳香環を側鎖に有するアクリル系ポリマーまたはシクロヘキシル基を側鎖に有するアクリル系ポリマーについて、好ましくは500〜5,000のものであれば、上記に加え、製膜後のセルロースアシレートフィルムの透明性が優れ、透湿度も極めて低く、偏光板用保護フィルムとして優れた性能を示す。
【0120】
本発明で用いることができるアクリル系ポリマーは重量平均分子量が500〜10,000であるから、オリゴマーから低分子量ポリマーの間にあると考えられるものである。このようなポリマーを合成するには、通常の重合では分子量のコントロールが難しく、分子量をあまり大きくしない方法でできるだけ分子量を揃えることのできる方法を用いることが望ましい。かかる重合方法としては、クメンペルオキシドやtert−ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、さらに特開2000−128911号または同2000−344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができ、何れも本発明において好ましく用いられるが、特に、該公報に記載の方法が好ましい。
【0121】
本発明において、アクリル系ポリマーという(単にアクリル系ポリマーという)のは、芳香環あるいはシクロヘキシル基を有するモノマー単位を有しないアクリル酸またはメタクリル酸アルキルエステルのホモポリマーまたはコポリマーを指す。芳香環を側鎖に有するアクリル系ポリマーというのは、必ず芳香環を有するアクリル酸またはメタクリル酸エステルモノマー単位を含有するアクリル系ポリマーである。また、シクロヘキシル基を側鎖に有するアクリル系ポリマーというのは、シクロヘキシル基を有するアクリル酸またはメタクリル酸エステルモノマー単位を含有するアクリル系ポリマーである。
【0122】
芳香環およびシクロヘキシル基を有さないアクリル酸エステルモノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i−、n−)、アクリル酸ブチル(n−、i−、s−、t−)、アクリル酸ペンチル(n−、i−、s−)、アクリル酸ヘキシル(n−、i−)、アクリル酸ヘプチル(n−、i−)、アクリル酸オクチル(n−、i−)、アクリル酸ノニル(n−、i−)、アクリル酸ミリスチル(n−、i−)、アクリル酸(2−エチルヘキシル)、アクリル酸(ε−カプロラクトン)、アクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)、アクリル酸(4−ヒドロキシブチル)、アクリル酸(2−ヒドロキシブチル)、アクリル酸(2−メトキシエチル)、アクリル酸(2−エトキシエチル)等、または上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。
【0123】
アクリル系ポリマーは上記モノマーのホモポリマーまたはコポリマーであるが、アクリル酸メチルエステルモノマー単位が30質量%以上を有していることが好ましく、また、メタクリル酸メチルエステルモノマー単位が40質量%以上有することが好ましい。特にアクリル酸メチルまたはメタクリル酸メチルのホモポリマーが好ましい。
【0124】
芳香環を有するアクリル酸またはメタクリル酸エステルモノマーとしては、例えば、アクリル酸フェニル、メタクリル酸フェニル、アクリル酸(2または4−クロロフェニル)、メタクリル酸(2または4−クロロフェニル)、アクリル酸(2または3または4−エトキシカルボニルフェニル)、メタクリル酸(2または3または4−エトキシカルボニルフェニル)、アクリル酸(oまたはmまたはp−トリル)、メタクリル酸(oまたはmまたはp−トリル)、アクリル酸ベンジル、メタクリル酸ベンジル、アクリル酸フェネチル、メタクリル酸フェネチル、アクリル酸(2−ナフチル)等を挙げることができるが、アクリル酸ベンジル、メタクリル酸ベンジル、アクリル酸フェニチル、メタクリル酸フェネチルを好ましく用いることができる。
【0125】
芳香環を側鎖に有するアクリル系ポリマー中、芳香環を有するアクリル酸またはメタクリル酸エステルモノマー単位が20〜40質量%を有し、且つアクリル酸またはメタクリル酸メチルエステルモノマー単位を50〜80質量%有することが好ましい。該ポリマー中、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位を2〜20質量%有することが好ましい。
【0126】
シクロヘキシル基を有するアクリル酸エステルモノマーとしては、例えば、アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル、アクリル酸(4−メチルシクロヘキシル)、メタクリル酸(4−メチルシクロヘキシル)、アクリル酸(4−エチルシクロヘキシル)、メタクリル酸(4−エチルシクロヘキシル)等を挙げることができるが、アクリル酸シクロヘキシルおよびメタクリル酸シクロヘキシルを好ましく用いることができる。
【0127】
シクロヘキシル基を側鎖に有するアクリル系ポリマー中、シクロヘキシル基を有するアクリル酸またはメタクリル酸エステルモノマー単位を20〜40質量%を有し且つ50〜80質量%有することが好ましい。また、該ポリマー中、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位を2〜20質量%有することが好ましい。
【0128】
上述のエチレン性不飽和モノマーを重合して得られるポリマー、アクリル系ポリマー、芳香環を側鎖に有するアクリル系ポリマーおよびシクロヘキシル基を側鎖に有するアクリル系ポリマーは何れもセルロースアシレートとの相溶性に優れ、蒸発や揮発もなく生産性に優れ、偏光板用保護フィルムとしての保留性がよく、透湿度が小さく、寸法安定性に優れて、レターデーション低減効果が大きい。
【0129】
本発明の水酸基を有するアクリル酸またはメタクリル酸エステルモノマーの場合はホモポリマーではなく、コポリマーの構成単位である。この場合、好ましくは、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位がアクリル系ポリマー中2〜20質量%含有することが好ましい。
【0130】
本発明において、側鎖に水酸基を有するポリマーも好ましく用いることができる。水酸基を有するモノマー単位としては、前記したモノマーと同様であるが、アクリル酸またはメタクリル酸エステルが好ましく、例えば、アクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)、アクリル酸(4−ヒドロキシブチル)、アクリル酸(2−ヒドロキシブチル)、アクリル酸−p−ヒドロキシメチルフェニル、アクリル酸−p−(2−ヒドロキシエチル)フェニル、またはこれらアクリル酸をメタクリル酸に置き換えたものを挙げることができ、好ましくは、アクリル酸−2−ヒドロキシエチルおよびメタクリル酸−2−ヒドロキシエチルである。ポリマー中に水酸基を有するアクリル酸エステルまたはメタクリル酸エステルモノマー単位はポリマー中2〜20質量%含有することが好ましく、より好ましくは2〜10質量%である。
【0131】
前記のようなポリマーが上記の水酸基を有するモノマー単位を2〜20質量%含有したものは、勿論セルロースアシレートとの相溶性、保留性、寸法安定性が優れ、透湿度が小さいばかりでなく、偏光板用保護フィルムとしての偏光子との接着性に特に優れ、偏光板の耐久性が向上する効果を有している。
【0132】
また、本発明においては、ポリマーの主鎖の少なくとも一方の末端に水酸基を有することが好ましい。主鎖末端に水酸基を有するようにする方法は、特に主鎖の末端に水酸基を有するようにする方法であれば限定ないが、アゾビス(2−ヒドロキシエチルブチレート)のような水酸基を有するラジカル重合開始剤を使用する方法、2−メルカプトエタノールのような水酸基を有する連鎖移動剤を使用する方法、水酸基を有する重合停止剤を使用する方法、リビングイオン重合により水酸基を末端に有するようにする方法、特開2000−128911号または2000−344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等により得ることができ、特に該公報に記載の方法が好ましい。この公報記載に関連する方法で作られたポリマーは、綜研化学社製のアクトフロー・シリーズとして市販されており、好ましく用いることができる。
【0133】
上記の末端に水酸基を有するポリマーおよび/または側鎖に水酸基を有するポリマーは、本発明において、ポリマーの相溶性、透明性を著しく向上し、フィルムのレターデーションを低減させる効果を有する。
【0134】
また、本発明において、レターデーション低減剤の添加量は、セルロースアシレートに対し、1〜30質量%であることが好ましく、2〜30質量%であることがより好ましく、3〜25質量%がさらに好ましく、5%〜20質量%が最も好ましい。
【0135】
本発明で採用するレターデーション低減剤は、例えば、アルコールやメチレンクロライド、ジオキソランの有機溶媒に溶解してから、セルロースアセテート溶液(ドープ)に添加したり、直接ドープ組成中に添加したりして用いることができる。
【0136】
〔順波長分散低レターデーションフィルムの製造〕
本発明におけるセルロースアシレートフィルムは、ソルベントキャスト法により製造することができる。ソルベントキャスト法では、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムを製造する。
【0137】
前記有機溶媒は、炭素原子数が3〜12のエーテル、炭素原子数が3〜12のケトン、炭素原子数が3〜12のエステルおよび炭素原子数が1〜6のハロゲン化炭化水素から選ばれる溶媒を含むことが好ましい。
前記エーテル、ケトンおよびエステルは、環状構造を有していてもよい。また、前記エーテル、ケトンおよびエステルの官能基(すなわち、−O−、−CO−およびCOO−)のいずれかを2つ以上有する化合物も、前記有機溶媒として用いることができる。前記有機溶媒は、アルコール性水酸基のような他の官能基を有していてもよい。2種類以上の官能基を有する有機溶媒の場合、その炭素原子数はいずれかの官能基を有する溶媒の上述の好ましい炭素原子数範囲内であることが好ましい。
【0138】
前記炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソールおよびフェネトールが含まれる。
前記炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロヘキサノンおよびメチルシクロヘキサノンが含まれる。
前記炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテートおよびペンチルアセテートが含まれる。
また、2種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノールおよび2−ブトキシエタノールが含まれる。
【0139】
炭素原子数が1〜6のハロゲン化炭化水素の炭素原子数は、1または2であることが好ましく、1であることが最も好ましい。ハロゲン化炭化水素のハロゲンは、塩素であることが好ましい。ハロゲン化炭化水素の水素原子が、ハロゲンに置換されている割合は、25〜75モル%であることが好ましく、30〜70モル%であることがより好ましく、35〜65モル%であることがさらに好ましく、40〜60モル%であることが最も好ましい。メチレンクロリドが、代表的なハロゲン化炭化水素である。
また、2種類以上の有機溶媒を混合して用いてもよい。
【0140】
セルロースアシレート溶液(ドープ)は、0℃以上の温度(常温または高温)で処理することからなる一般的な方法で調製することができる。セルロースアシレート溶液の調製は、通常のソルベントキャスト法におけるドープの調製方法および装置を用いて実施することができる。なお、一般的な方法の場合は、有機溶媒としてハロゲン化炭化水素(特にメチレンクロリド)を用いることが好ましい。
【0141】
セルロースアシレート溶液中におけるセルロースアシレートの量は、得られる溶液中に10〜40質量%含まれるように調整する。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。有機溶媒(主溶媒)中には、後述する任意の添加剤を添加しておいてもよい。
【0142】
セルロースアシレート溶液は、常温(0〜40℃)でセルロースアシレートと有機溶媒とを撹拌することにより調製することができる。高濃度の溶液は、加圧および加熱条件下で撹拌してもよい。具体的には、セルロースアシレートと有機溶媒とを加圧容器に入れて密閉し、加圧下で溶媒の常温における沸点以上、且つ溶媒が沸騰しない範囲の温度に加熱しながら撹拌する。加熱温度は、通常は40℃以上であり、好ましくは60〜200℃であり、さらに好ましくは80〜110℃である。
【0143】
各成分は予め粗混合してから容器に入れてもよい。また、順次容器に投入してもよい。容器は撹拌できるように構成されている必要がある。窒素ガス等の不活性気体を注入して容器を加圧することができる。また、加熱による溶媒の蒸気圧の上昇を利用してもよい。あるいは、容器を密閉後、各成分を圧力下で添加してもよい。
【0144】
加熱する場合、容器の外部より加熱することが好ましい。例えば、ジャケットタイプの加熱装置を用いることができる。また、容器の外部にプレートヒーターを設け、配管して液体を循環させることにより容器全体を加熱することもできる。
【0145】
撹拌は、容器内部に撹拌翼を設けて、これを用いて行うことが好ましい。撹拌翼は、容器の壁付近に達する長さのものが好ましい。撹拌翼の末端には、容器の壁の液膜を更新するため、掻取翼を設けることが好ましい。
【0146】
容器には、圧力計、温度計等の計器類を設置してもよい。容器内で各成分を溶媒中に溶解する。調製したドープは冷却後容器から取り出すか、あるいは、取り出した後、熱交換器等を用いて冷却する。
【0147】
冷却溶解法により、セルロースアシレート溶液を調製することもできる。冷却溶解法では、通常の溶解方法ではセルロースアシレートを溶解させることが困難な有機溶媒中にも、セルロースアシレートを溶解させることができる。なお、通常の溶解方法でセルロースアシレートを溶解できる溶媒であっても、冷却溶解法によると迅速に均一な溶液が得られるとの効果がある。
【0148】
冷却溶解法では、最初に室温で有機溶媒中にセルロースアシレートを撹拌しながら徐々に添加する。セルロースアシレートの量は、この混合物中に10〜40質量%含まれるように調整することが好ましい。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。さらに、混合物中には後述する任意の添加剤を添加しておいてもよい。
【0149】
次に、混合物を−100〜−10℃(好ましくは−80〜−10℃、さらに好ましくは−50〜−20℃、最も好ましくは−50〜−30℃)に冷却する。冷却は、例えば、ドライアイス・メタノール浴(−75℃)や冷却したジエチレングリコール溶液(−30〜−20℃)中で実施できる。冷却によりセルロースアシレートと有機溶媒の混合物は固化する。
【0150】
冷却速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。冷却速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、冷却速度は、冷却を開始する時の温度と最終的な冷却温度との差を、冷却を開始してから最終的な冷却温度に達するまでの時間で割った値である。
【0151】
さらに、冷却した混合物を0〜200℃(好ましくは0〜150℃、さらに好ましくは0〜120℃、最も好ましくは0〜50℃)に加温すると、有機溶媒中にセルロースアシレートが溶解する。昇温は、室温中に放置するだけでもよく、温浴中で加温してもよい。加温速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。加温速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、加温速度は、加温を開始する時の温度と最終的な加温温度との差を加温を開始してから最終的な加温温度に達するまでの時間で割った値である。
【0152】
以上のようにして、均一なセルロースアシレート溶液が得られる。なお、溶解が不充分である場合は冷却、加温の操作を繰り返してもよい。溶解が充分であるかどうかは、目視により溶液の外観を観察するだけで判断することができる。
【0153】
冷却溶解法においては、冷却時の結露による水分混入を避けるため、密閉容器を用いることが望ましい。また、冷却加温操作において、冷却時に加圧し、加温時に減圧すると、溶解時間を短縮することができる。加圧および減圧を実施するためには、耐圧性容器を用いることが望ましい。
【0154】
なお、セルロースアセテート(酢化度:60.9%、粘度平均重合度:299)を冷却溶解法によりメチルアセテート中に溶解した20質量%の溶液は、示差走査熱量計(DSC)による測定によると、33℃近傍にゾル状態とゲル状態との疑似相転移点が存在し、この温度以下では均一なゲル状態となる。従って、この溶液は疑似相転移温度以上、好ましくはゲル相転移温度プラス10℃程度の温度で保することが好ましい。ただし、この疑似相転移温度は、セルロースアセテートの酢化度、粘度平均重合度、溶液濃度や使用する有機溶媒により異なる。
【0155】
調製したセルロースアシレート溶液(ドープ)から、ソルベントキャスト法によりセルロースアシレートフィルムを製造する。ドープにはレターデーション発現剤を添加することが好ましい。ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が18〜35%となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。ドープは、表面温度が10℃以下のドラムまたはバンド上に流延することが好ましい。
【0156】
ソルベントキャスト法における乾燥方法については、米国特許第2,336,310号、同2,367,603号、同2,492,078号、同2,492,977号、同2,492,978号、同2,607,704号、同2,739,069号および同2,739,070号の各明細書、英国特許第640731号および同736892号の各明細書、並びに特公昭45−4554号、同49−5614号、特開昭60−176834号、同60−203430号および同62−115035号の各公報に記載がある。バンドまたはドラム上での乾燥は空気、窒素などの不活性ガスを送風することにより行なうことができる。
【0157】
また、得られたフィルムをドラムまたはバンドから剥ぎ取り、さらに100℃〜160℃まで逐次温度を変えた高温風で乾燥して、残留溶媒を蒸発させることもできる。以上の方法は、特公平5−17844号公報に記載がある。この方法によると、流延から剥ぎ取りまでの時間を短縮することが可能である。この方法を実施するためには、流延時のドラムまたはバンドの表面温度においてドープがゲル化することが必要である。
【0158】
調製したセルロースアシレート溶液(ドープ)を用いて2層以上の流延を行いフィルム化することもできる。この場合、ソルベントキャスト法によりセルロースアシレートフィルムを作製することが好ましい。ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が10〜40質量%の範囲となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。
【0159】
2層以上の複数のセルロースアシレート液を流延する場合、複数のセルロースアシレート溶液を流延することが可能であり、支持体の進行方向に間隔をおいて設けられた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよい。これらは、例えば、特開昭61−158414号、特開平1−122419号、および特開平11−198285号の各公報に記載の方法を用いることができる。また、2つの流延口からセルロースアシレート溶液を流延することによっても、フィルム化することもできる。これは、例えば、特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、および、特開平6−134933号の各公報に記載の方法を用いることができる。さらに特開昭56−162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高・低粘度のセルロースアシレート溶液を同時に押し出すセルロースアシレートフィルムの流延方法を用いることもできる。
【0160】
また、2個の流延口を用いて、第一の流延口により支持体に成形したフィルムを剥ぎ取り、支持体面に接していた側に第二の流延を行うことにより、フィルムを作製することもできる。例えば、特公昭44−20235号公報に記載の方法を挙げることができる。
【0161】
流延するセルロースアシレート溶液は同一の溶液を用いてもよいし、異なるセルロースアシレート溶液を2種以上用いてもよい。複数のセルロースアシレート層に機能をもたせるために、その機能に応じたセルロースアシレート溶液を、それぞれの流延口から押し出せばよい。さらに本発明におけるセルロースアシレート溶液は、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレーション層、紫外線吸収層、偏光子など)と同時に流延することもできる。
【0162】
従来の単層液では、必要なフィルムの厚さにするためには高濃度で高粘度のセルロースアシレート溶液を押し出すことが必要である。その場合セルロースアシレート溶液の安定性が悪くて固形物が発生し、ブツ故障となったり、平面性が不良となったりして問題となることが多かった。この問題の解決方法として、複数のセルロースアシレート溶液を流延口から流延することにより、高粘度の溶液を同時に支持体上に押し出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができる。
【0163】
セルロースアシレートフィルムには、劣化防止剤(例えば、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン等)を添加してもよい。劣化防止剤については、特開平3−199201号、同5−1907073号、同5−194789号、同5−271471号、同6−107854号の各公報に記載がある。また、前記劣化防止剤の添加量は、調製する溶液(ドープ)の0.01〜1質量%であることが好ましく、0.01〜0.2質量%であることがさらに好ましい。添加量が0.01質量%以上であれば、劣化防止剤の効果が十分に発揮されるので好ましく、添加量が1質量%以下であれば、フィルム表面への劣化防止剤のブリードアウト(滲み出し)などが生じにくいので好ましい。特に好ましい劣化防止剤の例としては、ブチル化ヒドロキシトルエン(BHT)、トリベンジルアミン(TBA)を挙げることができる。
【0164】
これら流延から後乾燥までの工程は、空気雰囲気下でもよいし窒素ガスなどの不活性ガス雰囲気下でもよい。本発明におけるセルロースアシレートフィルムの製造に用いる巻き取り機は、一般的に使用されているものでよく、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法などの巻き取り方法で巻き取ることができる。
【0165】
[順波長分散セルロースアシレートフィルムの厚み]
本発明における順波長分散セルロースアシレートフィルムの厚みは10μm〜200μmが好ましく、20μm〜150μmがさらに好ましく、30μm〜100μmが最も好ましい。
【0166】
〔鹸化処理〕
本発明における順波長分散セルロースアシレートフィルムはアルカリ鹸化処理することによりポリビニルアルコールのような偏光子の材料との密着性を付与し、偏光板保護フィルムとして用いることができる。
【0167】
本発明における順波長分散セルロースアシレートフィルムのアルカリ鹸化処理は、フィルム表面をアルカリ溶液に浸漬した後、酸性溶液で中和し、水洗して乾燥するサイクルで行われることが好ましい。前記アルカリ溶液としては、水酸化カリウム溶液、水酸化ナトリウム溶液が挙げられ、水酸化イオンの濃度は0.1〜5.0mol/Lの範囲にあることが好ましく、0.5〜4.0mol/Lの範囲にあることがさらに好ましい。アルカリ溶液温度は、室温〜90℃の範囲にあることが好ましく、40〜70℃の範囲にあることがさらに好ましい。
【0168】
<偏光板の作製>
(偏光子)
次に本発明における偏光板に用いられる偏光子について説明する。
本発明における偏光子は、ポリビニルアルコール(PVA)と二色性分子から構成することが好ましいが、特開平11−248937号公報に記載されているようにPVAやポリ塩化ビニルを脱水、脱塩素することによりポリエン構造を生成し、これを配向させたポリビニレン系偏光子も使用することができる。
【0169】
前記PVAとしては、ポリ酢酸ビニルをケン化したポリマー素材が好ましいが、例えば不飽和カルボン酸、不飽和スルホン酸、オレフィン類、ビニルエーテル類のような酢酸ビニルと共重合可能な成分とを含有しても構わない。また、アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等を含有する変性PVAも用いることができる。
PVAのケン化度は特に限定されないが、溶解性等の観点から80〜100mol%が好ましく、90〜100mol%が特に好ましい。またPVAの重合度は特に限定されないが、1000〜10000が好ましく、1500〜5000が特に好ましい。
PVAのシンジオタクティシティーは、特許2978219号明細書に記載されているように耐久性を改良するため55%以上が好ましいが、特許第3317494号に記載されているように45〜52.5%であることも好ましく用いることができる。
【0170】
PVAをフィルム化した後、二色性分子を導入して偏光子を構成することが好ましい。PVAフィルムの製造方法は、PVA系樹脂を水または有機溶媒に溶解した原液を流延して成膜する方法が一般に好ましく用いられる。原液中のポリビニルアルコール系樹脂の濃度は、通常5〜20質量%であり、この原液を流延法により製膜することによって、膜厚10〜200μmのPVAフィルムを製造できる。PVAフィルムの製造は、特許第3342516号明細書、特開平09−328593号公報、特開2001−302817号公報、特開2002−144401号公報等を参考にして行うことができる。
PVAフィルムの結晶化度は、特に限定されないが、特許第3251073号、に記載されている平均結晶化度(Xc)50〜75質量%や、面内の色相バラツキを低減させるため、特開2002−236214号公報に記載されている結晶化度38%以下のPVAフィルムを用いることができる。
【0171】
PVAフィルムの複屈折(△n)は小さいことが好ましく、特許第3342516号明細書に記載されている複屈折が1.0×10-3以下のPVAフィルムを好ましく用いることができる。但し、特開2002−228835号公報に記載されているように、PVAフィルムの延伸時の切断を回避しながら高偏光度を得るため、PVAフィルムの複屈折を0.002〜0.01としてもよいし、特開2002−060505号公報に記載されているように(nx+ny)/2−nzの値を0.0003〜0.01としてもよい。PVAフィルムのRe(1090)は0nm〜100nmが好ましく、0nm〜50nmがさらに好ましい。また、PVAフィルムのRth(1090)は0nm〜500nmが好ましく、0nm〜300nmがさらに好ましい。
【0172】
この他、本発明における偏光板には、特許3021494号に記載されている1、2−グリコール結合量が1.5モル%以下のPVAフィルム、特開2001−316492号公報に記載されている5μm以上の光学的異物が100cm2当たり500個以下であるPVAフィルム、特開2002−030163号公報に記載されているフィルムのTD方向の熱水切断温度斑が1.5℃以下であるPVAフィルム、さらにグリセリンなどの3〜6価の多価アルコ−ルを1〜100質量部混合したり、特開平06−289225号公報に記載されている可塑剤を15質量%以上混合した溶液から製膜したPVAフィルムを好ましく用いることができる。
【0173】
PVAフィルムの延伸前のフィルム膜厚は特に限定されないが、フィルム保持の安定性、延伸の均質性の観点から、1μm〜1mmが好ましく、20〜200μmが特に好ましい。特開2002−236212号公報に記載されているように水中において4倍から6倍の延伸を行った時に発生する応力が10N以下となるような薄いPVAフィルムを使用してもよい。
【0174】
二色性分子はI3-やI5-などの高次のヨウ素イオンもしくは二色性染料を好ましく使用することができる。本発明では高次のヨウ素イオンが特に好ましく使用される。高次のヨウ素イオンは、「偏光板の応用」永田良編、CMC出版や工業材料、第28巻、第7号、p.39〜p.45に記載されているようにヨウ素をヨウ化カリウム水溶液に溶解した液および/またはホウ酸水溶液にPVAを浸漬し、PVAに吸着・配向した状態で生成することができる。
【0175】
二色性分子として二色性染料を用いる場合は、アゾ系色素が好ましく、特にビスアゾ系とトリスアゾ系色素が好ましい。二色性染料は水溶性のものが好ましく、このため二色性分子にスルホン酸基、アミノ基、水酸基などの親水性置換基が導入され、遊離酸、あるいはアルカリ金属塩、アンモニウム塩、アミン類の塩として好ましく用いられる。
【0176】
このような二色性染料の具体例としては、例えば、C.I.Direct Red 37、 Congo Red(C.I. Direct Red 28)、C.I.Direct Violet 12、 C.I.Direct Blue 90、 C.I.Direct Blue 22、 C.I.Direct Blue 1、 C.I.Direct Blue 151、 C.I.Direct Green 1等のベンジジン系、C.I.Direct Yellow 44、 C.I.Direct Red 23、 C.I.Direct Red 79等のジフェニル尿素系、C.I.Direct Yellow 12等のスチルベン系、C.I.Direct Red 31等のジナフチルアミン系、C.I.Direct Red 81、 C.I.Direct Violet 9、 C.I.Direct Blue 78等のJ酸系を挙げることができる。
【0177】
これ以外にも、C.I.Direct Yellow 8、C.I.Direct Yellow 28、C.I.Direct Yellow 86、C.I.Direct Yellow 87、C.I.Direct Yellow 142、C.I.Direct Orange 26、C.I.Direct Orange 39、C.I.Direct Orange 72、C.I.Direct Orange 106、C.I.Direct Orange 107、C.I.Direct Red 2、C.I.Direct Red 39、C.I.Direct Red 83、C.I.Direct Red 89、C.I.Direct Red 240、C.I.Direct Red 242、C.I.Direct Red 247、C.I.Direct Violet 48、C.I.Direct Violet 51、C.I.Direct Violet 98、C.I.Direct Blue 15、C.I.Direct Blue 67、C.I.Direct Blue 71、C.I.Direct Blue 98、C.I.Direct Blue 168、C.I.Direct Blue 202、C.I.Direct Blue 236、C.I.Direct Blue 249、C.I.Direct Blue 270、C.I.Direct Green 59、C.I.Direct Green 85、C.I.Direct Brown 44、C.I.Direct Brown 106、C.I.Direct Brown 195、C.I.Direct Brown 210、C.I.Direct Brown 223、C.I.Direct Brown 224、C.I.Direct Black 1、C.I.Direct Black 17、C.I.Direct Black 19、C.I.Direct Black 54等が、さらに特開昭62−70802号、特開平1−161202号、特開平1−172906号、特開平1−172907号、特開平1−183602号、特開平1−248105号、特開平1−265205号、特開平7−261024号、の各公報記載の二色性染料等も好ましく使用することができる。各種の色相を有する二色性分子を製造するため、これらの二色性染料は2種以上を配合してもかまわない。二色性染料を用いる場合、特開2002−082222号公報に記載されているように吸着厚みが4μm以上であってもよい。
【0178】
フィルム中の該二色性分子の含有量は、少なすぎると偏光度が低く、また、多すぎても単板透過率が低下することから通常、フィルムのマトリックスを構成するポリビニルアルコール系重合体に対して、0.01〜5質量%の範囲に調整される。
前記偏光子の好ましい膜厚としては、5μm〜40μmが好ましく、さらに好ましくは10μm〜30μmである。また、偏光子の厚さと上述する保護フィルムの厚さの比を、特開2002−174727号公報に記載されている0.01≦A(偏光子膜厚)/B(保護フィルム膜厚)≦0.16範囲とすることも好ましい。
さらに、保護フィルムの遅相軸と偏光子の吸収軸との交差角は、任意の値でよいが、平行もしくは45±20゜の方位角であることが好ましい。
【0179】
<偏光板の製造工程>
次に、本発明における偏光板の製造工程について説明する。
本発明における偏光板の製造工程は、膨潤工程、染色工程、硬膜工程、延伸工程、乾燥工程、保護フィルム貼り合わせ工程、貼り合わせ後乾燥工程から構成されることが好ましい。染色工程、硬膜工程、延伸工程の順序を任意に変えること、また、いくつかの工程を組み合わせて同時に行っても構わない。また、特許第3331615号明細書に記載されているように、硬膜工程の後に水洗することも好ましく行うことができる。
【0180】
本発明では、膨潤工程、染色工程、硬膜工程、延伸工程、乾燥工程、保護フィルム貼り合わせ工程、貼り合わせ後乾燥工程を記載の順序で遂次行うことが特に好ましい。また、前述の工程中あるいは後にオンライン面状検査工程を設けても構わない。
【0181】
前記膨潤工程は、水のみで行うことが好ましいが、特開平10−153709号公報に記載されているように、光学性能の安定化および、製造ラインでの偏光板基材のシワ発生回避のために、偏光板基材をホウ酸水溶液により膨潤させて、偏光板基材の膨潤度を管理することもできる。
また、膨潤工程の温度、時間は、任意に定めることができるが、10℃〜60℃、5秒〜2000秒が好ましい。
【0182】
前記染色工程は、特開2002−86554号公報に記載の方法を用いることができる。また、染色方法としては浸漬だけでなく、ヨウ素あるいは染料溶液の塗布あるいは噴霧等、任意の手段が可能である。また、特開2002−290025号公報に記載されているように、ヨウ素の濃度、染色浴温度、浴中の延伸倍率、および浴中の浴液を攪拌させながら染色させる方法を用いてもよい。
【0183】
二色性分子として高次のヨウ素イオンを用いる場合、高コントラストの偏光板を得るためには、染色工程はヨウ素をヨウ化カリウム水溶液に溶解した液を用いることが好ましい。この場合のヨウ素−ヨウ化カリウム水溶液のヨウ素は0.05〜20g/l、ヨウ化カリウムは3〜200g/l、ヨウ素とヨウ化カリウムの質量比は1〜2000が好ましい範囲である。染色時間は10〜1200秒が好ましく、液温度は10〜60℃が好ましい。さらに好ましくは、ヨウ素は0.5〜2g/l、ヨウ化カリウムは30〜120g/l、ヨウ素とヨウ化カリウムの質量比は30〜120がよく、染色時間は30〜600秒、液温度は20〜50℃がよい。
また、特許第3145747号明細書に記載されているように、染色液にホウ酸、ホウ砂等のホウ素系化合物を添加してもよい。
【0184】
前記硬膜工程は、架橋剤溶液に浸漬、または溶液を塗布して架橋剤を含ませるのが好ましい。また、特開平11−52130号公報に記載されているように、硬膜工程を数回に分けて行うこともできる。
【0185】
前記架橋剤としては米国再発行特許第232897号明細書に記載のものが使用でき、特許第3357109号明細書に記載されているように、寸法安定性を向上させるため、架橋剤として多価アルデヒドを使用することもできるが、ホウ酸類が最も好ましく用いられる。硬膜工程に用いる架橋剤としてホウ酸を用いる場合には、ホウ酸−ヨウ化カリウム水溶液に金属イオンを添加しても良い。金属イオンとしては塩化亜鉛が好ましいが、特開2000−35512号公報に記載されているように、塩化亜鉛の変わりに、ヨウ化亜鉛などのハロゲン化亜鉛、硫酸亜鉛、酢酸亜鉛などの亜鉛塩を用いることもできる。
【0186】
本発明では、塩化亜鉛を添加したホウ酸−ヨウ化カリウム水溶液を作製し、PVAフィルムを浸漬させて硬膜を行うことが好ましく行われる。ホウ酸は1〜100g/l、ヨウ化カリウムは1〜120g/l、塩化亜鉛は0.01〜10g/l、硬膜時間は10〜1200秒が好ましく、液温度は10〜60℃が好ましい。さらに好ましくは、ホウ酸は10〜80g/l、ヨウ化カリウムは5〜100g/l、塩化亜鉛は0.02〜8g/l、硬膜時間は30〜600秒がよく、液温度は20〜50℃がよい。
【0187】
前記延伸工程は、米国特許2,454,515号明細書などに記載されているような、縦一軸延伸方式、もしくは特開2002−86554号公報に記載されているようなテンター方式を好ましく用いることができる。好ましい延伸倍率は2倍〜12倍であり、さらに好ましくは3倍〜10倍である。また、延伸倍率と原反厚さと偏光子厚さの関係は特開2002−040256号公報に記載されている(保護フィルム貼合後の偏光子膜厚/原反膜厚)×(全延伸倍率)>0.17としたり、最終浴を出た時の偏光子の幅と保護フィルム貼合時の偏光子幅の関係は特開2002−040247号公報に記載されている0.80≦(保護フィルム貼合時の偏光子幅/最終浴を出た時の偏光子の幅)≦0.95とすることも好ましく行うことができる。
【0188】
前記乾燥工程は、特開2002−86554号公報で公知の方法を使用できるが、好ましい温度範囲は30℃〜100℃であり、好ましい乾燥時間は30秒〜60分である。また、特許第3148513号明細書に記載されているように、水中退色温度を50℃以上とするような熱処理を行ったり、特開平07−325215号公報や特開平07−325218号公報に記載されているように温湿度管理した雰囲気でエージングすることも好ましく行うことができる。
【0189】
保護フィルム貼り合わせ工程は、乾燥工程を出た前述の偏光子の両面を2枚の保護フィルムで貼合する工程である。貼合直前に接着液を供給し、偏光子と保護フィルムとを重ね合わせるように、一対のロールで貼り合わせる方法が好ましく使用される。また、特開2001−296426号公報および特開2002−86554号公報に記載されているように、偏光子の延伸に起因するレコードの溝状の凹凸を抑制するため、貼り合わせ時の偏光子の水分率を調整することが好ましい。本発明では0.1%〜30%の水分率が好ましく用いられる。
【0190】
偏光子と保護フィルムとの接着剤は特に限定されないが、PVA系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等の変性PVAを含む)やホウ素化合物水溶液等が挙げられ、中でもPVA系樹脂が好ましい。接着剤層厚みは乾燥後に0.01〜5μmが好ましく、0.05〜3μmが特に好ましい。
【0191】
また、偏光子と保護フィルムとの接着力を向上させるために、保護フィルムを表面処理して親水化してから接着することが好ましく行われる。表面処理の方法は特に制限は無いが、上述のようにアルカリ溶液を用いてケン化する方法、コロナ処理法など公知の方法を用いることができる。また、表面処理後にゼラチン下塗り層等の易接着層を設けてもよい。特開2002−267839号公報に記載されているように保護フィルム表面の水との接触角は50°以下が好ましい。
貼り合わせ後乾燥条件は、特開2002−86554号公報に記載の方法に従うが、好ましい温度範囲は30℃〜100℃であり、好ましい乾燥時間は30秒〜60分である。また、特開平07−325220号公報に記載されているように温湿度管理をした雰囲気でエージングすることも好ましい。
【0192】
偏光子中の元素含有量は、ヨウ素0.1〜3.0g/m2、ホウ素0.1〜5.0g/m2、カリウム0.1〜2.00g/m2、亜鉛0〜2.00g/m2であることが好ましい。また、カリウム含有量は特開2001−166143号公報に記載されているように0.2質量%以下であってもよいし、偏光子中の亜鉛含有量を特開2000−035512号公報に記載されている0.04質量%〜0.5質量%としてもよい。
【0193】
特許第3323255号明細書に記載されているように、偏光板の寸法安定性を上げるために、染色工程、延伸工程および硬膜工程のいずれかの工程において有機チタン化合物および/または有機ジルコニウム化合物を添加使用し、有機チタン化合物および有機ジルコニウム化合物から選ばれた少なくとも一種の化合物を含有することもできる。また、偏光板の色相を調整するために二色性染料を添加してもよい。
【0194】
<偏光板の特性>
(1)透過率および偏光度
本発明における偏光板の好ましい単板透過率は42.5%〜49.5%であるが、さらに好ましくは42.8%〜49.0%である。下記式4で定義される偏光度の好ましい範囲は99.900%〜99.999%であり、さらに好ましくは99.940%〜99.995%である。平行透過率の好ましい範囲は36%〜42%であり、直交透過率の好ましい範囲は、0.001%〜0.05%である。
【0195】
【化38】

【0196】
上述の透過率はJISZ8701に基づいて、下記式により定義される。
【0197】
【化39】

ここで、K、S(λ)、y(λ)、τ(λ)は以下の通りである。
【0198】
【化40】

S(λ):色の表示に用いる標準光の分光分布
y(λ):XYZ系における等色関数
τ(λ):分光透過率
【0199】
また、下記式5で定義される二色性比の好ましい範囲は48〜1215であるが、さらに好ましくは53〜525である。
【0200】
【化41】

【0201】
ヨウ素濃度と単板透過率とは特開2002−258051号公報の[0017]に記載されている範囲であってもよい。
平行透過率は、特開2001−083328号公報や特開2002−022950号公報に記載されているように波長依存性が小さくてもよい。偏光板をクロスニコルに配置した場合の光学特性は、特開2001−091736号公報の[0007]に記載されている範囲であってもよく、平行透過率と直交透過率との関係は、特開2002−174728号公報の[0006]に記載されている範囲内であってもよい。
【0202】
また、特開2002−221618号公報に記載されているように、光の波長が420〜700nmの間での10nm毎の平行透過率の標準偏差が3以下で、且つ、光の波長が420〜700nmの間での10nm毎の(平行透過率/直交透過率)の最小値が300以上であってもよい。
偏光板の波長440nmにおける平行透過率と直交透過率、平行透過率、波長550nmにおける平行透過率と直交透過率、波長610nmにおける平行透過率と直交透過率が、特開2002−258042号公報の[0012]や特開2002−258043号公報の[0012]に記載された範囲とすることも好ましく行うことができる。
【0203】
(2)色相
本発明における偏光板の色相は、CIE均等知覚空間として推奨されているL***表色系における明度指数L*およびクロマティクネス指数a*とb*を用いて好ましく評価される。
*、a*、b*の定義は、例えば、東京電機大学出版局刊、色彩光学等に記載されている。
【0204】
偏光板単枚の好ましいa*の範囲は−2.5〜0.2であり、さらに好ましくは−2.0〜0である。偏光板単枚の好ましいb*の範囲は1.5〜5であり、さらに好ましくは2〜4.5である。2枚の偏光板の平行透過光のa*の好ましい範囲は−4.0〜0であり、さらに好ましくは−3.5〜−0.5である。2枚の偏光板の平行透過光のb*の好ましい範囲は2.0〜8であり、さらに好ましくは2.5〜7である。2枚の偏光板の直交透過光のa*の好ましい範囲は−0.5〜1.0であり、さらに好ましくは0〜2である。2枚の偏光板の直交透過光のb*の好ましい範囲は−2.0〜2であり、さらに好ましくは−1.5〜0.5である。
【0205】
色相は、前述のX、Y、Zから算出される色度座標(x,y)で評価しても良く、例えば、2枚の偏光板の平行透過光の色度(xp、yp)と直交透過光の色度(xc、yc)は、特開2002−214436号公報の[0017]、特開2001−166136号公報の[0007]や特開2002−169024号の各公報の[0005]〜[0008]に記載されている範囲にしたり、色相と吸光度との関係を特開2001−311827号公報の[0005]〜[0006]に記載されている範囲内にすることも好ましく行うことができる。
【0206】
(3)視野角特性
偏光板をクロスニコルに配置して波長550nmの光を入射させる場合の、垂直光を入射させた場合と、偏光軸に対して45度の方位から法線に対し40°の角度で入射させた場合の、透過率比やxy色度差を特開2001−166135号公報や特開2001−166137号公報に記載された範囲とすることも好ましい。また、特開平10−068817号公報に記載されているように、クロスニコル配置した偏光板積層体の垂直方向の光透過率(T0)と、積層体の法線から60°傾斜方向の光透過率(T60)との比(T60/T0)を10000以下としたり、特開2002−139625号公報に記載されているように、偏光板に法線から仰角80°までの任意な角度で自然光を入射させた場合に、その透過スペクトルの520〜640nmの波長範囲において波長域20nm以内における透過光の透過率差を6%以下としたり、特開平08−248201号公報に記載されている、フィルム上の任意の1cm離れた場所における透過光の輝度差が30%以内とすることも好ましい。
【0207】
(4)耐久性
(4−1)湿熱耐久性
60℃、相対湿度95%の雰囲気に500時間放置した場合のその前後における光透過率および偏光度の変化率が絶対値に基づいて3%以下であることが好ましい。特に光透過率の変化率は2%以下、また、偏光度の変化率は絶対値に基づいて1.0%以下であることが好ましい。また、特開平07−077608号公報に記載されているように80℃、相対湿度90%、500時間放置後の偏光度が95%以上、単体透過率が38%以上であることも好ましい。
【0208】
(4−2)ドライ耐久性
80℃、ドライ雰囲気下に500時間放置した場合のその前後における光透過率および偏光度の変化率も絶対値に基づいて3%以下であることが好ましい。特に、光透過率の変化率は2%以下、また、偏光度の変化率は絶対値に基づいて1.0%以下、さらには0.1%以下であることが好ましい。
【0209】
(4−3)その他の耐久性
さらに、特開平06−167611号公報に記載されているように80℃で2時間放置した後の収縮率を0.5%以下としたり、ガラス板の両面にクロスニコル配置した偏光板積層体を69℃の雰囲気中で750時間放置した後のx値およびy値を特開平10−068818号公報に記載されている範囲内としたり、80℃、相対湿度90%の雰囲気中で200時間放置処理後のラマン分光法による105cm-1および157cm-1のスペクトル強度比の変化を、特開平08−094834号公報や特開平09−197127号公報に記載された範囲とすることも好ましく行うことができる。
【0210】
(5)配向度
PVAの配向度は高い程良好な偏光性能が得られるが、偏光ラマン散乱や偏光FT−IR等の手段によって算出されるオーダーパラメーター値として0.2〜1.0が好ましい範囲である。また、特開昭59−133509号公報に記載されているように、偏光子の全非晶領域の高分子セグメントの配向係数と占領分子の配向係数(0.75以上)との差を少なくとも0.15としたり、特開平04−204907号公報に記載されているように偏光子の非晶領域の配向係数を0.65〜0.85としたり、I3-やI5-の高次ヨウ素イオンの配向度を、オーダーパラメーター値として0.8〜1.0とすることも好ましく行うことができる。
【0211】
(6)その他の特性
特開2002−006133号公報に記載されているように、80℃で30分加熱したときの単位幅あたりの吸収軸方向の収縮力を4.0N/cm以下としたり、特開2002−236213号公報に記載されているように、偏光板を70℃の加熱条件下に120時間置いた場合に、偏光板の吸収軸方向の寸法変化率および偏光軸方向の寸法変化率を、共に±0.6%以内としたり、偏光板の水分率を特開2002−090546号公報に記載されているように3質量%以下とすることも好ましく行うことができる。さらに、特開2000−249832号公報に記載されているように延伸軸に垂直な方向の表面粗さを中心線平均粗さに基づいて0.04μm以下としたり、特開平10−268294号公報に記載されているように透過軸方向の屈折率n0を1.6より大きくしたり、偏光板の厚みと保護フィルムの厚みの関係を特開平10−111411号公報の[0004]に記載された範囲とすることも好ましく行うことができる。
【0212】
<偏光板の機能化>
本発明における偏光板は、ディスプレイの視認性向上のための反射防止フィルム、輝度向上フィルムや、ハードコート層、前方散乱層、アンチグレア(防眩)層等の機能層を有する光学フィルムと複合した機能化偏光板として好ましく使用される。
【0213】
(反射防止フィルム)
本発明における偏光板は反射防止フィルムと組み合わせて使用することができる。反射防止フィルムは、フッ素系ポリマー等の低屈折率素材を単層付与しただけの反射率1.5%程度のフィルム、もしくは薄膜の多層干渉を利用した反射率1%以下のフィルムのいずれも使用できる。本発明では、透明支持体上に低屈折率層、および低屈折率層より高い屈折率を有する少なくとも一層の層(即ち、高屈折率層、中屈折率層)を積層した構成が好ましく使用される。また、日東技報,vol.38,No.1,May,2000,26頁〜28頁や特開2002−301783号公報などに記載された反射防止フィルムも好ましく使用できる。
各層の屈折率は以下の関係を満足する。
【0214】
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
反射防止フィルムに用いる透明支持体は、前述の偏光子の保護フィルムに使用する透明ポリマーフィルムを好ましく使用することができる。
【0215】
低屈折率層の屈折率は1.20〜1.55であることが好ましく、さらに好ましくは1.30〜1.50である。低屈折率層は、耐擦傷性、防汚性を有する最外層として使用することが好ましい。耐擦傷性向上のため、シリコーン基を含有する含シリコーン化合物や、フッ素を含有する含フッ素化合物等の素材を用い表面への滑り性付与することも好ましく行われる。
【0216】
前記含フッ素化合物としては、例えば、特開平9−222503号公報明細書段落番号[0018]〜[0026]、同11−38202号公報明細書段落番号[0019]〜[0030]、特開2001−40284号公報明細書段落番号[0027]〜[0028]、特開2000−284102号公報等に記載の化合物を好ましく使用することができる。
前記含シリコーン化合物はポリシロキサン構造を有する化合物が好ましいが、反応性シリコーン(例えば、サイラプレーン(チッソ(株)製)や両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報)等を使用することもできる。シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化させてもよい(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報、特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)。
低屈折率層には、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム、フッ化カルシウム、フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820号公報の段落番号[0020]〜[0038]に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性剤等を含有させることも好ましく行うことができる。
【0217】
前記低屈折率層は、気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良いが、安価に製造できる点で、塗布法で形成することが好ましい。塗布法としては、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート、マイクログラビア法を好ましく使用することができる。
低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
【0218】
中屈折率層および高屈折率層は、平均粒子サイズ100nm以下の高屈折率の無機化合物超微粒子をマトリックス用材料に分散した構成とすることが好ましい。高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物、例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等を好ましく使用できる。
このような超微粒子は、粒子表面を表面処理剤で処理したり(シランカップリング剤等:特開平11−295503号公報、同11−153703号公報、特開2000−9908号公報、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等)、高屈折率粒子をコアとしたコアシェル構造としたり(特開2001−166104号公報等)、特定の分散剤併用する(例えば、特開平11−153703号公報、米国特許第6,210,858B1明細書、特開2002−2776069号公報等)等の態様で使用することができる。
【0219】
前記マトリックス用材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等を使用できるが、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の多官能性材料や、特開2001−293818号公報等に記載の金属アルコキシド組成物から得られる硬化性膜を使用することもできる。
前記高屈折率層の屈折率は、1.70〜2.20であることが好ましい。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
前記中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。
【0220】
前記反射防止フィルムのヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。また、膜の強度は、JIS K5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
【0221】
(輝度向上フィルム)
本発明における偏光板は、輝度向上フィルムと組み合わせて使用することができる。輝度向上フィルムは、円偏光もしくは直線偏光の分離機能を有しており、偏光板とバックライトとの間に配置され、一方の円偏光もしくは直線偏光をバックライト側に後方反射もしくは後方散乱する。バックライト部からの再反射光は、部分的に偏光状態を変化させ、輝度向上フィルムおよび偏光板に再入射する際、部分的に透過するため、この過程を繰り返すことにより光利用率が向上し、正面輝度が1.4倍程度に向上する。輝度向上フィルムとしては異方性反射方式および異方性散乱方式が知られており、いずれも本発明における偏光板と組み合わせることができる。
【0222】
異方性反射方式では、一軸延伸フィルムと未延伸フィルムとを多重に積層して、延伸方向の屈折率差を大きくすることにより反射率ならびに透過率の異方性を有する輝度向上フィルムが知られており、誘電体ミラーの原理を用いた多層膜方式(国際公開第95/17691号パンフレット、国際公開第95/17692号パンフレット、国際公開第95/17699号パンフレットの各明細書記載)やコレステリック液晶方式(欧州特許606940A2号明細書、特開平8−271731号公報記載)が知られている。誘電体ミラーの原理を用いた多層方式の輝度向上フィルムとしてはDBEF―E、DBEF−D、DBEF−M(いずれも3M社製)、コレステリック液晶方式の輝度向上フィルムとしてはNIPOCS(日東電工(株)製)が本発明で好ましく使用される。NIPOCSについては、日東技報,vol.38,No.1,May,2000,19頁〜21頁などを参考にすることができる。
【0223】
また、本発明では国際公開第97/32223号パンフレット、国際公開第97/32224号パンフレット、国際公開第97/32225号パンフレット、国際公開第97/32226号パンフレットの各明細書および特開平9−274108号、同11−174231号の各公報に記載された正の固有複屈折性ポリマーと負の固有複屈折性ポリマーとをブレンドして一軸延伸した異方性散乱方式の輝度向上フィルムと組み合わせて使用することも好ましい。異方性散乱方式輝度向上フィルムとしては、DRPF−H(3M社製)が好ましい。
【0224】
(他の機能性光学フィルム)
本発明における偏光板は、さらに、ハードコート層、前方散乱層、アンチグレア(防眩)層、ガスバリア層、滑り層、帯電防止層、下塗り層や保護層等を設けた機能性光学フィルムと組み合わせて使用することも好ましい。また、これらの機能層は、前述の反射防止フィルムにおける反射防止層、あるいは光学異方性層等と同一層内で相互に複合して使用することも好ましい。これらの機能層は、偏光子側および偏光子と反対面(より空気側の面)のどちらか片面、もしくは両面に設けて使用できる。
【0225】
〔ハードコート層〕
本発明における偏光板は耐擦傷性等の力学的強度を付与するため、ハードコート層を透明支持体の表面に設けた機能性光学フィルムと組み合わせることが好ましく行われる。ハードコート層を、前述の反射防止フィルムに適用して用いる場合は、特に、透明支持体と高屈折率層の間に設けることが好ましい。
前記ハードコート層は、光および/または熱による硬化性化合物の架橋反応、または、重合反応により形成されることが好ましい。硬化性官能基としては、光重合性官能基が好ましく、又加水分解性官能基含有の有機金属化合物は有機アルコキシシリル化合物が好ましい。ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、国際公開第00/46617号パンフレット等記載のものを好ましく使用することができる。
ハードコート層の膜厚は、0.2μm〜100μmであることが好ましい。
ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。また、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
【0226】
ハードコート層を形成する材料は、エチレン性不飽和基を含む化合物、開環重合性基を含む化合物を用いることができ、これらの化合物は単独あるいは組み合わせて用いることができる。エチレン性不飽和基を含む化合物の好ましい例としては、エチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等のポリオールのポリアクリレート類;ビスフェノールAジグリシジルエーテルのジアクリレート、ヘキサンジオールジグリシジルエーテルのジアクリレート等のエポキシアクリレート類;ポリイソシナネートとヒドロキシエチルアクリレート等の水酸基含有アクリレートの反応によって得られるウレタンアクリレート等を好ましい化合物として挙げることができる。また、市販化合物としては、EB−600、EB−40、EB−140、EB−1150、EB−1290K、IRR214、EB−2220、TMPTA、TMPTMA(以上、ダイセル・ユーシービー(株)製)、UV−6300、UV−1700B(以上、日本合成化学工業(株)製)等が挙げられる。
【0227】
また、開環重合性基を含む化合物の好ましい例としては、グリシジルエーテル類としてエチレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールトリグリシジルエーテル、トリグリシジルトリスヒドロキシエチルイソシアヌレート、ソルビトールテトラグリシジルエーテル、ペンタエリスリトールテトラグリシルエーテル、クレゾールノボラック樹脂のポリグリシジルエーテル、フェノールノボラック樹脂のポリグリシジルエーテルなど、脂環式エポキシ類としてセロキサイド2021P、セロキサイド2081、エポリードGT−301、エポリードGT−401、EHPE3150CE(以上、ダイセル化学工業(株)製)、フェノールノボラック樹脂のポリシクロヘキシルエポキシメチルエーテルなど、オキセタン類としてOXT−121、OXT−221、OX−SQ、PNOX−1009(以上、東亞合成(株)製)などが挙げられる。その他にグリシジル(メタ)アクリレートの重合体、或いはグリシジル(メタ)アクリレートと共重合できるモノマーとの共重合体をハードコート層に使用することもできる。
【0228】
ハードコート層には、ハードコート層の硬化収縮の低減、基材との密着性の向上、本発明においてハードコート処理物品のカールを低減するため、ケイ素、チタン、ジルコニウム、アルミニウム等の酸化物微粒子やポリエチレン、ポリスチレン、ポリ(メタ)アクリル酸エステル類、ポリジメチルシロキサン等の架橋粒子、SBR、NBRなどの架橋ゴム微粒子等の有機微粒子等の架橋微粒子を添加することも好ましく行われる。これらの架橋微粒子の平均粒子サイズは、1nm〜20000nmであることが好ましい。また、架橋微粒子の形状は、球状、棒状、針状、板状など特に制限無く使用できる。微粒子の添加量は硬化後のハードコート層の60体積%以下であることが好ましく、40体積%以下がより好ましい。
【0229】
上記で記載した無機微粒子を添加する場合、一般にバインダーポリマーとの親和性が悪いため、ケイ素、アルミニウム、チタニウム等の金属を含有し、かつアルコキシド基、カルボン酸基、スルホン酸基、ホスホン酸基等の官能基を有する表面処理剤を用いて表面処理を行うことも好ましく行われる。
【0230】
ハードコート層は、熱または活性エネルギー線を用いて硬化することが好ましく、その中でも放射線、ガンマー線、アルファー線、電子線、紫外線等の活性エネルギー線を用いることがより好ましく、安全性、生産性を考えると電子線、紫外線を用いることが特に好ましい。熱で硬化させる場合は、プラスチック自身の耐熱性を考えて、加熱温度は140℃以下が好ましく、より好ましくは100℃以下である。
【0231】
〔前方散乱層〕
前方散乱層は、本発明における偏光板を液晶表示装置に適用した際の、上下左右方向の視野角特性(色相と輝度分布)改良するために使用される。本発明では、前方散乱層は屈折率の異なる微粒子をバインダー分散した構成が好ましく、例えば、前方散乱係数を特定化した特開11−38208号公報、透明樹脂と微粒子との相対屈折率を特定範囲とした特開2000−199809号公報、ヘイズ値を40%以上と規定した特開2002−107512号公報等の構成を使用することができる。また、本発明における偏光板をヘイズの視野角特性を制御するため、住友化学(株)の技術レポート「光機能性フィルム」31頁〜39頁に記載された「ルミスティ」と組み合わせて使用することも好ましく行うことができる。
【0232】
〔アンチグレア層〕
アンチグレア(防眩)層は、反射光を散乱させ映り込みを防止するために使用される。アンチグレア機能は、液晶表示装置の最表面(表示側)に凹凸を形成することにより得られる。アンチグレア機能を有する光学フィルムのヘイズは、3〜30%であることが好ましく、5〜20%であることがさらに好ましく、7〜20%であることが最も好ましい。
フィルム表面に凹凸を形成する方法は、例えば、微粒子を添加して膜表面に凹凸を形成する方法(例えば、特開2000−271878号公報等)、比較的大きな粒子(粒子サイズ0.05〜2μm)を少量(0.1〜50質量%)添加して表面凹凸膜を形成する方法(例えば、特開2000−281410号公報、同2000−95893号公報、同2001−100004号公報、同2001−281407号公報等)、フィルム表面に物理的に凹凸形状を転写する方法(例えば、エンボス加工方法として、特開昭63−278839号公報、特開平11−183710号公報、特開2000−275401号公報等記載)等を好ましく使用することができる。
【0233】
<液晶表示装置>
次に本発明の液晶表示装置について説明する。
【0234】
以下、図面を用いて本発明の実施の形態を詳細に説明する。図1は、本発明の液晶表示装置の画素領域例を示す模式図である。図2〜図8は、本発明の液晶表示装置の一実施形態の模式図である。
[液晶表示装置]
図2に示す液晶表示装置は、偏光子8および偏光子14と、光学異方性層10と、さらに視認側に配置された光拡散層7と、二枚の基板に挟持された液晶層からなる液晶セル12から構成される。
【0235】
図2の液晶表示装置において、液晶セルの液晶層の厚さd(μm)と屈折率異方性Δnとの積Δn・dは透過モードにおいて、ねじれ構造を持たないIPS型では0.2〜0.4μmの範囲が最適値となる。この範囲では白表示輝度が高く、黒表示輝度が小さいことから、明るくコントラストの高い表示装置が得られる。液晶セルを構成する二枚の基板の液晶層に接触する表面には、配向膜が形成されていてもよく、液晶性化合物を二枚の基板の表面に対して略平行に配向させるとともに配向膜上に施されたラビング処理等により、電圧無印加状態もしくは低印加状態における液晶性化合物配向方向(液晶層の遅相軸方向13)が制御されている。また、二枚の基板のうち、どちらか一方の基板の内面には、液晶性化合物に電圧印加可能な電極が形成されている。
【0236】
図1に、液晶層の1画素領域中の液晶性化合物の配向を模式的に示す。図1中、1は液晶素子画素領域を示す。図1は、液晶層の1画素に相当する程度の極めて小さい面積の領域中の液晶性化合物の配向を、基板の内面に形成された配向膜のラビング方向4、および基板の内面に形成された液晶性化合物に電圧印加可能な画素電極2および表示電極3とともに示した模式図である。電界効果型液晶として正の誘電異方性を有するネマチック液晶を用いてアクティブ駆動を行った場合の、電圧無印加状態若しくは低印加状態での液晶性化合物配向方向(黒表示時の液晶化合物のダイレクター)は5aおよび5bであり、この時に黒表示が得られる。電極2・3間に印加されると、電圧に応じて液晶性化合物は6a・6b方向(白表示時の液晶化合物のダイレクター)へとその配向方向を変える。通常、この状態で明表示(白表示)を行なう。
【0237】
再び図2において、偏光子8の偏光吸収軸9と、偏光子14の偏光吸収軸15は直交して配置され、液晶セルの液晶層の遅相軸13は、偏光子8の偏光吸収軸9に直交して配置されている。液晶セルの液晶層の遅相軸は、偏光子14の偏光吸収軸15に直交して配置されてもよい。光学異方性層10は、偏光子8と液晶セル12の間、もしくは偏光子14と液晶セルの間、またはその両方に配置され、図2では、偏光子8と液晶セル12の間に配置した場合を示している。また、光学異方性層10の遅相軸方向11は、液晶層の遅相軸13に直交してもよいし、平行でもよい。光拡散層7は、偏光子8よりも視認側に配置される。
【0238】
本発明の他の実施形態を図3および図4に示す。偏光子8は、保護フィルム16と光学異方性層10に挟持され、偏光子14は、保護フィルム17と保護フィルム18に挟持されている。
【0239】
さらに本発明の他の実施形態を図5および図6および図7に示す。偏光子8と液晶セル12の間には、2層の光学異方性層20と21、あるいは23と24が配置される。この場合、光学異方性層21および24は少なくとも面内に屈折率異方性を有する光学異方性層であり、光学異方性層20および23は厚さ方向に屈折率異方性を有する一軸の光学異方性層であり、それらの組み合わせとして、好ましく用いられる。ここで、22および25は光学異方性層の遅相軸方向を示している。
【0240】
さらに本発明の他の実施形態を図8に示す。光学異方性層10は、液晶セル12と偏光子14の間に配置される。
以上、模式図により、本発明の液晶表示装置を説明したが、図2〜図8に示した構成に限定されず、適宜、これらの組み合わせの構成にて用いられる。
【0241】
上記実施形態において、保護フィルムの少なくとも1枚に本発明の順波長分散低レターデーションフィルムが使用される。
【0242】
なお、図2〜図8には、上側偏光子および下側偏光子を備えた透過モードの表示装置の態様を示したが、本発明は一枚の偏光板のみを備える反射モードの態様であってもよく、かかる場合は、液晶セル内の光路が2倍になることから、最適Δn・dの値は上記の1/2程度の値になる。
【0243】
さらに本発明の液晶表示装置は、図2〜図8に示す構成に限定されず、他の部材を含んでいてもよい。例えば、液晶層と偏光子との間にカラーフィルターを配置してもよい。また、光拡散層の表面に反射防止処理やハードコートを施してもよい。また、構成部材に導電性を付与したものを使用してもよい。また、透過型として使用する場合は、冷陰極あるいは熱陰極蛍光管、または発光ダイオード、フィールドエミッション素子、エレクトロルミネッセント素子を光源とするバックライトを背面に配置することができる。この場合、バックライトの配置は図2〜図8の下側に配置される。また、液晶層とバックライトとの間に、反射型偏光板や拡散板、プリズムシートや導光板を配置することもできる。また、上記した様に、本発明の液晶表示装置は、反射型であってもよく、かかる場合は、偏光板は観察側に1枚配置したのみでよく、液晶セル背面あるいは液晶セルの下側基板の内面に反射膜を配置する。もちろん前記光源を用いたフロントライトを液晶セル観察側に設けることも可能である。
【0244】
本発明の液晶表示装置には、画像直視型、画像投影型や光変調型が含まれる。本発明は、薄膜トランジスタ(TFT)やMetal Insulator Metal(MIM)のような3端子または2端子半導体素子を用いたアクティブマトリックス液晶表示装置に適用した態様が特に有効である。勿論、時分割駆動と呼ばれるパッシブマトリックス液晶表示装置に適用した態様も有効である。
【実施例】
【0245】
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
【0246】
(実施例1)
(順波長分散低レターデーションフィルム101の作製)
<セルロースアシレート溶液の調製>
下記の組成物をミキシングタンクに投入し、撹拌して各成分を溶解し、セルロースアシレート溶液Aを調製した。
――――――――――――――――――――――――――――――――
セルロースアシレート溶液A組成
――――――――――――――――――――――――――――――――
アセチル化度2.94、平均重合度310の
セルロースアセテート 100.0質量部
添加剤D−5 18.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
――――――――――――――――――――――――――――――――
【0247】
<マット剤溶液の調製>
下記の組成物を分散機に投入し、撹拌して各成分を溶解し、マット剤溶液を調製した。
――――――――――――――――――――――――――――――――
マット剤溶液組成
――――――――――――――――――――――――――――――――
平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)
2.0質量部
メチレンクロライド(第1溶媒) 75.0質量部
メタノール(第2溶媒) 12.7質量部
セルロースアシレート溶液A 10.3質量部
――――――――――――――――――――――――――――――――
【0248】
<波長分散制御剤溶液の調製>
下記の組成物をミキシングタンクに投入し、加熱しながら撹拌して、各成分を溶解し、波長分散制御剤溶液を調製した。
―――――――――――――――――――――――――――――――
波長分散制御剤溶液組成
―――――――――――――――――――――――――――――――
波長分散制御剤G 20.0質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアシレート溶液A 12.8質量部
―――――――――――――――――――――――――――――――
【0249】
波長分散制御剤G
【化42】

【0250】
上記セルロースアシレート溶液Aを97.3質量部、マット剤溶液を1.3質量部、紫外線吸収剤溶液2.0質量部を濾過後に混合し、バンド流延機を用いて1600mmの幅で流延した。残留溶剤含量50質量%でフィルムをバンドから剥離し、100℃の条件でフィルムをテンタークリップで保持して6%の延伸倍率で横延伸し、残留溶剤含量が5質量%になるまで乾燥した(乾燥1)。さらにフィルム延伸後の幅のまま100℃で30秒間保持した。テンタークリップからフィルムを解放し、フィルムの幅方向を両端から各5%ずつを切り落とした後、さらに幅方向が自由(保持されていない)状態で130℃の乾燥ゾーンを20分間かけて通過させた後(乾燥2)、フィルムをロールに巻き取った。得られたセルロースアシレートフィルムの残留溶剤量は0.1質量%であり、膜厚は79μmであった。
【0251】
(実施例2)
(順波長分散低レターデーションフィルム102〜105の作製)
セルロースアシレートの種類、ならびに、添加剤の種類、添加量およびフィルムの厚みを表1の内容に変更した以外は上記と同様にして順波長分散フィルム102〜105を作製した。
【0252】
(比較例1)
(偏光板保護フィルム201〜202の作製)
セルロースアシレートの種類、ならびに、添加剤の種類、添加量およびフィルムの厚みを表1の内容に変更した以外は上記と同様にして偏光板保護フィルム201〜202を作製した。
【0253】
【表1】

【0254】
波長分散制御剤H
【化43】

【0255】
波長分散調節剤I
【化44】

【0256】
(光学特性の測定)
“KOBRA−WR”(王子計測機器(株))を用いて25℃60%相対湿度の環境下で、本発明の順波長分散フィルム101〜105、および比較例の偏光板保護フィルム201〜202の446nm、548nm、628nmにおけるReおよびRthをそれぞれ測定した。結果を表2に示す。
【0257】
【表2】

【0258】
(実施例3)
(順波長分散低レターデーションフィルム101の鹸化処理)
作製した順波長分散フィルム101を、2.3mol/Lの水酸化ナトリウム水溶液に、55℃で3分間浸漬した。室温の水洗浴槽中で洗浄し、30℃で0.05mol/Lの硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。このようにして、順波長分散フィルム101表面の鹸化処理を行った。
【0259】
(順波長分散低レターデーションフィルム102〜105の鹸化処理)
前記順波長分散低レターデーションフィルム101と同様にして順波長分散低レターデーションフィルム102〜105のセルロースアシレート表面をそれぞれ鹸化した。
【0260】
(実施例4)
<偏光板101の作製>
(偏光板保護フィルムの鹸化処理)
市販のセルロースアセテートフィルム(富士写真フイルム(株)製、富士タックTD80)を1.5mol/Lの水酸化ナトリウム水溶液に、55℃で1分間浸漬した。室温の水洗浴槽中で洗浄し、30℃で0.05mol/Lの硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。
【0261】
(偏光子の作製)
延伸したポリビニルアルコールフィルムに、ヨウ素を吸着させて偏光子を作製し、ポリビニルアルコール系接着剤を用いて、上記で鹸化処理した順波長分散レターデーションフィルム101を偏光子の片側に貼り付けた。偏光子の吸収軸とセルロースアシレートフィルムの遅相軸とは平行になるように配置した。
さらに上記で鹸化処理した市販のセルローストリアセテートフィルムを、ポリビニルアルコール系接着剤を用いて、偏光子の反対側に貼り付けた。このようにして偏光板101を作製した。
(実施例5)
<偏光板102〜105の作製>
順波長分散フィルム102〜105についても実施例4と同様にして偏光板102〜105を作製した。
【0262】
(比較例2)
(偏光板201および202の作製)
比較例1で作製した偏光板保護フィルム201および202についても、実施例4と同様にして偏光板201および偏光板202を作製した。
【0263】
(実施例6)
<光学異方性層の作製> [光学異方性フィルムR−01]
厚さ80μm、Reが230nmの一軸延伸したポリカーボネートフィルムの両面に、一軸延伸ポリエステルフィルム製の熱収縮性フィルムをその遅相軸が直交するようにアクリル系粘着層を介して接着し、これを160℃に加熱して熱収縮性フィルムを収縮させながら延伸処理をしたのち、熱収縮性のフィルムを剥がして、光学異方性フィルムR−01を作製した。
【0264】
光学異方性フィルムR−01について、自動複屈折率計(KOBRA−WR、王子計測機器(株)社製)を用いて、Reの光入射角度依存性を測定し、これらの光学特性を算出したところ、Reが270nm、Rthが0nmであることを確認した。
【0265】
(実施例7)
[光学異方性フィルムR−02]
下記のセルロースアセテート溶液組成の各成分をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液Aを調製した。
【0266】
(セルロースアセテート溶液Aの組成)
酢化度60.9%のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 318質量部
メタノール(第2溶媒) 47質量部
【0267】
ミキシングタンクに、下記のレターデーション上昇剤16質量部、メチレンクロライド87質量部およびメタノール13質量部を投入し、加熱しながら攪拌して、レターデーション上昇剤溶液を調製した。
上記セルロースアセテート溶液Aの組成物 474質量部に上記レターデーション制御剤溶液43質量部を混合し、充分に攪拌してドープを調製した。レターデーション上昇剤の添加量は、セルロースアセテート100質量部に対して、6.0質量部であった。
レターデーション上昇剤
【0268】
【化45】

【0269】
上記ドープをバンド上に流延した後、残留溶剤量32%で剥ぎ取った後、テンター延伸機で横延伸した。延伸倍率は25%とし、延伸温度は140℃とした。その後、130℃の温風で乾燥させセルロースアセテートフィルムを作成した。乾燥後のフィルムの膜厚は85μmであった。得られたセルロースアセテートフィルムの光学特性について評価したところ、Reが65nm、Rthが200nmであることを確認した。
【0270】
作製したセルロースアセテートフィルム表面のケン化処理を行い、このフィルム上に、下記の組成の配向膜塗布液をワイヤーバーコーターで20ml/m2塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、膜を形成し、配向膜を得た。
配向膜塗布液の組成
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド 0.5質量部
【0271】
【化46】

【0272】
次に、下記棒状液晶化合物2.0g、光重合開始剤(イルガキュアー907、チバ・スペシャルティ・ケミカルズ(株)製)0.06g、増感剤(カヤキュアーDETX、日本化薬(株)製)0.02g、下記のオニウム塩0.02g、下記の空気界面側垂直配向剤0.004g、UV硬化性樹脂(KAYARAD DPHA、日本化薬(株)製)0.1gを3.9gのメチルエチルケトンに溶解した溶液を調製した。この塗布液を前記配向膜の表面に、ワイヤーバーで塗布した。これを金属の枠に貼り付けて、70℃の恒温槽中で1分30秒間加熱し、棒状液晶化合物を配向させた。次に、70℃に保温したまま、窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量600mJ/cm2の紫外線を照射し、棒状液晶化合物を架橋して、その後、室温まで放冷し、光学異方性フィルムR−02を作製した。棒状液晶化合物を架橋した塗布層の光学特性を調べたところ、Reが0nm、Rthが−256nmであり、棒状液晶化合物がフィルム面に対して垂直に配向し、固定化されていることを確認した。
【0273】
【化47】

【0274】
オニウム塩
【化48】

【0275】
空気界面垂直配向剤
【化49】

【0276】
(実施例8)
[光学異方性フィルムR−03]
厚さ100μmのノルボルネン系フィルム(ゼオノア、日本ゼオン(株)製)を一軸延伸(温度180℃、連続延伸)した。得られたノルボルネン系フィルムの光学特性について評価したところ、Reが140nm、Rthが70nmであることを確認した。
【0277】
上記作製したロール状のノルボルネン系フィルムの表面に連続してコロナ放電処理を施し、その上に、光学異方性フィルムR−02で液晶化合物の垂直配向膜を形成したときと同様にして、配向膜を形成し、さらに棒状液晶化合物の塗布厚みを調整して、棒状液晶からなる光学異方性層を形成した。棒状液晶化合物を架橋した塗布層の光学特性を調べたところ、Reが0nm、Rthが−100nmであり、棒状液晶化合物がフィルム面に対して垂直に配向し、固定化されていることを確認した。
【0278】
(実施例9)
[光学異方性フィルムR−04]
市販のセルロースアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製、Re=3nm、Rth=45nm)の表面をケン化後、このフィルム上に下記の組成の配向膜塗布液をワイヤーバーコーターで20ml/m2塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、膜を形成した。次に、形成した膜にフィルムの遅相軸方向と平行の方向にラビング処理を施して配向膜を形成した。
配向膜塗布液の組成 下記の変性ポリビニルアルコール
10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド 0.5質量部
化合物B 0.2質量部
【0279】
【化50】

【0280】
【化51】

【0281】
次に、ラビングした配向膜上に、下記の組成の塗布液を、ワイヤーバーで塗布した。
―――――――――――――――――――――――――――――――――――
ディスコティック液晶性化合物 1.8g
エチレンオキサイド変性トリメチロールプロパントリアクリレート
(V#360、大阪有機化学(株)製) 0.2g
光重合開始剤(イルガキュアー907、チバガイギー社製) 0.06g
増感剤(カヤキュアーDETX、日本化薬(株)製) 0.02g
空気界面側配向剤(下記の化合物A) 0.01g
メチルエチルケトン 3.9g
―――――――――――――――――――――――――――――――――――
これを金属の枠に貼り付けて、125℃の恒温槽中で3分間加熱し、ディスコティック液晶化合物を配向させた。次に、120W/cm高圧水銀灯を用いて、30秒間UV照射しディスコティック液晶化合物を架橋した。UV硬化時の温度を80℃として、位相差膜を得た。その後、室温まで放冷して、光学異方性フィルムR−04とした。
【0282】
【化52】

【0283】
ディスコティック液晶性位相差層のみの光学特性を評価したところ、Reは120nm、Rthは−60nmであり、ディスコティック液晶性化合物がフィルム面に対して光学軸が基板と平行に配向に配向していることが確認した。なお遅相軸の方向は配向膜のラビング方向と平行であった。
【0284】
(実施例10)
<光拡散層の作製>
[光拡散フィルムHC−01]
光拡散層を構成する透光性樹脂は、酸化ジルコニウム超微粒子分散物含有ハードコート塗布液(デソライトZ7404 JSR(株)製)100部、透光性樹脂DPHA(日本化薬製;ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレートの混合物)57質量部を攪拌混合してメチルエチルケトン/メチルイソブチルケトン(20/80質量比)溶液に溶解した後、塗布、紫外線硬化して得られた塗膜の屈折率は1.61であった。この溶液に透光性微粒子として、架橋ポリメチルメタクリレート系ビーズ(綜研化学製 MX150、粒子サイズ1.5μm、屈折率1.49)17質量部、および架橋ポリメチルメタクリレート系ビーズ(綜研化学製、MX300 粒子サイズ3.0μm、屈折率1.49)7質量部を混合してメチルエチルケトン/メチルイソブチルケトン(20/80質量比)により固形分50%になるように調整したものを、トリアセチルセルロースフィルム(富士写真フイルム(株)製、TD−80U)上に、1.5μmポリメチルメタクリレート系ビーズの塗布量が0.42g/m2になるように塗布し、30℃で15秒間、90℃で20秒間乾燥の後、さらに窒素パージ下(酸素濃度100ppm)で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量50mJ/cm2の紫外線を照射して塗布層を硬化させ光拡散フィルムHC−01を作製した。このフィルムの光拡散層乾燥膜厚は3.0μmであった。
【0285】
(実施例11)
<実装評価用IPSモード液晶セル>
市販のIPSモード液晶TV(CR−L26WA、LG電子製)の液晶セルを取り出し、視認者側およびバックライト側に貼られてあった偏光板を剥した。この液晶セルは、電圧無印加状態および黒表示時では液晶分子はガラス基板間で実質的に平行配向しており、その遅相軸方向は画面に対して水平方向であった。
【0286】
延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光子を製作し、上記により作製した光拡散フィルムHC−01Cにケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光子の片面に貼り付けた。さらに同様にして実施例4で鹸化処理を行った市販のセルロースアセテートフィルム(富士写真フイルム(株)製、富士タックTD80)を偏光子のもう片面に貼り付け、視認側偏光板を形成した。
【0287】
前記で作製したIPSモード液晶セルの視認側に、光学異方性フィルムR−01を、その遅相軸が液晶セルの液晶層遅相軸方向に垂直になるように貼り付けた。さらに光学異方性フィルムR−01の上に、前記視認側偏光板を、その吸収軸が液晶セルの液晶層遅相軸方向に垂直になるように貼り付けた。液晶セルのバックライト側には、偏光板101を、本発明の順波長分散低レターデーションフィルム101がセル側になるように、且つ、偏光板吸収軸が液晶セルの液晶層遅相軸方向に平行になるように貼り付け、液晶表示装置101を作製した。
【0288】
[実施例12〜15]
バックライト側偏光板を、偏光板102〜105を用いた以外は、実施例11と同様にして、液晶表示装置102〜105をそれぞれ作製した。
【0289】
[実施例16〜18]
実施例14において、視認側偏光板に用いる光学異方性フィルムして、光学異方性フィルムR−01の代わりに光学異方性フィルムR−02〜光学異方性フィルムR−04を用いた以外は、実施例14と同様にして、の液晶表示装置106〜108を作製した。
【0290】
[比較例3]
バックライト側偏光板を、偏光板201〜202を用いた以外は、実施例11と同様にして、液晶表示装置201〜202をそれぞれ作製した。
【0291】
以上のようにして作製した液晶表示装置において、装置正面からの方位角方向45度、極角方向60度における黒表示時の正面に対する色味変化を目視により以下の基準で評価した。
【0292】
(色味変化の判定基準)
A:着色を感じない
B:微かに着色する
C:弱く着色する
D:強く着色する
【0293】
表3に評価のまとめを示す。
【0294】
【表3】

【0295】
表2の評価結果より、本発明の順波長分散低レターデーションフィルムを用いた液晶表示は、視角による色味変化が小さく好ましいことがわかった。
【図面の簡単な説明】
【0296】
【図1】本発明の液晶表示装置の画素領域例を示す概略図である。
【図2】本発明の液晶表示装置の例を示す概略図である。
【図3】本発明の液晶表示装置の例を示す概略図である。
【図4】本発明の液晶表示装置の例を示す概略図である。
【図5】本発明の液晶表示装置の例を示す概略図である。
【図6】本発明の液晶表示装置の例を示す概略図である。
【図7】本発明の液晶表示装置の例を示す概略図である。
【図8】本発明の液晶表示装置の例を示す概略図である。
【符号の説明】
【0297】
1 液晶素子画素領域
2 画素電極
3 表示電極
4 ラビング方向
5a、5b 黒表示時の液晶化合物のダイレクター
6a、6b 白表示時の液晶化合物のダイレクター
7 光拡散層
8、14 偏光子
9、15 偏光子の吸収軸方向
10 光学異方性層
11 光学異方性層の遅相軸方向
12 液晶セル
13 液晶セルの液晶層の遅相軸方向
16、17、18、19 偏光子の保護フィルム
20 第二の光学異方性層
21 第一の光学異方性層
22 第一の光学異方性層の遅相軸方向
23 第二の光学異方性層
24 第一の光学異方性層
25 第一の光学異方性層の遅相軸方向

【特許請求の範囲】
【請求項1】
RthおよびReが下記式(1)〜(4)の関係を満たすポリマーフィルム。
−25nm≦Rth(548)≦25nm ・・・式(1)
0≦Rth(446)−Rth(548)≦50 ・・・式(2)
0≦Rth(548)−Rth(629)≦20 ・・・式(3)
0nm≦Re(548)≦5nm ・・・式(4)
式中、Rth(λ)は波長λnmで測定したRthの値を表す。
【請求項2】
セルロースアシレートを主として含む請求項1に記載のポリマーフィルム。
【請求項3】
250nm〜400nmの波長領域に少なくとも1つの吸収極大を有する化合物を1質量%〜30質量%含有する請求項1または2に記載のポリマーフィルム。
【請求項4】
アシル置換度が2.90〜3.00のセルロースアシレートを主として含む請求項1〜3のいずれか1項に記載のポリマーフィルム。
【請求項5】
総アシル置換度が2.70〜3.00の混合脂肪酸セルロースエステルを主として含む請求項1〜3のいずれか1項に記載のポリマーフィルム。
【請求項6】
下記式(B)で表される化合物を少なくとも1種含有する、請求項1〜5のいずれか1項に記載のポリマーフィルム。
式(B)
【化1】

(式(B)中、R1およびR2は、それぞれ、アルキル基またはアリール基を表す。)
【請求項7】
重量平均分子量が500〜10,000のアクリル系ポリマーを含有する、請求項1〜6のいずれか1項に記載のポリマーフィルム。
【請求項8】
請求項1〜7のいずれか1項に記載のポリマーフィルムを含む偏光板保護フィルム。
【請求項9】
偏光子と、該偏光子の少なくとも片側に配置された保護フィルムとを有し、該保護フィルムが、請求項1〜7のいずれか1項に記載のポリマーフィルムである偏光板。
【請求項10】
液晶セルおよびその両側に配置された二枚の偏光板を有する液晶表示装置であって、前記偏光板が偏光子およびその両側に配置された2枚の保護フィルムからなり、前記偏光板の前記液晶セル側保護フィルムの少なくとも1枚が請求項1〜7のいずれか1項に記載の偏光板保護フィルムである液晶表示装置。
【請求項11】
前記液晶セルがIPSモードである請求項10に記載の液晶表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2007−264480(P2007−264480A)
【公開日】平成19年10月11日(2007.10.11)
【国際特許分類】
【出願番号】特願2006−92083(P2006−92083)
【出願日】平成18年3月29日(2006.3.29)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】