説明

湿式蛍光磁粉探傷試験に用いる検査液における成分濃度の測定方法および測定装置

【課題】検査液中の分散剤および蛍光磁粉の濃度を簡単な方法で同時に測定でき、かつそれら濃度を瞬時かつ高精度に測定可能とした、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置を提供する。
【解決手段】被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置では、検査液を透明な測定具3に導入し、光源4の光を、測定具3の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する紫外線検出器5の検出値に基づいて、分散剤の濃度を測定するとともに、励起して発光した可視光を検出する蛍光輝度検出器6の検出値に基づいて、蛍光磁粉の濃度を測定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液に関し、より詳細には、検査液における成分濃度の測定方法および測定装置に関する。
【背景技術】
【0002】
湿式蛍光磁粉探傷試験は、JIS−Z−2320に規格化されたもので、湿式蛍光磁粉探傷試験装置において、自動車のシャフトなどの鋼製部品や、ビレットなどの鋼材である被検査体を磁化し、それら金属表面にヒビなどの傷部を有する場合には、その傷部に生じさせた磁極に、磁粉などからなる検査液を付着させて傷部を探傷する、例えば特許文献1〜2に記載のような周知の非破壊検査法である。本試験に用いる検査液は、例えば、蛍光磁粉や分散材、防錆材などの各成分を所定の濃度で混合させたものであり、検査液タンク内からポンプで取出し、被検査体に接触させて探傷試験を行った検査液は、検査液タンクに戻された後、再度探傷試験に使用して、循環利用されている。そして、従来、この検査液の濃度は、一般的に、検査液タンク内などにおいてよく撹拌して、混濁させた検査液を沈殿管にサンプリングし、30分間静置させた後、沈殿管底部に沈殿した沈殿物の容積を求めることで、蛍光磁粉の濃度(含有量)として測定していた。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2009−109424号公報
【特許文献2】特開2007−303824号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、上記のような湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法では、サンプリングの状況により、濃度測定値にばらつきを生じる問題があった。そのため、例えば、擬似欠陥に付着した蛍光体の明るさを指針として測定する方法(特開平7−113787)や、その明るさをCCDで読み取り、画像処理することで測定する方法(特開2009−75098)が提案されているが、擬似欠陥を有した試験片の磁化状態や検査液の散布状態などにより測定結果のばらつきは避けられない。また、上述したサンプリング操作は煩わしく、作業性が悪いという問題もあった。
【0005】
さらに、上述してきた検査液の成分濃度の測定方法では、蛍光磁粉の濃度しか測定することができない。ところで、検査液中における蛍光磁粉の濃度は、探傷の視認性を左右するとともに、分散剤の濃度は、検査液の被検査体への濡れ性を左右する。分散剤の評価方法としては、特開平8−128993に開示した、表面あらさ標準片の標準面と透明板体の一面とが所要間隔を置いて対面している状態で固定し、当該両面が垂直になる姿勢で設置した測定装置にて、その下端部を試料に浸漬して前記間隔を毛細管現象によって上昇する試料の上昇値を測定し、当該測定値によって当該検査液中の分散剤の濡れ性を評価するものがあるが、分散剤自体の濃度を測定するものではなく、また、分散剤の評価のためだけに別途測定装置を設けなければならず、コスト高となるとともに作業効率が悪いという問題もあった。
【0006】
従って、この発明の目的は、検査液中の分散剤および蛍光磁粉の濃度を簡単な方法で同時に測定でき、かつそれら濃度を瞬時かつ高精度に測定可能とした、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置を提供するものである。
【課題を解決するための手段】
【0007】
このため、請求項1に記載の発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、前記表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定方法であって、該成分濃度測定方法は、前記検査液を透明な測定具に導入し、光源の光を、前記測定具の一側方から前記検査液に照射して得られた透過光および励起して発光した可視光を用い、前記透過光を検出する検出器の検出値に基づいて、前記蛍光磁粉の濃度を測定するとともに、前記励起して発光した可視光を検出する検出器の検出値に基づいて、前記分散剤の濃度を測定することを特徴とする。
【0008】
請求項2に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記光源は、紫外線LEDランプであることを特徴とする。
【0009】
請求項3に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記透過光を検出する検出器は、紫外線検出器であるとともに、前記可視光を検出する検出器は、蛍光輝度検出器であることを特徴とする。
【0010】
請求項4に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記紫外線検出器は、前記測定具を挟んで前記光源の対向位置に設置することを特徴とする。
【0011】
請求項5に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記蛍光輝度検出器は、前記測定具の周囲であって、前記測定具の正面中心位置から、前記光源による照射光の照射方向に対して、正負90度の範囲内に設置したことを特徴とする。
【0012】
請求項6に記載の発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、前記金属表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定装置であって、該成分濃度測定装置は、前記検査液を導入する測定具と、該測定具内の前記検査液に紫外線を照射する光源の紫外線LEDランプと、前記紫外線照射により前記検査液から得られた透過光を検出する紫外線検出器と、前記紫外線照射により前記検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、前記紫外線検出器および前記蛍光輝度検出器の各検出値に基づいて、それぞれ前記蛍光磁粉の濃度および前記分散剤の濃度を算出する情報処理部とを備えることを特徴とする。
【0013】
請求項7に記載の発明は、請求項6に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置において、前記測定具は、フッ素樹脂からなることを特徴とする。
【0014】
請求項8に記載の発明は、請求項6に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置において、前記測定具は、暗箱体内に設置するとともに、前記紫外線LEDランプと、前記紫外線検出器と、前記蛍光輝度検出器とは、前記暗箱体内に備えることを特徴とする。
【0015】
請求項9に記載の発明は、少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、前記移送手段は、前記検査液の成分濃度を測定する、請求項6〜8に記載の成分濃度測定装置を備え、前記移送手段が、前記探傷部に前記検査液を圧送する試験用配管であって、該試験用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする。
【0016】
請求項10に記載の発明は、少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、前記移送手段は、前記検査液の成分濃度を測定する、請求項6〜8に記載の成分濃度測定装置を備え、前記移送手段が、前記検査液タンク内に接続した測定用配管であって、該測定用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする。
【発明の効果】
【0017】
請求項1に記載の発明によれば、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法であって、この成分濃度測定方法は、検査液を透明な測定具に導入し、光源の光を、測定具の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する検出器の検出値に基づいて、蛍光磁粉の濃度を測定するとともに、励起して発光した可視光を検出する検出器の検出値に基づいて、分散剤の濃度を測定するので、従来では測定できなかった検査液中における分散剤の濃度を容易に測定することができる。
【0018】
さらには、この検査液中の分散剤および蛍光磁粉の濃度を、光学的方法を用いた簡単な構成で同時に測定でき、それら濃度を瞬時かつ高精度に測定することができる。従って、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。
【0019】
請求項2に記載の発明によれば、光源は、紫外線LEDランプであるので、検査液に吸光および励起発光させる光源ランプの使用寿命が長くなり、コストダウンを図ることができる。従って、生産性を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。
【0020】
請求項3に記載の発明によれば、透過光を検出する検出器は、紫外線検出器であるとともに、可視光を検出する検出器は、蛍光輝度検出器であるので、紫外線検出器による透過度(吸光度)と蛍光磁粉濃度との相関関係および蛍光輝度検出器による蛍光輝度と分散剤濃度との相関関係に基づいて、検査液中における蛍光磁粉および分散剤の濃度を正確かつ簡単に測定することができる。従って、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。
【0021】
請求項4に記載の発明によれば、紫外線検出器は、測定具を挟んで光源の対向位置に設置するので、紫外線LEDランプから検査液に入射し、液中を略直進的に透過した紫外線の透過光について、その検査液への吸光度を安定的に測定することができる。従って、簡単な構成で測定精度を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。
【0022】
請求項5に記載の発明によれば、蛍光輝度検出器は、測定具の周囲であって、測定具の正面中心位置から、光源による照射光の照射方向に対して、正負90度の範囲内に設置したので、検査液の蛍光磁粉濃度に応じて蛍光輝度の値も上下することから、蛍光輝度検出器を、蛍光磁粉濃度によらず、最も測定に適した位置もしくは、どの蛍光磁粉濃度においても正確に蛍光輝度を測定可能とする位置に設置することができる。従って、測定精度を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。
【0023】
請求項6に記載の発明によれば、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、金属表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置であって、この成分濃度測定装置は、検査液を導入する測定具と、この測定具内の検査液に紫外線を照射する光源の紫外線LEDランプと、紫外線照射により検査液から得られた透過光を検出する紫外線検出器と、紫外線照射により検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、紫外線検出器および蛍光輝度検出器の各検出値に基づいて、それぞれ蛍光磁粉の濃度および分散剤の濃度を算出する情報処理部とを備えるので、従来では測定できなかった検査液中における分散剤の濃度を、成分濃度測定装置によって容易に測定できる。
【0024】
また、この成分濃度測定装置により、検査液中の分散剤および蛍光磁粉の濃度を同時および瞬時、かつ高精度に測定することができる。さらに本成分濃度測定装置は、設置場所を限定せず、探傷試験装置に組込んだり、成分濃度測定装置を測定ユニットとして携帯可能とし、サンプリングした検査液の成分濃度を、任意の場所で測定することができる。従って、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定装置を提供することができる。
【0025】
請求項7に記載の発明によれば、測定具は、フッ素樹脂からなるので、摩擦係数が小さい測定具内面への検査液中の蛍光磁粉の付着を減らし、測定具内の清掃作業などメンテナンス頻度を低下させるとともに、長期間安定した計測を行うことができる。従って、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定装置を提供することができる。
【0026】
請求項8に記載の発明によれば、測定具は、暗箱体内に設置するとともに、紫外線LEDランプと、紫外線検出器と、蛍光輝度検出器とは、暗箱体内に備えるので、暗室内において検査液への紫外線の透過光および蛍光輝度を正確に測定することができる。従って、測定精度を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定装置を提供することができる。
【0027】
請求項9に記載の発明によれば、少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、この検査液タンク内の検査液を循環手段で取り出すとともに、検査液タンク内に還流させる移送手段と、この移送手段内の検査液を、被検査体の磁化した金属の表面に接触させて、表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、移送手段は、検査液の成分濃度を測定する、請求項6〜8に記載の成分濃度測定装置を備え、移送手段が、探傷部に検査液を圧送する試験用配管であって、この試験用配管に、成分濃度測定装置の測定具を接続したので、成分濃度測定装置が湿式蛍光磁粉探傷試験装置と一体に構成され、従来のように検査液をサンプリングして探傷試験装置とは別の場所で成分濃度測定を行う必要がない。
【0028】
つまり、検査液タンクから探傷部へ移送途中である検査液の成分濃度を、散布装置での散布直前に探傷試験の一環としてオンラインで瞬時に測定することができる。従って、作業性を向上させた湿式蛍光磁粉探傷試験装置を提供することができる。
【0029】
請求項10に記載の発明によれば、少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、この検査液タンク内の検査液を循環手段で取り出すとともに、検査液タンク内に還流させる移送手段と、この移送手段内の検査液を、被検査体の磁化した金属の表面に接触させて、表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、移送手段は、検査液の成分濃度を測定する、請求項6〜8に記載の成分濃度測定装置を備え、移送手段が、検査液タンク内に接続した測定用配管であって、この測定用配管に、成分濃度測定装置の測定具を接続したので、成分濃度測定装置が湿式蛍光磁粉探傷試験装置と一体に構成され、従来のように検査液をサンプリングして探傷試験装置とは別の場所で成分濃度測定を行う必要がない。
【0030】
つまり、検査液タンクから測定用配管を介して検査液タンクに循環途中である検査液の成分濃度を、探傷試験の一環としてオンラインで瞬時に測定することができる。従って、作業性を向上させた湿式蛍光磁粉探傷試験装置を提供することができる。
【図面の簡単な説明】
【0031】
【図1】本発明の一例を示す、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置を示す斜視図である。
【図2】成分濃度測定装置の平面図である。
【図3】成分濃度測定装置の正面図である。
【図4】測定具の一例を示す斜視図である。
【図5】測定具に対する光源および検出器の設置位置を示す測定具周辺の正面模式図である。
【図6】成分濃度測定装置のブロック制御図である。
【図7】検査液の撹拌手段を備える成分濃度測定装置の一例を示した平面図である。
【図8】湿式蛍光磁粉探傷試験装置の一例を示した全体模式図である。
【図9】探傷部の拡大模式図である。
【図10】湿式蛍光磁粉探傷試験装置に備える成分濃度測定装置の一例を示した斜視図である。
【図11】測定用配管に成分濃度測定装置を取付けた例を示す、湿式蛍光磁粉探傷試験装置の全体模式図である。
【発明を実施するための形態】
【0032】
以下、図面を参照しつつ、この発明を実施するための最良の形態について詳述する。図1は本発明の一例を示した、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置を示す斜視図、図2は成分濃度測定装置の平面図、図3は成分濃度測定装置の正面図である。
【0033】
まず、周知のとおり湿式蛍光磁粉探傷試験に用いる検査液は、蛍光磁粉と、分散剤と、必要に応じて防錆剤とを混合させてなるものである。そして、それら成分の詳細は、例えば上述した特開2009−109424号公報や、特開2009−109424号公報などに記載されているように、まず蛍光磁粉としては、例えば、市販の磁粉(四三酸化鉄粒子や純鉄粒子などの導磁性粒子に酢酸セルローズ系合成樹脂やビニルブチラール系合成樹脂などの合成樹脂バインダーを用いてルモゲンイエロー50790:商品名:BASF社製やフエスタA:商品名:Swada社製などの蛍光顔料を付着させてなるメジアン径3〜70μm:体積基準分布表示−以下、同じ−で真比重2〜5g/cm3の粉末;以下「蛍光磁粉」という)を用いることができる。
【0034】
また、分散剤は、例えば、ポリオキシアルキレンアリルフェニルエーテル型非イオン系界面活性剤および陰イオン活性剤を用いることができる。なお、防錆剤としては、例えば亜硝酸ナトリウムなどを用いることができる。なお、蛍光磁粉や分散剤、防錆剤は上述した成分に限定されない。
【0035】
そして、湿式蛍光磁粉探傷試験では、上記のような成分で調製した検査液を、自動車のシャフトなどの鋼製部品や、ビレットなどの鋼材である被検査体に接触させ、当該被検査体の表面傷部(検査物の表面乃至表面近傍に存在する微細なワレやピンホール)に当該検査液に分散している当該磁粉を集合させて形成した磁粉模様によって表面傷部を探傷する周知の技術である。
【0036】
この検査液の成分濃度は、探傷試験の精度に影響を及ぼすものであり、上述したように、特に、検査液中における蛍光磁粉の濃度は、探傷の視認性を左右するとともに、分散剤の濃度は、検査液の被検査体への濡れ性を左右するものであり、被検査体に応じて、各検査液にはそれぞれ好ましい成分濃度を有するものである。
【0037】
このような検査液を用いて行なう、後述する湿式蛍光磁粉探傷試験装置において、検査液タンク内からポンプで取出し、被検査体に接触させて探傷試験を行った検査液は、検査液タンクに戻された後、再度探傷試験に使用して循環利用されるため、その検査液の成分濃度が刻々と変動することから、高精度で被検査体の探傷試験を行うには、検査液の成分濃度を常時確認する必要性がある。
【0038】
そこで、本願発明者は、検査液中の各成分濃度が、照射光による吸光度や照度に関係することに着目し、検査液中の分散剤および蛍光磁粉の濃度を簡単な方法で同時に測定でき、かつそれら濃度を瞬時かつ高精度に測定可能とした、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置を開発した。
【0039】
まず、蛍光磁粉は、紫外線を照射されることにより、その蛍光顔料などの蛍光物質が励起して発光するため、この発光した可視光を蛍光輝度(照度)として周知の蛍光輝度検出器(蛍光輝度検出器)により検出することで、蛍光磁粉の存在を確認することができる。そこで、蛍光磁粉の濃度を変えて作成した各検査液(水中に蛍光磁粉および分散剤を混合させて作成)に光源から紫外線を照射して、それら蛍光輝度を蛍光輝度検出器で検出すると、下表(表1)のような関係が得られた。
【0040】
【表1】


測定条件
蛍光磁粉:LY−20(マークテック株式会社製)
蛍光磁粉濃度(g/L):0、0.2、0.3、0.5、0.75、1.0、1.25
1.5、2.0
分散剤:EC−4(マークテック株式会社製)
分散剤濃度:0.5%
測定具:フッ素加工チューブ(直径6mm)
光源:汎用の紫外線LEDランプを使用
蛍光輝度検出器:汎用の検出器を使用 測定具の正面中心位置から、光源による照射光 の照射方向に対して45度に位置に設置
【0041】
この表1に示すように、検査液中における蛍光磁粉濃度と、蛍光輝度との間には相関関係があり、蛍光磁粉濃度の上昇により蛍光輝度も上昇することが分かった。従って、紫外線を検査液に照射し、検査液から得られた可視光(励起して発光した可視光)を蛍光輝度検出器により蛍光輝度として検出することで、上表などから得られた検量線に基づいて検査液中の蛍光磁粉の濃度を算出することができる。
【0042】
次に、検査液に紫外線を照射すると、検査液に入射した紫外線は、検査液中を通過し、入射方向とは逆方向から透過して液外に放射される。このとき、光のエネルギーは、透過や反射によって伝達され、光の透過は通常、次式1のように吸光濃度として表される。
吸光濃度=−LOG10(放射光束/入射光束)・・・・・式1
そこで、分散剤の濃度を変化させて作成した各検査液(水中に蛍光磁粉および分散剤を混合させて作成)に光源から紫外線を照射し、これら検査液から放射された紫外線の透過光を、周知の紫外線検出器により検出すると、下表(表2)のような関係が得られた。
【0043】
【表2】


測定条件
蛍光磁粉:LY−20(マークテック株式会社製)
蛍光磁粉濃度(g/L):0.5
分散剤:EC−4(マークテック株式会社製)
分散剤濃度(%):0.5、1.0、1.5、2.0、3.0、4.0
測定具:フッ素加工チューブ(直径6mm)
光源:汎用の紫外線LEDランプを使用
紫外線検出器:汎用の検出器を使用 測定具を挟んで光源と対向位置に設置
【0044】
この表2に示すように、検査液中における分散剤濃度と、紫外線吸光濃度との間には相関関係があり、分散剤濃度の上昇により紫外線吸光濃度も上昇することが分かった。従って、検査液に紫外線を照射し、この検査液から得られた紫外線の透過光を紫外線検出器により紫外線透過度として検出することで、表2などから得られた検量線に基づいて検査液中の分散剤の濃度を算出することができる。
【0045】
なお、表2のように、分散剤の濃度を変化させて作成した各検査液に、表1と同様にして、光源から紫外線を照射し、蛍光輝度検出器でそれら蛍光輝度を測定したが、どの分散剤濃度においても蛍光輝度に変化が見られないことから、分散剤濃度の測定には蛍光輝度検出器を使用できないことが分かった。従って、上述したように、検査液中における蛍光磁粉の濃度には蛍光輝度検出器を用い、分散剤の濃度には紫外線検出器を用いてそれぞれ測定することとした。
【0046】
次に、これら検査液中における蛍光磁粉および分散剤の濃度を測定する装置について説明する。図1は本発明の一例を示す、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置を示す斜視図、図2は成分濃度測定装置の平面図、図3は成分濃度測定装置の正面図、図4は測定具の一例を示す斜視図、図5は測定具に対する光源および検出器の設置位置を示す測定具周辺の正面模式図、図6は成分濃度測定装置のブロック制御図である。
【0047】
まず、検査液の成分濃度測定装置1としては、例えば、図1〜3に示すように、暗箱2と、この暗箱体2内に設置した測定具3と、さらには暗箱体2内に取付けられた光源4および検出器5,6とから構成されるものである。以下の説明では、成分濃度測定装置1を、設置場所を自由とし、後述する検査液タンク22内からサンプリングした検査液の成分濃度を測定できる測定装置ユニットとして説明する。
【0048】
まず、暗箱体2は、例えば、正面視略台形の形状(限定しない)を有し、材質は特に限定されないが、プラスチックなどの合成樹脂またはアルミなどの金属からなる、内部を暗室とした箱材である。また、暗箱体2における正面および背面の中央近傍を結ぶ直線上には、円形(限定しない、後述する測定具3の外形に応じた形状とする)の穴部7が設けられている。さらに暗箱体2における天面の左右肩部には、左右の一方または双方(図例では双方)の外側端部を外方に向けて下降傾斜させた傾斜部8を形成する。なお、この暗箱体2には、例えば図3に示すような把持部16を天面などに設けてもよい。
【0049】
次に、測定具3は、図4に示すように、上述した暗箱体2の穴部7に貫設可能とし、暗箱体2の前後方向に略等しい長さを有する、側面部が透明な円筒形状(限定しない)のものであり、その材質は、測定具3内面の摩擦係数を小さくできるフッ素樹脂から構成されている。なお、円筒部の直径は、例えば6mm程度(限定されない)とされる。なお、測定具3の材質は上述したフッ素樹脂が好ましいが、測定具3内面の摩擦係数を小さくできる材質であれば適宜用いることができる。
【0050】
また、測定具3は、例えば、基端部(図4の手前側)は、本体から図示しない螺旋溝などで着脱自在とした鍔部9を備える蓋体10を有しており、この蓋体10および測定具3の先端部11(図4の奥側)に遮光板の貼付や着色などをすることにより、測定具3を暗箱体2の穴部7に貫設設置した際に、暗箱体2内に周囲から光が入らないように遮光している。
【0051】
次に、この暗箱体2の左右一方の側面(図1中では手前に示した左側面)中央近傍には、光源4としての紫外線LED(Light Emitting Diode)ランプ12が暗箱体2の内側暗室内を照射方向として取付けられている。
【0052】
また、暗箱体2の左右他方の内側面(図1中では奥に示した右側面)中央近傍であって、暗箱体2に装着した状態での測定具3を挟んだ紫外線LEDランプ12の取付位置に対向する位置には、紫外線検出器5が設置される。この紫外線検出器5では、紫外線LEDランプ12から照射され、測定具3内の検査液を通過して得られた紫外線の透過度が検出される。なお、この紫外線検出器5は周知の技術であるため、詳細な説明は省略する。
【0053】
さらに、例えば、暗箱体2の紫外線LEDランプ12が設置されている側(図1中では手前に示した左上面傾斜)の傾斜部8における中央近傍の内面には、蛍光輝度検出器6が取付けられる。この蛍光輝度検出器6では、紫外線を測定具3内の検査液に照射し、検査液から得られた可視光(励起して発光した可視光)の蛍光輝度が検出される。なお、この蛍光輝度検出器6も周知の技術であるため、詳細な説明は省略する。
【0054】
光源4および測定具3に対するこれら検出器5,6の設置位置は、図5に示すように、まず、紫外線検出器5は、上述したように測定具3を介して紫外線LEDランプ12の対向位置に設置されるが、この紫外線LEDランプ12の紫外線照射方向(測定具3内の検査液中への入射方向)の延長線上から正負適宜角度範囲内であって、好ましくは延長線上における暗箱体2の内側面に設置する。
【0055】
また、蛍光輝度検出器6は、紫外線LEDランプ12側の測定具3の周囲であって、測定具3の正面中心位置cから、紫外線LEDランプ12による照射光の照射方向に対して、正負90度の範囲内であって、例えば40度〜50度、好ましくは45度となる暗箱体2における傾斜部8内面に設置する。なお、蛍光輝度検出器6は、広範な濃度の蛍光磁粉の蛍光輝度値を正確に測定し得る位置として、実験データに基づき、前記45度が適切な角度の1つとして挙げられる。
【0056】
また、上記正負90度の範囲とあるのは、紫外線LEDランプ12から照射される紫外線の照射中心線に対する、図5中における測定具3の上端および下端への照射角度が等しく、正負どちらの角度位置に設置しても蛍光輝度検出器6から略等しい検出値が得られるためであり、本実施例では図5中の照射中心線の上側である+45度に設置した。
【0057】
さらに、図6に示すように、これら検出器5,6は、暗箱体2内に設置されたコントローラ13内の情報処理部14などに接続されており、この情報処理部14には、上述した表1〜2のような蛍光輝度に対する蛍光磁粉濃度および紫外線吸光濃度に対する分散剤濃度の検量線データを予め入力しておく。
【0058】
そして、このコントローラ13は、例えば、暗箱体2の傾斜部8面上に設けた、蛍光磁粉濃度や分散剤濃度を表示(デジタル表示など)させる、液晶などの表示パネルとしての表示部15に接続させる。なお、表示部15は、暗箱体2以外に、暗箱体2とは別体の表示装置や、後述する湿式蛍光磁粉探傷試験装置21内に設置してもよい。
【0059】
また、この成分濃度測定装置1には、検査液の撹拌手段を設置することができる。図7は検査液の撹拌手段を備える成分濃度測定装置の一例を示した平面図である。この図7に示すように、例えば、暗箱体2の背面側(装着させた測定具3の先端側)外側部には、駆動モータ16を設置する。この場合、測定具3の先端部には、モータ軸17に嵌合可能とする凹部18が取付けられており、測定具3を暗箱体2に装着した際、凹部18をモータ軸17に嵌合させ、駆動モータ16の回転駆動によりモータ軸17を介して測定具3が暗箱体2の前後方向を軸芯として回転する。
【0060】
このような構成にすることで、検査液を装填し、暗箱体2に装着した測定具3を、駆動モータ16により回転させ、測定具3内の検査液を撹拌することにより、検査液中の成分を検査液中でより均質に混合させて、それら濃度をより正確に測定することができる。なお、撹拌手段は上述に限定されることなく、適宜周知の技術も用いてもよい。
【0061】
ここで、例えば、後述の湿式蛍光磁粉探傷試験装置21における後述する検査液タンク22内の検査液の成分濃度を測定したい場合には、まず、蓋体10を脱着した測定具3内にサンプリングした検査液を装填し、再び蓋体10を取付けた測定具3を、暗箱体2の穴部7に回転可能に貫設する。このとき、測定具3の先端部は、暗箱体2の背面の穴部7およびモータ軸17に凹部18を嵌合させることで、安定的に支持されるとともに、測定具3の基端部は、蓋体10の鍔部9が暗箱2正面板へのストッパーとなり、暗箱体2に測定具3をずれることなく安定装着させることができる。
【0062】
そして、駆動モータ16の動力により、モータ軸17および凹部18を介して測定具3を回転させることで、測定具3内で撹拌されている検査液に、紫外線LEDランプ12を点灯させて紫外線を照射する。
【0063】
次いで、まず、検査液を透過した透過光である紫外線を紫外線吸光濃度として、紫外線
検出器5で検出し、その検出結果が情報処理部14に送信されるとともに、検査液から得られる、励起して発光した可視光を蛍光輝度として蛍光輝度検出器6で検出し、その検出結果が情報処理部14に送信される。
【0064】
そして、情報処理部14は、上述した予め入力されている検量線データに基づいて、紫外線吸光濃度の値から分散剤濃度および蛍光輝度の値から蛍光磁粉濃度を算出する。そして、コントローラ13は、それら分散剤濃度および蛍光磁粉濃度を表示部15に表示させる。
【0065】
従って、紫外線LEDランプ12の照射から分散剤濃度および蛍光磁粉濃度を表示部15に表示させるまで、その間わずか1秒にも満たない短時間で検査液の成分濃度を測定することができ、しかも、検査液を撹拌させた状態で、その成分濃度を測定できるため、正確な測定値を迅速に得ることができる。
【0066】
以上のような構成により、検査液を透明な測定具3に導入し、光源4である紫外線LEDランプ12の光を、測定具3の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する紫外線検出器5の検出値に基づいて、蛍光磁粉の濃度を測定するとともに、可視光を検出する蛍光輝度検出器6の検出値に基づいて、分散剤の濃度を測定するので、従来では測定できなかった検査液中における分散剤の濃
度を、光学的方法を用いた簡単な構成で同時に測定でき、かつそれら濃度を瞬時かつ高精度に測定容易に測定することができる。
【0067】
また、光源4は、紫外線LEDランプ12であるので、検査液に吸光および励起発光させる光源ランプの使用寿命が長くなり、コストダウンを図ることができる。
【0068】
また、透過光を検出する検出器は、紫外線検出器5であるとともに、可視光を検出する検出器は、蛍光輝度検出器6であるので、紫外線検出器5による透過度(吸光度)と蛍光磁粉濃度との相関関係および蛍光輝度検出器6による蛍光輝度と分散剤濃度との相関関係に基づいて、検査液中における蛍光磁粉および分散剤の各濃度を正確かつ簡単に測定することができる。
【0069】
また、紫外線検出器5は、測定具3を挟んで光源4の対向位置に設置するので、紫外線LEDランプ12から検査液に入射し、液中を略直進的に透過した紫外線の透過光について、その検査液への吸光度を安定的に測定することができる。
【0070】
また、蛍光輝度検出器6は、測定具3の周囲であって、測定具3の正面中心位置cから、光源4による照射光の照射方向に対して、正負90度の範囲内に設置したので、検査液の蛍光磁粉濃度に応じて蛍光輝度の値も上下することから、蛍光輝度検出器を、蛍光磁粉濃度によらず、最も測定に適した位置もしくは、どの蛍光磁粉濃度においても正確に蛍光輝度を測定可能とする位置に設置することができる。
【0071】
また、測定具3は、フッ素樹脂からなるので、摩擦係数が小さい測定具内面への検査液中の蛍光磁粉の付着を減らし、測定具3内の清掃作業などメンテナンス頻度を低下させるとともに、長期間安定した計測を行うことができる。
【0072】
さらに、測定具3は、暗箱体2内に設置するとともに、紫外線LEDランプ12と、紫外線検出器5と、蛍光輝度検出器6とは、暗箱体2内に備えるので、暗室内において検査液への紫外線の透過光および蛍光輝度を正確に測定することができる。
【0073】
そして、本成分濃度測定装置1は、設置場所を限定せず、成分濃度測定装置1を測定ユニットとして携帯可能とし、サンプリングした検査液の成分濃度を、任意の場所で測定することができる。なお、成分濃度測定装置1は、上述したような形状に限定されるものではない。
【0074】
上記成分濃度測定装置1は、上述した例のように、検査液タンク内からサンプリングした検査液の成分濃度を測定できる測定装置ユニットとして説明したが、この成分濃度測定装置を湿式蛍光磁粉探傷試験装置内に組込んで検査液の濃度測定をすることができる。
【0075】
以下、図8は湿式蛍光磁粉探傷試験装置の一例を示した全体模式図、図9は探傷部の拡大模式図、図10は湿式蛍光磁粉探傷試験装置に備える成分濃度測定装置の一例を示した斜視図、図11は測定用配管に成分濃度測定装置を取付けた湿式蛍光磁粉探傷試験装置の全体模式図である。
【0076】
湿式蛍光磁粉探傷試験装置21(例えば、商品名:スーパーマグナなど、マークテック株式会社製)は、図8に示すように、検査液を貯留する検査液タンク22と、この検査液タンク22内の検査液を、ポンプなどの循環手段23で取り出すとともに、検査液タンク21内に還流させる配管などの移送手段24と、この移送手段24内の検査液を、被検査体の磁化した金属の表面に接触させて、表面の傷部の探傷を行う探傷部25とから構成される。
【0077】
この探傷部25は、図9に示すように、搬送ローラ26aを備え、ベルトコンベア26b上の被検査体を搬送する搬送装置26と、検査液タンク21内から取出した検査液を被検査体上に散布する散布装置27(図示しないが、散布した検査液を回収して検査液タンク内に戻す循環装置を含む)と、貫通コイル28aおよびヨークコイル28bなどからなり、ベルトコンベア26b上の被検査体を磁化する磁化装置28と、紫外線探傷灯29a(ブラックライト)を被検査体に照射して探傷を行う探傷装置29(図示しないが、傷部を検出するCCDカメラなど画像処理装置を含む)とから構成される。
【0078】
なお、上述した湿式蛍光磁粉探傷試験装置21は、上述してきたように周知の技術であるため、それら詳細な説明は省略する。
【0079】
そして、本願発明の検査液の成分濃度測定装置1´は、湿式蛍光磁粉探傷試験装置21における検査液タンク21と、探傷部25との間の移送手段24の中途部に設置される。
【0080】
この場合、成分濃度測定装置1´は、基本的に成分濃度測定装置1と同様であるが、図10に示すように、暗箱体2の穴部7に貫通させる長さを有する測定具3´とし、この測定具3´の両端部をそれぞれ移送手段24に接続する。このとき、測定具3´の両端部は、移送手段24に、図示しないボルトやネジなどの締結具で着脱自在に連結固定される。
【0081】
なお、成分濃度測定装置1´は、測定具3´を挿入する穴部7近傍に、上述したような遮光手段を設けるとともに、成分濃度測定装置1で説明した暗箱体2内の撹拌手段の設置は不要とされる。
【0082】
そして、この湿式蛍光磁粉探傷試験装置21で被検査体の探傷試験を行う際、検査液タンク21内に貯留される検査液を、移送手段24内に循環手段23で取り出し、探傷部25に圧送するが、この移送途中において移送手段24内の検査液は、成分濃度測定装置1´の測定具3´内を通過し、再び移送手段24内から探傷部25に到達する。
【0083】
この成分濃度測定装置1´内において、上述したように光源4から紫外線LEDランプ12の紫外線を測定具3´内の検査液に照射することで、測定具3´内を通過している検査液の透過光を、紫外線検出器5の検出によりその紫外線吸光濃度から蛍光磁粉濃度を測定するとともに、励起して発光した可視光を、蛍光輝度検出器6の検出によりその蛍光輝度から分散剤濃度を測定することができる。
【0084】
このような構成にすることで、成分濃度測定装置1´が湿式蛍光磁粉探傷試験装置21と一体に構成され、従来のように検査液をサンプリングして探傷試験装置とは別の場所で成分濃度測定を行う必要がなく、検査液タンク22から探傷部25へ移送途中である検査液の成分濃度を、散布装置27での散布直前に探傷試験の一環としてオンラインで瞬時に測定することができる。
【0085】
また、成分濃度測定装置1´は、図11に示すように、検査液タンク22に別途設けたポンプなどの循環手段23´を備える、検査液濃度の測定専用配管である移送手段24´の中途部に設置させた湿式蛍光磁粉探傷試験装置21´にすることもできる。
【0086】
このような構成にすることで、検査液タンク22から測定用配管などの移送手段24´を介して検査液タンク22に戻される循環中の検査液の成分濃度を、探傷試験の一環としてオンラインで瞬時に測定することができる。そして、この場合、検査液の散布経路とは別に、検査液の測定専用経路を設けたため、例えば散布経路に不都合などが生じて、散布が停止しても、測定専用経路で常時検査液の濃度を測定することができる。
【0087】
以上詳述したように、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置では、検査液を透明な測定具3に導入し、光源4の光を、測定具3の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する紫外線検出器5の検出値に基づいて、蛍光磁粉の濃度を測定するとともに、励起して発光した可視光を検出する蛍光輝度検出器6の検出値に基づいて、分散剤の濃度を測定するものである。
【産業上の利用可能性】
【0088】
本発明は、上述した被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の濃度測定に適用することができる。
【符号の説明】
【0089】
1,1´ 成分濃度測定装置
2 暗箱体
3,3´ 測定具
4 光源
5 紫外線検出器
6 蛍光輝度検出器
7 穴部
8 傾斜部
12 紫外線LEDランプ
13 コントローラ
14 情報処理部
21 湿式蛍光磁粉探傷試験装置
22 検査液タンク
23,23´ 循環手段
24,24´ 移送手段
c 正面中心位置

【特許請求の範囲】
【請求項1】
被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、前記表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定方法であって、
該成分濃度測定方法は、前記検査液を透明な測定具に導入し、光源の光を、前記測定具の一側方から前記検査液に照射して得られた透過光および励起して発光した可視光を用い、前記透過光を検出する検出器の検出値に基づいて、前記蛍光磁粉の濃度を測定するとともに、
前記励起して発光した可視光を検出する検出器の検出値に基づいて、前記分散剤の濃度を測定することを特徴とする湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。
【請求項2】
前記光源は、紫外線LEDランプであることを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。
【請求項3】
前記透過光を検出する検出器は、紫外線検出器であるとともに、前記可視光を検出する検出器は、蛍光輝度検出器であることを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。
【請求項4】
前記紫外線検出器は、前記測定具を挟んで前記光源の対向位置に設置することを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。
【請求項5】
前記蛍光輝度検出器は、前記測定具の周囲であって、前記測定具の正面中心位置から、前記光源による照射光の照射方向に対して、正負90度の範囲内に設置したことを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。
【請求項6】
被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、前記金属表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定装置であって、
該成分濃度測定装置は、前記検査液を導入する測定具と、
該測定具内の前記検査液に紫外線を照射する光源の紫外線LEDランプと、
前記紫外線照射により前記検査液から得られた透過光を検出する紫外線検出器と、
前記紫外線照射により前記検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、
前記紫外線検出器および前記蛍光輝度検出器の各検出値に基づいて、それぞれ前記蛍光磁粉の濃度および前記分散剤の濃度を算出する情報処理部と、
を備えることを特徴とする湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置。
【請求項7】
前記測定具は、フッ素樹脂からなることを特徴とする、請求項6に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置。
【請求項8】
前記測定具は、暗箱体内に設置するとともに、前記紫外線LEDランプと、前記紫外線検出器と、前記蛍光輝度検出器とは、前記暗箱体内に備えることを特徴とする、請求項6に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置。
【請求項9】
少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、
該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、
該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、
前記移送手段は、前記検査液の成分濃度を測定する、請求項6〜8に記載の成分濃度測定装置を備え、前記移送手段が、前記探傷部に前記検査液を圧送する試験用配管であって、該試験用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする湿式蛍光磁粉探傷試験装置。
【請求項10】
少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、
該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、
該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、
前記移送手段は、前記検査液の成分濃度を測定する、請求項6〜8に記載の成分濃度測定装置を備え、前記移送手段が、前記検査液タンク内に接続した測定用配管であって、該測定用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする湿式蛍光磁粉探傷試験装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−237227(P2011−237227A)
【公開日】平成23年11月24日(2011.11.24)
【国際特許分類】
【出願番号】特願2010−107561(P2010−107561)
【出願日】平成22年5月7日(2010.5.7)
【出願人】(390002808)マークテック株式会社 (42)
【Fターム(参考)】