説明

炭化珪素単結晶製造装置、炭化珪素単結晶の製造方法及びその成長方法

【課題】高品質でかつ長尺な単結晶を製造することができる炭化珪素単結晶製造装置、炭化珪素単結晶の製造方法及びその成長方法を提供する。
【解決手段】本発明に係る炭化珪素単結晶製造装置は、原料ガスを炭化珪素種結晶5側に案内するガイド部材7を備え、坩堝3は、上下方向に互いに相対移動可能な坩堝上部3aと坩堝下部3bとからなり、ガイド部材7は、坩堝上部3aに固定されたガイド部材上部7aと、坩堝下部3bに固定されたガイド部材下部7bとからなり、ガイド部材上部7a及びガイド部材下部7bの少なくとも一方に孔部10が設けられており、ガイド部材上部7aとガイド部材下部7bとは、坩堝上部3a及び坩堝下部3bの相対移動により、孔部10が開閉するように配置されている、ことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、炭化珪素単結晶製造装置、炭化珪素単結晶の製造方法及びその成長方法に関する。
【背景技術】
【0002】
炭化珪素は耐熱性に優れ、絶縁破壊電圧が大きく、エネルギーバンドギャップが広く、
また、熱伝導度が高いなどの優れた性能を有するため、大電力パワーデバイス、耐高温半
導体素子、耐放射線半導体素子、高周波半導体素子等への応用が可能である。シリコンが
材料自体の物性限界から性能向上も限界に近づきつつあるため、シリコンよりも物性限界
を大きくとれる炭化珪素が注目されている。近年は地球温暖化問題への対策となる、電力
変換時のエネルギーロスを低減する省エネルギー技術として、炭化珪素材料を使ったパワ
ーエレクトロニクス技術が期待を集めている。
その基盤技術として炭化珪素単結晶の成長技術の研究開発が精力的に進められ、実用化
の促進に向けて主に製造コスト低減の観点から大口径化及び長尺化技術の確立が急務となっている。
【0003】
炭化珪素単結晶を成長させる方法として、昇華再結晶法が広く用いられている。この昇華再結晶法は、黒鉛製坩堝内に配置した黒鉛台座に種結晶を接合すると共に、坩堝底部に配した炭化珪素原料を2000℃以上に加熱して昇華ガスを発生させ、その昇華ガスを原料部より数十〜数百℃低温にした種結晶上に再結晶化させることによって、種結晶上に炭化珪素単結晶を成長させるものである。
【0004】
従来より、大口径かつ高品質の炭化珪素単結晶ウェハを効率的かつ低コストに得るために、炭化珪素単結晶の成長工程ではより長尺な単結晶を成長可能な成長法が望まれている。ところが、炭化珪素単結晶の成長方法が気相成長法であることが、長尺な単結晶を得ることを極めて困難にしている。
【0005】
具体的には、炭化珪素種結晶上への炭化珪素の堆積を開始すると、原料ガスは台座上の種結晶だけでなく、坩堝の蓋部へも到達するため、種結晶上に炭化珪素の単結晶で成長するだけでなく、坩堝の蓋部上に炭化珪素の多結晶が成長してしまうという問題がある。この場合、単結晶の成長に寄与しない原料ガスの量が多大なので成長速度の促進を大きく阻害される。また、さらに炭化珪素種結晶上への炭化珪素の堆積を続けると、台座周囲への多結晶が増加し、その多結晶が成長して単結晶に接触すると単結晶の成長を阻害するとともに、多結晶が単結晶に歪みを与えて、転位やクラックといった結晶欠陥が発生するという問題がある。また、成長面と原料面の距離が近づき、成長面温度上昇やインクルージョンの増加により、品質が劣化するという問題がある。
【0006】
これらの問題に対し、以下のような提案がされている。
坩堝の蓋部に成長する多結晶の成長を抑制するために、種結晶の外周に所定間隔をあけて仕切り部材を配設することにより、坩堝の蓋部へ到達する原料ガスの量を大きく低減する方法が提案されている(特許文献1)。
また、台座周囲に成長する多結晶を低減するために、原料の昇華ガスを炭化珪素種結晶表面に誘導し、結晶成長を促進するようにガイド部材(ガス流制御部材)を用いたり(特許文献2)、ガイド部材に坩堝の内壁面側へ抜ける孔部やガイド部材の原料側端部と坩堝内側面との間にガス通路を形成する(特許文献3)方法が提案されている。
【0007】
また、炭化珪素原料が配置される坩堝下部と坩堝下部を覆う坩堝上部と、坩堝上部の中央に形成された突起部に配置される台座とを備えると共に、坩堝上部を坩堝下部に対して独立して上下移動可能な構成とすることにより、結晶成長が進むに従って、坩堝上部を上方に移動することで台座に貼り付けられた種結晶を引き上げて、成長面と原料面との距離を維持する方法(特許文献4)が提案されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2007−320794号公報
【特許文献2】特開2002−60297号公報
【特許文献3】特開2005−53739号公報
【特許文献4】特開2009−23880号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
結晶成長(成長速度)を促進するために、原料ガスを炭化珪素種結晶に誘導して、その成長面近傍の原料ガス濃度を高くするガイド部材は非常に有効である(特許文献2)。原料ガス濃度が高くなることにより、ガイド部材の内壁面(炭化珪素種結晶側の面)に多結晶が成長しやすくなるという問題があるが、この問題はガイド部材に孔部を形成したり、ガイド部材の原料側端部と坩堝内側面との間にガス通路を形成することにより、抑制することができる(特許文献3)。
しかしながら、単結晶の成長初期(成長開始時を含む)から、かかる孔部やガス通路が存在すると、それらを抜けて炭化珪素単結晶の成長に寄与しない原料ガスの量が多くなり、単結晶の成長速度の促進が阻害され、単結晶の長尺化が困難になるという問題がある。
すなわち、ガイド部材の孔部やガス通路はガイド部材上の多結晶の成長を抑制するという利点を有するものの、本質的に単結晶の成長速度の促進を阻害するという欠点をも有する。
また、成長面と原料面との距離を維持する方法(特許文献4)は提案されているものの、単結晶の長尺化が進むと、坩堝の蓋部、台座の周辺部に多結晶付着が増加し、やがては単結晶と接触することで単結晶の亀裂発生及び品質劣化を引き起こすおそれがあるが、それに対する有効な対策は存在しないという問題がある。
以上の問題は、単結晶の長尺化が進むにつれてますます深刻な問題になる。
【0010】
本発明は、成長速度の促進阻害を抑制し、かつ多結晶と単結晶の接触を抑制し、高品質でかつ長尺な単結晶を製造することができる炭化珪素単結晶製造装置、炭化珪素単結晶の製造方法及びその成長方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明者は、上記課題を解決するために鋭意研究を重ねた結果、ガイド部材の孔部やガス通路が本質的に有する単結晶の成長速度の促進を阻害するという問題、及び、坩堝の蓋部に成長する多結晶の問題については、ガイド部材の孔部を開閉できる構成を採用することにより、回避若しくは低減できることに想到した。すなわち、ガス通路を設けない構成とすると共に、ガイド部材の孔部については単結晶の成長初期には閉鎖して原料ガスが当該孔部を抜けることを防止し、原料ガスが種結晶に到達できずに単結晶成長に寄与しなくなることを回避する一方、結晶成長が進んだ段階では、ガイド部材の孔部を開口して原料ガスの一部を当該孔部から逃がすことによって、坩堝の蓋部、台座の周辺部及びガイド部材上の多結晶のさらなる成長を抑制することに想到した。さらに、結晶成長面の環境の変化の問題については、単結晶の成長面がその結晶成長により移動するのに合わせてガイド部材の孔部を移動できる構成を採用することにより、結晶成長面の環境の変化を抑制するという画期的なアイデアに想到した。
本発明者は、この知見についてさらに研究を進めた結果、以下の手段を有する本発明を完成するに至った。
【0012】
本発明は、上記課題を解決するため、以下の手段を提供する。
(1)坩堝内の台座に配置した炭化珪素種結晶上に、原料ガスを供給して、前記炭化珪素種結晶上に炭化珪素の単結晶を成長させる炭化珪素単結晶製造装置において、原料ガスを炭化珪素種結晶側に案内するガイド部材を備え、前記坩堝は、上下方向に互いに相対移動可能な坩堝上部と坩堝下部とからなり、前記ガイド部材は、前記坩堝上部に固定されたガイド部材上部と、前記坩堝下部に固定されたガイド部材下部とからなり、前記ガイド部材上部及びガイド部材下部の少なくとも一方に孔部が設けられており、前記ガイド部材上部と前記ガイド部材下部とは、前記坩堝上部及び坩堝下部の相対移動により、前記孔部が開閉するように配置されている、ことを特徴とする炭化珪素単結晶製造装置。
ここで、本発明は昇華法、CVD法等の気相成長法を用いる炭化珪素単結晶製造装置に適用することができ、原料は坩堝の下部に収容して昇華させて供給する場合や、配管等を通してガスを供給する場合なども含んでいる。
(2)前記原料ガスは前記坩堝の下部に収容された原料から昇華させるものであることを特徴とする前項(1)に記載の炭化珪素単結晶製造装置。
(3)前記ガイド部材上部と前記ガイド部材下部とはそれぞれ、上下方向に延在する円筒形状部を有し、互いの円筒形状部の径は異なっており、前記孔部はいずれかの円筒形状部に設けられている、ことを特徴とする前項(2)に記載の炭化珪素単結晶製造装置。
(4)前記ガイド部材上部及び前記ガイド部材下部の前記円筒形状部同士の離間距離は、0.5mm以下である、ことを特徴とする前項(3)に記載の炭化珪素単結晶製造装置。
(5)前記孔部が、前記台座の前記炭化珪素種結晶を配置する面から上下方向において10〜80mm離間している、ことを特徴とする前項(1)から(4)のいずれか一項に記載の炭化珪素単結晶製造装置。
ここで、「10〜80mm」の離間距離は、台座の炭化珪素種結晶を配置する面から、孔部の上下方向において最も台座側(坩堝上部側)の位置までの距離(図2の符号“L”)である。
(6)前記孔部が前記ガイド部材下部に設けられている、ことを特徴とする前項(1)から(5)のいずれか一項に記載の炭化珪素単結晶製造装置。
(7)前記ガイド部材上部は、下方にいくほど口径が拡大する筒状部を有する、ことを特徴とする前項(1)から(6)のいずれか一項に記載の炭化珪素単結晶製造装置。
(8)前記孔部が、前記坩堝の上下方向の中心軸に対して対称な形状である、ことを特徴とする前項(1)から(7)のいずれか一項に記載の炭化珪素単結晶製造装置。
(9)前記孔部が上下方向及び/又は水平方向に複数設けられ、それら複数の孔部が前記坩堝の上下方向の中心軸に対して対称に配置している、ことを特徴とする前項(1)から(8)のいずれか一項に記載の炭化珪素単結晶製造装置。
(10)前記ガイド部材はカーボン材料からなり、少なくとも炭化珪素種結晶側を向いた面がタンタルカーバイドで被膜されている、ことを特徴とする前項(1)から(9)のいずれか一項に記載の炭化珪素単結晶製造装置。
ここで、「カーボン材料」としては例えば、黒鉛(グラファイト)、アモルファスカーボン、炭素繊維が挙げられる。
(11)炭化珪素種結晶の近傍に配設されて、前記坩堝内を上下に区画するドーナツ状の仕切り部材を備え、該仕切り部材はその中央部に炭化珪素種結晶と相似形でかつ該炭化珪素種結晶より大きい開口を有し、平面視して該開口内に炭化珪素種結晶が位置するように配設されている、ことを特徴とする前項(1)から(10)のいずれか一項に記載の炭化珪素単結晶製造装置。
(12)坩堝内の台座に配置した炭化珪素種結晶上に、原料ガスを供給して、前記炭化珪素種結晶上に炭化珪素の単結晶を成長させる炭化珪素単結晶の製造方法において、上下方向に互いに相対移動可能な坩堝上部と坩堝下部とからなる坩堝と、原料ガスを炭化珪素種結晶側に案内するガイド部材であって、前記坩堝上部に固定されたガイド部材上部と、前記坩堝下部に固定されたガイド部材下部とからなると共に、前記ガイド部材上部及びガイド部材下部の少なくとも一方に孔部が設けられているガイド部材とを用いて、炭化珪素の単結晶の成長開始時には、前記孔部を閉じるように、前記ガイド部材上部と前記ガイド部材下部とを配置して炭化珪素単結晶の成長を行い、その後、前記坩堝上部及び坩堝下部の相対移動により、前記孔部を開口して炭化珪素単結晶の成長を行う、ことを特徴とする炭化珪素単結晶の製造方法。
ここで、本発明は昇華法、CVD法等の気相成長法に適用することができ、原料は坩堝の下部に収容して昇華させて供給する場合や、配管等を通してガスを供給する場合なども含んでいる。
(13)前記原料ガスは前記坩堝の下部に収容された原料から昇華させることを特徴とする前項(12)に記載の炭化珪素単結晶の製造方法。
(14)坩堝内の台座に配置した炭化珪素種結晶上に、原料ガスを供給して、前記炭化珪素種結晶上に炭化珪素の単結晶を成長させる炭化珪素単結晶の成長方法において、上下方向に互いに相対移動可能な坩堝上部と坩堝下部とからなる坩堝と、原料ガスを炭化珪素種結晶側に案内するガイド部材であって、前記坩堝上部に固定されたガイド部材上部と、前記坩堝下部に固定されたガイド部材下部とからなると共に、前記ガイド部材上部及びガイド部材下部の少なくとも一方に孔部が設けられているガイド部材とを用いて、炭化珪素の単結晶の成長開始時には、前記孔部を閉じるように、前記ガイド部材上部と前記ガイド部材下部とを配置して炭化珪素単結晶の成長を行い、その後、前記坩堝上部及び坩堝下部の相対移動により、前記孔部を開口して炭化珪素単結晶の成長を行う、ことを特徴とする炭化珪素単結晶の成長方法。
ここで、本発明は昇華法、CVD法等の気相成長法に適用することができ、原料は坩堝の下部に収容して昇華させて供給する場合や、配管等を通してガスを供給する場合なども含んでいる。
(15)前記原料ガスは前記坩堝の下部に収容された原料から昇華させることを特徴とする前項(14)に記載の炭化珪素単結晶の成長方法。
【発明の効果】
【0013】
本発明の炭化珪素単結晶製造装置によれば、坩堝は、上下方向に互いに相対移動可能な坩堝上部と坩堝下部とからなり、ガイド部材は、坩堝上部に固定されたガイド部材上部と、坩堝下部に固定されたガイド部材下部とからなり、ガイド部材上部及びガイド部材下部の少なくとも一方に孔部が設けられており、ガイド部材上部とガイド部材下部とは、坩堝上部及び坩堝下部の相対移動により、孔部が開閉するように配置されている構成を採用したので、ガイド部材の孔部の本来の機能である、坩堝の蓋部、台座の周辺部及びガイド部材上の多結晶の成長を抑制すると共に、ガイド部材の孔部が本質的に単結晶の成長速度の促進を阻害するという欠点を最小限にすることができる。すなわち、単結晶の成長初期にはガイド部材の孔部については閉鎖して原料ガスが当該孔部を抜けることを防止し、単結晶成長に寄与しない原料ガスの量を従来より低減する一方、単結晶成長が進んだ段階では、ガイド部材の孔部を開口して原料ガスの一部を当該孔部から逃がすことによって、坩堝の蓋部、台座の周辺部及びガイド部材上の多結晶のさらなる成長を抑制することができる構成とした。さらに、孔部の開閉は坩堝上部及び坩堝下部の相対移動と連動しているので、坩堝上部及び坩堝下部の相対移動によって成長面と原料面との距離の維持をすると同時に、坩堝の蓋部、台座の周辺部及びガイド部材上の多結晶の成長を抑制することができる。この坩堝上部及び坩堝下部の相対移動は、成長面と原料面との距離の維持を優先することもできるし、多結晶の成長の抑制を優先することもできる。
【0014】
本発明の炭化珪素単結晶製造装置によれば、原料ガスが坩堝の下部に収容された原料から昇華させるものである構成を採用することにより、昇華法で炭化珪素単結晶成長させる場合にも、上記効果を得ることができる。
【0015】
本発明の炭化珪素単結晶製造装置によれば、ガイド部材上部とガイド部材下部とはそれぞれ、上下方向に延在する円筒形状部を有し、互いの円筒形状部の径は異なっており、孔部はいずれかの円筒形状部に設けられている構成を採用することにより、孔部の開閉は坩堝上部及び坩堝下部の上下の相対的な並進移動により容易に行うことができる。
【0016】
さらに、ガイド部材上部及びガイド部材下部の円筒形状部同士の離間距離は、0.5mm以下である構成を採用することにより、ガイド部材上部とガイド部材下部とは上下方向に移動(スライド、摺動)する必要があるため、完全に密着した配置とすることはできないが、その離間距離が0.5mm以下であれば、実質的に閉鎖されているに等しい効果が得られる。
【0017】
本発明の炭化珪素単結晶製造装置によれば、孔部が、台座の炭化珪素種結晶を配置する面から上下方向において10〜80mm離間している構成を採用することにより、坩堝の蓋部及び台座の周辺部の多結晶の成長を有効に抑制して、20〜100mm程度の長さの炭化珪素単結晶を製造することができる。
【0018】
本発明の炭化珪素単結晶製造装置によれば、孔部がガイド部材下部に設けられている構成を採用することにより、坩堝上部及び坩堝下部の相対移動による、ガイド部材の孔部の台座(若しくは炭化珪素種結晶)に対する相対移動の方向が単結晶の成長方向と一致するので、炭化珪素種結晶上の単結晶の成長面の移動に合わせて(言い換えると、単結晶の成長に合わせて)、孔部を移動させることによって単結晶の成長面と孔部との相対位置関係を変えないことで(若しくは、できるだけ変えないことで)、結晶成長面の環境の変化を低減して、高品質な単結晶を安定に成長することが可能になり、その結果、単結晶の長尺化も実現できる。
【0019】
本発明の炭化珪素単結晶製造装置によれば、ガイド部材上部は、下方にいくほど口径が拡大する筒状部を有する構成を採用することにより、下方にいくほど口径が拡大する単結晶を製造することができる。
【0020】
本発明の炭化珪素単結晶製造装置によれば、孔部が、前記坩堝の上下方向の中心軸に対して対称な形状である構成を採用することにより、結晶成長面近傍をはじめ、坩堝内の結晶成長環境を坩堝の上下方向の中心軸に対して対称として、単結晶がその中心軸からずれて成長するのが防止されて長尺化しやすくなる。
【0021】
本発明の炭化珪素単結晶製造装置によれば、孔部が上下方向及び/又は水平方向に複数設けられ、それら複数の孔部が前記坩堝の上下方向の中心軸に対して対称に配置している構成を採用することにより、複数の孔部でガイド部材の材料の強度や加工性を考慮して最適な孔部を構成することができる。
【0022】
本発明の炭化珪素単結晶製造装置によれば、炭化珪素は2000℃以上で昇華させるので、坩堝の内部を2000℃以上の高温にする必要がある。このような高温環境においては、炭化珪素原料粉末からの分解昇華ガスとしてSi、Si2C、SiC2などが生成し、
その分解昇華ガスがガイド部材等と反応することにより、微小パーティクルが発生する。これが種結晶の成長面に運ばれて付着すると、炭化珪素単結晶インゴットの内部にインクルージョンと呼ばれる不純物となって、結晶欠陥を発生させる。ガイド部材の炭化珪素種結晶側を向いた面をタンタルカーバイドで被膜することにより、カーボンのインクルージョンを防止することができる。
【0023】
本発明の炭化珪素単結晶製造装置によれば、炭化珪素種結晶の近傍に配設されて、坩堝内を上下に区画するドーナツ状の仕切り部材を備え、仕切り部材はその中央部に炭化珪素種結晶と相似形でかつ炭化珪素種結晶より大きい開口を有し、開口内に炭化珪素種結晶が位置するように配設されている構成を採用することにより、ガイド部材と共に、坩堝の蓋部及び台座の周辺部へ原料ガスが抜けていく量を低減して、炭化珪素種結晶の成長面近傍の原料ガス濃度を高くし、それによって単結晶の成長速度の促進を図ると共に、坩堝の蓋部及び台座の周辺部の多結晶の成長を抑制することができる。
【0024】
本発明の炭化珪素単結晶の製造方法によれば、炭化珪素の単結晶の成長開始時には、孔部を閉じるように、ガイド部材上部とガイド部材下部とを配置し、その後、坩堝上部及び坩堝下部の相対移動により、孔部を開口して炭化珪素単結晶の成長を行う構成を採用したので、単結晶の成長初期にはガイド部材の孔部については閉鎖して原料ガスが当該孔部を抜けることを防止し、単結晶成長に寄与しない原料ガスの量を従来より低減する一方、単結晶成長が進んだ段階では、ガイド部材の孔部を開口して原料ガスの一部を当該孔部から逃がすことによって、坩堝の蓋部、台座の周辺部及びガイド部材上の多結晶のさらなる成長を抑制することができる。さらに、孔部の開閉は坩堝上部及び坩堝下部の相対移動と連動しているので、坩堝上部及び坩堝下部の相対移動によって成長面と原料面との距離の維持をすると同時に、坩堝の蓋部、台座の周辺部及びガイド部材上の多結晶の成長を抑制することができる。この坩堝上部及び坩堝下部の相対移動は、成長面と原料面との距離の維持を優先することもできるし、多結晶の成長の抑制を優先することもできる。
【0025】
本発明の炭化珪素単結晶の成長方法によれば、炭化珪素の単結晶の成長開始時には、孔部を閉じるように、ガイド部材上部とガイド部材下部とを配置し、その後、坩堝上部及び坩堝下部の相対移動により、孔部を開口して炭化珪素単結晶の成長を行う構成を採用したので、単結晶の成長初期にはガイド部材の孔部については閉鎖して原料ガスが当該孔部を抜けることを防止し、単結晶成長に寄与しない原料ガスの量を従来より低減する一方、単結晶成長が進んだ段階では、ガイド部材の孔部を開口して原料ガスの一部を当該孔部から逃がすことによって、坩堝の蓋部、台座の周辺部及びガイド部材上の多結晶のさらなる成長を抑制することができる。さらに、孔部の開閉は坩堝上部及び坩堝下部の相対移動と連動しているので、坩堝上部及び坩堝下部の相対移動によって成長面と原料面との距離の維持をすると同時に、坩堝の蓋部、台座の周辺部及びガイド部材上の多結晶の成長を抑制することができる。この坩堝上部及び坩堝下部の相対移動は、成長面と原料面との距離の維持を優先することもできるし、多結晶の成長の抑制を優先することもできる。
【図面の簡単な説明】
【0026】
【図1】本発明に係る炭化珪素単結晶成長装置を示す断面模式図である。
【図2】本発明に係る第1の実施形態の炭化珪素単結晶成長装置の坩堝内の拡大断面模式図である。
【図3】本発明の炭化珪素単結晶成長装置で使用する昇降装置の一例を備えた坩堝周辺の拡大断面模式図である。
【図4】本発明に係る第2の実施形態の炭化珪素単結晶成長装置の坩堝内の拡大断面模式図である。
【図5】本発明に係る第3の実施形態の炭化珪素単結晶成長装置の坩堝内の拡大断面模式図である。
【発明を実施するための形態】
【0027】
以下、本発明を適用した一実施形態である炭化珪素単結晶製造装置、炭化珪素単結晶の製造方法及びその成長方法について、図面を用いて詳細に説明する。本発明は昇華法、CVD法等の気相成長法に適用できるが、一例として昇華法を用いた場合を例に挙げて説明する。なお、以下の説明において参照する図面は、本実施形態の炭化珪素単結晶製造装置、炭化珪素単結晶の製造方法及びその成長方法を説明する図面であって、図示される各部の大きさや厚さや寸法等は、実際の炭化珪素単結晶製造装置等の寸法関係とは異なっていることがある。また、以下の説明において例示する材料や寸法等は一例であり、本発明は必ずしもそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
なお、本発明の炭化珪素単結晶の製造方法及びその成長方法については以下の炭化珪素単結晶製造装置の説明と併せて説明する。
【0028】
[炭化珪素単結晶製造装置(第1の実施形態)]
先ず、図1から図3に示す本発明の第1の実施形態を適用した炭化珪素単結晶製造装置の構造について説明する。
【0029】
炭化珪素単結晶製造装置100は、真空容器1の内部に、断熱材2に覆われた坩堝3が配置され、坩堝3内には原料ガスを炭化珪素種結晶側に案内するガイド部材7を備えて概略構成されている。
【0030】
坩堝3は内部に空洞部20を備えており、坩堝3の空洞部20内の下部には、炭化珪素種結晶5上に炭化珪素単結晶を結晶成長させるのに十分な量の炭化珪素原料粉末6が収容されている。空洞部20は、下部に十分な量の炭化珪素原料6を備えるとともに、炭化珪素単結晶を結晶成長させるのに必要な空間を上部に確保している。そのため、昇華再結晶法によって、炭化珪素種結晶5の成長面5aの上に、内底面20b側に向けて炭化珪素単結晶を結晶成長させることができる。
【0031】
坩堝3は、昇降装置(図3参照)によって上下方向に互いに相対移動可能な坩堝上部3aと坩堝下部3bとから構成されている。
坩堝上部3a及び坩堝下部3bはいずれか一方だけが可動な構成でも、両方が可動な構成でも本発明の効果を奏するが、本明細書で示す実施形態では、坩堝下部3bは固定され、坩堝上部3aだけが可動であり、上方に移動できる場合について詳細に説明する。
なお、炭化珪素原料は坩堝下部3bに収容されているため、坩堝上部3aだけが可動でかつ坩堝下部3bが固定されている場合には、炭化珪素原料の加熱環境の変化が小さいので、炭化珪素単結晶のより安定な成長を可能とするという利点がある。
【0032】
坩堝上部3aと坩堝下部3bはそれぞれ、図2(a)及びに図2(b)示すように、互いに相対移動可能に摺接する摺動面3A、3Bを有し、それら摺動面3A、3Bを合わせるように配置される。
図2(a)で示すのは、空洞部20の体積が最小の状態であり、坩堝上部3aの頂部(蓋部)3abと坩堝下部3bの底部3bbとの距離が最も近い状態すなわち、炭化珪素種結晶5と炭化珪素原料6との距離が最も近い状態である。
他方、図2(b)で示すのは、坩堝上部3aの頂部3abと坩堝下部3bの底部3bbとが図2(a)の状態よりも離間した状態すなわち、炭化珪素種結晶5と炭化珪素原料6とが図2(a)の状態よりも離間した状態である。
【0033】
坩堝3の材料としては、高温で安定であり不純物ガスの発生の少ない材料を用いることが好ましく、黒鉛(グラファイト)、炭化珪素、又は、炭化珪素もしくはタンタルカーバイド(TaC)によって被覆された黒鉛(グラファイト)などを用いることが好ましい。
【0034】
坩堝上部3aの上面中央部には下方に突出した円柱状の台座4が設けられ、坩堝下部3bが坩堝上部3aで蓋をされたとき、台座4が内底面20b側へ向く構成とされている。台座4の一面(種結晶側表面)4aに炭化珪素種結晶5が接合される。
坩堝上部3aと台座4は一体の部材で構成されてもよく、二以上の部材を結合することにより構成されてもよい。
【0035】
ガイド部材7は、坩堝上部3aに固定されたガイド部材上部7aと、坩堝下部3bに固定されたガイド部材下部7bとからなり、ガイド部材上部7a及びガイド部材下部7bの少なくとも一方(第1の実施形態では、ガイド部材上部7a)に孔部10が設けられており、ガイド部材上部7aとガイド部材下部7bとは、坩堝上部3a及び坩堝下部3bの相対移動により、孔部10が開閉するように配置されている。
【0036】
ガイド部材7の材料としても、高温で安定であり不純物ガスの発生の少ない材料を用いることが好ましく、黒鉛(グラファイト)、もしくはタンタルカーバイド(TaC)によって被覆された黒鉛(グラファイト)などを用いることが好ましい。
ガイド部材7をタンタルカーバイド(TaC)によって被覆された黒鉛(グラファイト)からなるものとする場合は、少なくとも炭化珪素種結晶側を向いた面7A、7Bがタンタルカーバイドで被膜すると有効である。タンタルカーバイド(TaC)を被覆するのは、黒鉛のカーボンをむき出しにした場合、原料ガスとカーボンが反応して、成長中の単結晶9の中にカーボンがインクルージョンとして入ってしまい、品質が低下するのでそれを防止するためであり、炭化珪素種結晶側を向いた面だけでもタンタルカーバイドで被膜しておけば、この品質低下を防止できるからである。
【0037】
台座4の炭化珪素種結晶を配置する面4aから孔部10までの上下方向の離間距離L(図2(b))は、10〜80mmであるのが好ましい。坩堝3の頂部(蓋部)3ab及び台座4の側部(周辺部)4bの多結晶の成長を有効に抑制して、長尺の炭化珪素単結晶を製造することができるからである。
【0038】
孔部10の形状には限定はないが、図2(a)に示すように、孔部10は坩堝3の上下方向の中心軸Y−Y’に対して対称な形状であるのが好ましい。結晶成長面近傍をはじめ、坩堝内の結晶成長環境を坩堝の上下方向の中心軸に対して対称とすることで、単結晶がその中心軸からずれて成長するのが防止されて長尺化しやすくなるからである。
また、図2に示すように、環状の孔の場合は、その径(幅)が0.5〜5mmであるのが好ましい。0.5mmより小さい場合は、原料ガスがガイド部材7と坩堝の内側面3aaとで囲まれた空間24へ十分に抜けずに、ガイド部材の内壁面に堆積して多量の炭化珪素多結晶が形成してしまい、また、5mmより大きい場合は、原料ガスが空間24へ抜け過ぎて、結晶成長面へ供給される原料ガス濃度が希薄になり、単結晶の成長速度が小さくなり過ぎるからである。
【0039】
図2に示した例では孔部は1個であるが、上下方向及び/又は水平方向に複数設けられ、それら複数の孔部を前記坩堝の上下方向の中心軸に対して対称に配置してもよい。
複数の孔部によって、ガイド部材の材料の強度や加工性を考慮して最適な孔部構成をとることができるからである。
【0040】
図2に示すように、ガイド部材上部7aとガイド部材下部7bとはそれぞれ、上下方向に延在する円筒形状部7aa、7baを有し、互いの円筒形状部7aa、7baの径は異なっており(第1の実施形態では、ガイド部材下部7bの径の方がガイド部材上部7aの径より大きい)、孔部10は円筒形状部7aaに設けられている。
また、ガイド部材上部7aはさらに、円筒形状部7aaから坩堝上部3aの内側面3aaに延在して、内側面3aaに支持される支持部7abを有する。また、ガイド部材下部7bはさらに、円筒形状部7baから坩堝上部3aの内側面3aaに延在して、内側面3aaに支持される支持部7abを有する。
ガイド部材上部7aを、その支持部7abが炭化珪素種結晶の近傍に位置する構成とすることにより、その支持部7abに、後述するような仕切り部材8の機能を持たせることもできる。
【0041】
ガイド部材上部7aの円筒形状部7aaとガイド部材下部7bの円筒形状部7baとは、図2(a)に示すように、水平方向に重畳するように配置されて孔部10を閉鎖する。
ガイド部材上部7aの円筒形状部7aaとガイド部材下部7bの円筒形状部7baとの隙間は0.5mm以下であるのが好ましい。ガイド部材上部7aとガイド部材下部7bとは上下方向に移動(スライド、摺動)する必要があるため、完全に密着した配置とすることはできない。そのため、孔部10を完全に閉鎖することはできないが、隙間が0.5mm以下であれば、実質的に閉鎖されているに等しい効果(原料ガスが孔部10を抜けてガイド部材上部7aの支持部7abの下方側の面等に堆積するのが防止)が得られるからである。
【0042】
また、炭化珪素種結晶5の周囲近傍には、坩堝3内を上下に区画するドーナツ状の仕切り部材8が配設されている。仕切り部材8はその中央部に炭化珪素種結晶と相似形でかつ炭化珪素種結晶より大きい開口8aを有し、平面視して開口8a内に炭化珪素種結晶が位置するように配設されている。
【0043】
この仕切り部材8は、坩堝上部3aの頂部3abの空洞部20側に、図2(b)に示すような多結晶21が成長するのを抑制する機能を有する。多結晶21が成長して台座4の側部4bに付着しながら炭化珪素種結晶5に近づき、しまいには炭化珪素種結晶5やその上の炭化珪素単結晶にまで達するのを防止するものである。
【0044】
仕切り部材8の内周部と台座4(若しくは炭化珪素種結晶5)との間に開いたガス吐出口8Aのサイズ(仕切り部材8の内周部と台座4(若しくは炭化珪素種結晶5)との間の距離)は小さいほど、坩堝上部3aの頂部3abの空洞部20側の多結晶21の成長を抑制できるが、小さ過ぎると、このガス吐出口8Aに多結晶が成長してガス吐出口8Aを塞いでしまい、その多結晶が成長中の炭化珪素単結晶と接触してしまう。従って、仕切り部材8のガス吐出口8Aのサイズは、頂部3abの多結晶の成長を有効に抑制し、かつ、結晶成長中に多結晶で塞がることがないサイズであることが必要であり、0.5〜5mmであるのが好ましい。
【0045】
また、坩堝上部3aと坩堝下部3bとからなる坩堝3全体を覆うように断熱材2が設置されている。このとき、坩堝3の坩堝下部3bの表面および坩堝上部3aの表面の一部が露出するように窓孔2c、2dを形成する。断熱材2は、坩堝3を安定的に高温状態に維持するためのものであり、例えば、炭素繊維製の材料を用いることができる。坩堝3を必要な程度に安定的に高温状態に維持することができる場合には、断熱材2は設置しなくてもよい。
【0046】
断熱材2を巻き付けた坩堝3は真空容器1の内部中央の支持棒30上に設置されている。支持棒30は筒状とされており、この支持棒30の貫通孔30cを断熱材2に設けた窓孔2cと合わせるようにする。これにより、真空容器1の下に配置された放射温度計31により、この支持棒30の貫通孔30cおよび断熱材2の下側の窓孔2cを通して、坩堝3の下部表面の温度を観測できる構成とされている。同様に、真空容器1の上に配置された別の放射温度計32により、断熱材2の上側の窓孔2dを通して、坩堝3の上部表面の温度を観測できる構成とされている。
なお、坩堝3の表面温度は、窓孔2c、2dに熱電対を差し込んで表面に熱電対の先端が触れるように配置して測定してもよい。
【0047】
真空容器1の内部のガス交換は、まず、排出管33に接続した真空ポンプ(図示略)を用いて、真空容器1の内部の空気を排気して、例えば、4×10−3Paの減圧状態とする。真空ポンプとしては、例えば、ターボ分子ポンプなどを用いることができる。その後、導入管34から真空容器1の内部に高純度Arガスを導入して、真空容器1の内部をAr雰囲気で9.3×10Paの環境とする。
なお、真空容器1の内部に導入するガスは、アルゴン(Ar)やヘリウム(He)などの不活性ガスまたは窒素(N)ガスが好ましい。これらのガスは、炭化珪素と特別な反応を起こさず、また、冷却材としての効果もある。
【0048】
真空容器1の外側には、加熱手段11が配置されている。この加熱手段11は例えば、高周波加熱コイルであり、電流を流すことにより高周波を発生させて、真空容器1内の中央に設置された坩堝3を、例えば、1900℃以上の温度に加熱することができる。これにより、坩堝3内の炭化珪素原料粉末6を加熱して、炭化珪素原料粉末6から昇華させた原料ガスを炭化珪素種結晶5上に供給する構成とされている。
坩堝3は、加熱装置のパワーを調整することによって炭化珪素種結晶の温度を炭化珪素原料粉末より低温に保たれるようにすることができる。
【0049】
次に、図2(a)及び図2(b)を参照して、本発明の炭化珪素単結晶成長装置の作用効果について説明する。
【0050】
図2(a)に示すのは炭化珪素種結晶5と炭化珪素原料6との距離が最も近い状態であり、この状態で加熱手段11を用いて炭化珪素原料6を加熱して、炭化珪素単結晶の成長を開始する。
すなわち、炭化珪素単結晶の成長開始時では、ガイド部材上部7aの円筒形状部7aaとガイド部材下部7bの円筒形状部7baとは、図2(a)に示すように、水平方向に重畳するように配置されて孔部10が閉鎖されている。
【0051】
炭化珪素原料6から昇華した原料ガスは上方に流れ、その原料ガスはガイド部材7(特に、その円筒形状部7aa、7ba)によって集められて炭化珪素種結晶5に向かう。その一部は炭化珪素種結晶5上に堆積し単結晶の成長に使われ、また、一部は矢印Aで示すようにガス吐出口8Aを抜けて坩堝上部3aの頂部3abに堆積して多結晶21の成長に使われてしまう。
原料ガスはガイド部材7によって集められて炭化珪素種結晶5に向かうので、炭化珪素種結晶5の成長面での原料ガスの濃度が高くなり、単結晶の成長が促進される。
このように、ガス吐出口8Aから原料ガスを逃がしつつ、炭化珪素種結晶5上に単結晶が成長していき、ガイド部材7の円筒形状部7aa、7baと相似形の断面を有する円柱状の単結晶が成長する。従って、ガイド部材の形状によって単結晶の形状を制御することができる。
【0052】
このように、炭化珪素単結晶の成長初期において、炭化珪素種結晶5からは単結晶9のみが成長し、多結晶21は坩堝上部3aに完全に分離されて析出する。
この段階では、孔部10が閉鎖されているために、実質的に、孔部10を抜けてガイド部材上部7aの支持部7abの下方側の面等に堆積する原料ガスもない。従って、従来のような孔部を有するガイド部材のように、単結晶の成長初期から単結晶の成長に寄与しない原料ガスの量が多いなるために結晶成長の促進が阻害されるということを回避できる。
【0053】
この状態(図2(a)に示す配置状態)で、結晶成長を継続して長尺な単結晶を作ろうとすると、原料ガスのガス吐出口8Aの通過が続いて坩堝上部3aの頂部3abに成長した多結晶21はさらに成長し、台座4の側部4bに付着しながら炭化珪素種結晶5に近づき、成長中の単結晶に達して単結晶に歪みを与えて転位やクラック等の結晶欠陥を発生させ、高品質かつ長尺な単結晶は得られない。
【0054】
そこで、炭化珪素単結晶の成長中に、図2(b)に示すように、ガイド部材上部7aを上方にスライドして、ガイド部材上部7aの円筒形状部7aaに形成された孔部10を開口する。これにより、矢印Bで示すように、原料ガスを、ガス吐出口8Aよりも炭化珪素原料6寄りの孔部10に抜けさせる流れを作り、ガス吐出口8Aを通過する原料ガスの量を大きく低減する。こうして、高品質かつ長尺な単結晶の成長を阻害することになる、坩堝上部3aの頂部3abの多結晶21の成長を抑制する。
【0055】
他方、孔部10を抜けた原料ガスは主にガイド部材上部7aの支持部7abの下方側の面に堆積し、この面に多結晶23が成長することになる。
【0056】
孔部を有さないガイド部材を用いた従来技術の場合には、単結晶の長尺化を図ろうとすると必然的に、ガス吐出口8Aを通過する原料ガス量が多くなるので、坩堝上部3aの頂部3abの多結晶がさらに成長して、台座4の側部4bに付着しながら炭化珪素種結晶5に近づき、成長中の単結晶に達することになった。これに対して、本発明では、図2(b)に示すように、単結晶の成長中、坩堝上部3aの頂部3abから成長している多結晶が単結晶の成長に影響を与えるほど成長する前に、原料ガスの流れを変えることによって坩堝上部3aの頂部3abの多結晶に届く原料ガスの量を大きく低減することにより、さらなる成長を抑制すると共に、原料ガスを多結晶がない新たな場所に誘導することにより、成長する場所を新たに確保することにより、ガイド部材の炭化珪素単結晶の成長面近傍に多結晶が成長するのも防止することができる。
【0057】
また、孔部を有するが、孔部の開閉はできず、成長初期から孔部が開口されているガイド部材を用いた従来技術の場合には、その孔部から抜けて単結晶の成長に寄与しない原料ガスの量が多かったが、本発明では成長初期の段階ではガイド部材の孔部は閉鎖しておくので、単結晶の成長に寄与しない原料ガスの量を大きく低減することができる。
【0058】
昇降装置としては例えば、図3に示すように、坩堝下部3bを保持し、坩堝3の中心軸方向を軸方向とするシャフト部13と、坩堝上部3aの中心軸を坩堝3の中心軸と一致するように坩堝上部3aを保持すると共に、シャフト部13の側壁面に沿って軸方向に上下移動するシャフトガイド14と、シャフトガイド14を上下移動させる昇降駆動装置15と、を備えた構成とすることができる。
【0059】
本発明に係る炭化珪素単結晶の製造方法では、例えば上記のような第1の実施形態に係る炭化珪素単結晶製造装置すなわち、上下方向に互いに相対移動可能な坩堝上部3aと坩堝下部3bとからなる坩堝3と、原料ガスを炭化珪素種結晶側に案内するガイド部材7であって、坩堝上部3aに固定されたガイド部材上部7aと、坩堝下部3bに固定されたガイド部材下部7bとからなると共に、ガイド部材上部7aに孔部10が設けられているガイド部材7とを用いて、炭化珪素の単結晶の成長開始時には、孔部10を閉じるようにガイド部材上部7aとガイド部材下部7bとを配置して単結晶を成長させ、その後、坩堝上部3aの移動により、孔部10を開口して炭化珪素単結晶を成長させて、炭化珪素単結晶を製造する。
【0060】
本発明に係る炭化珪素単結晶の成長方法では、例えば上記のような第1の実施形態に係る炭化珪素単結晶製造装置すなわち、上下方向に互いに相対移動可能な坩堝上部3aと坩堝下部3bとからなる坩堝3と、原料ガスを炭化珪素種結晶側に案内するガイド部材7であって、坩堝上部3aに固定されたガイド部材上部7aと、坩堝下部3bに固定されたガイド部材下部7bとからなると共に、ガイド部材上部7aに孔部10が設けられているガイド部材7とを用いて、炭化珪素の単結晶の成長開始時には、孔部10を閉じるようにガイド部材上部7aとガイド部材下部7bとを配置して単結晶を成長させ、その後、坩堝上部3aの移動により、孔部10を開口して炭化珪素単結晶を成長させて、炭化珪素単結晶を製造する。
【0061】
[炭化珪素単結晶製造装置(第2の実施形態)]
次に、第2の実施形態として、図4(a)及び図4(b)に示す本発明を適用した炭化珪素単結晶製造装置の構造について説明する。
【0062】
第1の実施形態と異なるのは、ガイド部材の孔部がガイド部材上部ではなく、ガイド部材下部に設けられている点である。
すなわち、図4(a)に示すように、ガイド部材17は、坩堝上部3aに固定されたガイド部材上部17aと、坩堝下部3bに固定されたガイド部材下部17bとからなり、ガイド部材下部17bに孔部10Aが設けられている。
【0063】
本実施形態においても、炭化珪素単結晶の成長初期においては、孔部10Aは閉鎖されており、原料ガスはガイド部材17によって集められて炭化珪素種結晶5に向かい、ガス吐出口8Aから原料ガスを逃がしつつ、炭化珪素種結晶5上に単結晶が成長していき、ガイド部材17の円筒形状部17aa、17baと相似形の断面を有する円柱状の単結晶9が成長する。
そして、炭化珪素単結晶の成長中に、図4(b)に示すように、坩堝上部3aを上方にスライドすることにより、孔部10Aを開口し、矢印Cに示すように、原料ガスを、ガス吐出口8Aよりも孔部10Aに抜けさせる流れを作り、ガス吐出口8Aを通過する原料ガスの量を大きく低減する。こうして、高品質かつ長尺な単結晶の成長を阻害することになる、坩堝上部3aの頂部3abの多結晶21の成長を抑制する。
【0064】
本実施形態に係る炭化珪素単結晶製造装置の作用効果について説明する。
本実施形態が第1の実施形態と異なるのは、孔部10Aがガイド部材下部17bに設けられているので、ガイド部材下部17bの孔部10Aの台座(若しくは炭化珪素種結晶)に対する移動方向が単結晶の成長方向と一致する点である。このため、炭化珪素種結晶上の単結晶の成長に合わせて(すなわち、単結晶の成長面の移動に合わせて)、孔部10Aを移動させる(坩堝上部3aを上方へ移動させることにより)ことによって単結晶の成長面と孔部10Aとの相対位置関係を変えないことで(若しくは、できるだけ変えないことで)、結晶成長面の環境の変化を低減して、高品質な単結晶を安定に成長することが可能になり、その結果、単結晶の長尺化も実現できる。
すなわち、図4(b)で示した単結晶の成長面と孔部10Aとの相対位置関係から、さらに単結晶が成長してその成長面が下方に移動しても、その成長面が移動した分、坩堝上部3aを上方へ移動させると台座5も坩堝上部3aと共に上方へ移動するので、孔部10A(ガイド部材下部17b)に対する成長面の下方への移動分がキャンセルされる。こうして、固定されて移動しないガイド部材下部17bの孔部10Aと成長面との相対位置関係を維持することができる。
【0065】
本発明に係る炭化珪素単結晶の製造方法では、例えば上記のような第2の実施形態に係る炭化珪素単結晶製造装置すなわち、上下方向に互いに相対移動可能な坩堝上部3aと坩堝下部3bとからなる坩堝3と、原料ガスを炭化珪素種結晶側に案内するガイド部材17であって、坩堝上部3aに固定されたガイド部材上部17aと、坩堝下部3bに固定されたガイド部材下部17bとからなると共に、ガイド部材下部17bに孔部10Aが設けられているガイド部材17とを用いて、炭化珪素の単結晶の成長開始時には、孔部10Aを閉じるようにガイド部材上部17aとガイド部材下部17bとを配置して単結晶を成長させ、その後、坩堝上部3aの移動により、孔部10Aを開口して炭化珪素単結晶を成長させて、炭化珪素単結晶を製造する。
【0066】
本発明に係る炭化珪素単結晶の成長方法では、例えば上記のような第2の実施形態に係る炭化珪素単結晶製造装置すなわち、上下方向に互いに相対移動可能な坩堝上部3aと坩堝下部3bとからなる坩堝3と、原料ガスを炭化珪素種結晶側に案内するガイド部材17であって、坩堝上部3aに固定されたガイド部材上部17aと、坩堝下部3bに固定されたガイド部材下部17bとからなると共に、ガイド部材下部17bに孔部10Aが設けられているガイド部材17とを用いて、炭化珪素の単結晶の成長開始時には、孔部10Aを閉じるようにガイド部材上部17aとガイド部材下部17bとを配置して単結晶を成長させ、その後、坩堝上部3aの移動により、孔部10Aを開口して炭化珪素単結晶を成長させて、炭化珪素単結晶を製造する。
【0067】
[炭化珪素単結晶製造装置(第3の実施形態)]
次に、第3の実施形態として、図5(a)及び図5(b)に示す本発明を適用した炭化珪素単結晶製造装置の構造について説明する。
【0068】
第1の実施形態及び第2の実施形態と異なるのは、ガイド部材上部が下方にいくほど口径が拡大する筒状部を有する点である。このため、第1の実施形態及び第2の実施形態の炭化珪素単結晶製造装置を用いると円柱状の単結晶が成長するのに対し、第3の実施形態の炭化珪素単結晶製造装置を用いると、径が拡大する円錐台状の部分を有する単結晶が成長する。
尚、図5(a)及び図5(b)に示す例では、孔部をガイド部材上部に設けた例を示したが、ガイド部材下部に設けてもよい。
【0069】
ガイド部材27は、坩堝上部3aに固定されたガイド部材上部27aと、坩堝下部3bに固定されたガイド部材下部27bとからなる。
ガイド部材上部27aは、上下方向に延在する円筒形状部27aaと、円筒形状部27aaから坩堝上部3aの内側面3aaに支持される支持部27abと、下方にいくほど口径が拡大する筒状部27acと、からなる。
筒状部27acは径が最も小さいその上端部(連結部27A)は台座に近接して配置してそこから下方にいくほど径が拡大している。そして、その下端部で径が一定の円筒形状部27aaと連結する。
支持部27abは、炭化珪素種結晶の近傍に位置する筒状部27acの上端部(連結部27A)で筒状部27acと連結する構成であり、連結部27Aの上下方向の位置を炭化珪素種結晶近傍に配設することにより、支持部27abに仕切り部材8の機能を持たせることもできる。
孔部10Bはガイド部材上部27aの円筒形状部27aaに設けられている。
【0070】
ガイド部材下部27bは、上下方向に延在する円筒形状部27baと、円筒形状部27aaから坩堝上部3aの内側面3aaに支持される支持部27bbとからなる。
ガイド部材下部27bの円筒形状部27baは、ガイド部材上部27aの円筒形状部27aaよりも径が大きく形成されており、ガイド部材上部27a及びガイド部材下部27bの上下方向の相対移動を可能にしている。
ガイド部材上部27aの円筒形状部27aaに設けられた孔部10Bは、ガイド部材下部27bの円筒形状部27baによって開閉される構成である。孔部10Bの閉鎖を実効的なものとするために、ガイド部材上部27aの円筒形状部27aaとガイド部材下部27bの円筒形状部27baとの離間距離は、0.5mm以下であるのが望ましい。
【0071】
ガイド部材上部27aの円筒形状部27aaとガイド部材下部27bの円筒形状部27baとは、図5(a)に示すように、水平方向に重畳するように配置されて孔部10を閉鎖する。
【0072】
本実施形態に係る炭化珪素単結晶製造装置の作用効果について説明する。
本実施形態が第1の実施形態及び第2の実施形態と異なるのは、ガイド部材上部が下方にいくほど口径が拡大する筒状部27acを有する点にある。ガイド部材は炭化珪素原料6から昇華した原料ガスを炭化珪素種結晶側に案内するものであるから、原料ガスの濃度分布はガイド部材の形状に沿った分布となり、その結果、炭化珪素種結晶上に成長する炭化珪素単結晶はガイド部材の形状に沿った形状となる。
【0073】
この炭化珪素単結晶製造装置による炭化珪素単結晶の成長は、成長初期にはガイド部材上部27aの筒状部27acの形状に沿って下方にいくほど径が拡大する円錐台状の単結晶29aが成長するが、筒状部27acの下端より成長する段階で、径が一定の円柱状の単結晶29bが成長する。すなわち、十分に成長した炭化珪素単結晶29は円錐台状の単結晶29aと、円柱状の単結晶29bとからなる。
【0074】
円筒形状部27aaと筒状部27acとの連結部27Bの近傍では、炭化珪素原料6から台座4(又は炭化珪素種結晶5)へ昇華した原料ガスの流れの方向が変化するので、原料ガスの濃度が他の箇所に比べて高くなり、その連結部27Bでは多結晶が成長しやすい。これに対して、ガイド部材の孔部10Bがガイド部材上部27aの円筒形状部27aaに設けているので、原料ガスが孔部10Bを抜けて、ガイド部材27と坩堝3の内側面3aaとの間の空間24へ逃げるので原料ガスの濃度が連結部27Bの近傍で高くなることが防止されている。
これにより、結晶成長面の環境の変化を低減して、高品質な円錐台状の単結晶29a上にさらに径が大きな高品質な円柱状の単結晶29bを成長させて長尺な単結晶を製造することができる。
【0075】
本発明に係る炭化珪素単結晶の製造方法では、例えば上記のような第3の実施形態に係る炭化珪素単結晶製造装置すなわち、上下方向に互いに相対移動可能な坩堝上部3aと坩堝下部3bとからなる坩堝3と、原料ガスを炭化珪素種結晶側に案内するガイド部材27であって、坩堝上部3aに固定されたガイド部材上部27aと、坩堝下部3bに固定されたガイド部材下部27bとからなると共に、ガイド部材上部27aに孔部10Bが設けられているガイド部材27とを用いて、炭化珪素の単結晶の成長開始時には、孔部10Bを閉じるようにガイド部材上部27aとガイド部材下部27bとを配置して単結晶を成長させ、その後、坩堝上部3aの移動により、孔部10Bを開口して炭化珪素単結晶を成長させて、炭化珪素単結晶を製造する。
【0076】
本発明に係る炭化珪素単結晶の成長方法では、例えば上記のような第3の実施形態に係る炭化珪素単結晶製造装置すなわち、上下方向に互いに相対移動可能な坩堝上部3aと坩堝下部3bとからなる坩堝3と、原料ガスを炭化珪素種結晶側に案内するガイド部材27であって、坩堝上部3aに固定されたガイド部材上部27aと、坩堝下部3bに固定されたガイド部材下部27bとからなると共に、ガイド部材上部27aに孔部10Bが設けられているガイド部材27とを用いて、炭化珪素の単結晶の成長開始時には、孔部10Bを閉じるようにガイド部材上部27aとガイド部材下部27bとを配置して単結晶を成長させ、その後、坩堝上部3aの移動により、孔部10Bを開口して炭化珪素単結晶を成長させて、炭化珪素単結晶を製造する。
【産業上の利用可能性】
【0077】
本発明の炭化珪素単結晶製造装置、炭化珪素単結晶の製造方法及びその成長方法は、高品質でかつ長尺な単結晶の製造に利用することができる。
【符号の説明】
【0078】
3 坩堝
3a 坩堝上部
3aa 内側面
3b 坩堝下部
4 台座
5 炭化珪素種結晶
6 炭化珪素原料
7 ガイド部材
7a ガイド部材上部
7aa 円筒形状部
7ab 支持部
7b ガイド部材下部
7ba 円筒形状部
7bb 支持部
8 仕切り部材
9 炭化珪素単結晶
10、10A、10B 孔部
17 ガイド部材
17a ガイド部材上部
17aa 円筒形状部
17ab 支持部
17b ガイド部材下部
17ba 円筒形状部
17bb 支持部
21、23 多結晶
27 ガイド部材
27a ガイド部材上部
27aa 円筒形状部
27ab 支持部
27ac 筒状部
27b ガイド部材下部
27ba 円筒形状部
27bb 支持部
27A 上端部(連結部)
27B 連結部
29 炭化珪素単結晶
29a 円錐台状の単結晶
29b 円柱状の単結晶
100 炭化珪素単結晶製造装置

【特許請求の範囲】
【請求項1】
坩堝内の台座に配置した炭化珪素種結晶上に、原料ガスを供給して、前記炭化珪素種結晶上に炭化珪素の単結晶を成長させる炭化珪素単結晶製造装置において、
原料ガスを炭化珪素種結晶側に案内するガイド部材を備え、
前記坩堝は、上下方向に互いに相対移動可能な坩堝上部と坩堝下部とからなり、
前記ガイド部材は、前記坩堝上部に固定されたガイド部材上部と、前記坩堝下部に固定されたガイド部材下部とからなり、
前記ガイド部材上部及びガイド部材下部の少なくとも一方に孔部が設けられており、
前記ガイド部材上部と前記ガイド部材下部とは、前記坩堝上部及び坩堝下部の相対移動により、前記孔部が開閉するように配置されている、ことを特徴とする炭化珪素単結晶製造装置。
【請求項2】
前記原料ガスは前記坩堝の下部に収容された原料から昇華させるものであることを特徴とする請求項1に記載の炭化珪素単結晶製造装置。
【請求項3】
前記ガイド部材上部と前記ガイド部材下部とはそれぞれ、上下方向に延在する円筒形状部を有し、互いの円筒形状部の径は異なっており、前記孔部はいずれかの円筒形状部に設けられている、ことを特徴とする請求項2に記載の炭化珪素単結晶製造装置。
【請求項4】
前記ガイド部材上部及び前記ガイド部材下部の前記円筒形状部同士の離間距離は、0.5mm以下である、ことを特徴とする請求項3に記載の炭化珪素単結晶製造装置。
【請求項5】
前記孔部が、前記台座の前記炭化珪素種結晶を配置する面から上下方向において10〜 80mm離間している、ことを特徴とする請求項1から4のいずれか一項に記載の炭化珪素単結晶製造装置。
【請求項6】
前記孔部が前記ガイド部材下部に設けられている、ことを特徴とする請求項1から5のいずれか一項に記載の炭化珪素単結晶製造装置。
【請求項7】
前記ガイド部材上部は、下方にいくほど口径が拡大する筒状部を有する、ことを特徴とする請求項1から6のいずれか一項に記載の炭化珪素単結晶製造装置。
【請求項8】
前記孔部が、前記坩堝の上下方向の中心軸に対して対称な形状である、ことを特徴とする請求項1から7のいずれか一項に記載の炭化珪素単結晶製造装置。
【請求項9】
前記孔部が上下方向及び/又は水平方向に複数設けられ、それら複数の孔部が前記坩堝の上下方向の中心軸に対して対称に配置している、ことを特徴とする請求項1から8のいずれか一項に記載の炭化珪素単結晶製造装置。
【請求項10】
前記ガイド部材はカーボン材料からなり、少なくとも炭化珪素種結晶側を向いた面がタンタルカーバイドで被膜されている、ことを特徴とする請求項1から9のいずれか一項に記載の炭化珪素単結晶製造装置。
【請求項11】
炭化珪素種結晶の近傍に配設されて、前記坩堝内を上下に区画するドーナツ状の仕切り部材を備え、
該仕切り部材はその中央部に炭化珪素種結晶と相似形でかつ該炭化珪素種結晶より大きい開口を有し、平面視して該開口内に炭化珪素種結晶が位置するように配設されている、ことを特徴とする請求項1から10のいずれか一項に記載の炭化珪素単結晶製造装置。
【請求項12】
坩堝内の台座に配置した炭化珪素種結晶上に、原料ガスを供給して、前記炭化珪素種結晶上に炭化珪素の単結晶を成長させる炭化珪素単結晶の製造方法において、
上下方向に互いに相対移動可能な坩堝上部と坩堝下部とからなる坩堝と、
原料ガスを炭化珪素種結晶側に案内するガイド部材であって、前記坩堝上部に固定されたガイド部材上部と、前記坩堝下部に固定されたガイド部材下部とからなると共に、前記ガイド部材上部及びガイド部材下部の少なくとも一方に孔部が設けられているガイド部材とを用いて、
炭化珪素の単結晶の成長開始時には、前記孔部を閉じるように、前記ガイド部材上部と前記ガイド部材下部とを配置して炭化珪素単結晶の成長を行い、
その後、前記坩堝上部及び坩堝下部の相対移動により、前記孔部を開口して炭化珪素単結晶の成長を行う、ことを特徴とする炭化珪素単結晶の製造方法。
【請求項13】
前記原料ガスは前記坩堝の下部に収容された原料から昇華させることを特徴とする請求項12に記載の炭化珪素単結晶の製造方法。
【請求項14】
坩堝内の台座に配置した炭化珪素種結晶上に、原料ガスを供給して、前記炭化珪素種結晶上に炭化珪素の単結晶を成長させる炭化珪素単結晶の成長方法において、
上下方向に互いに相対移動可能な坩堝上部と坩堝下部とからなる坩堝と、
原料ガスを炭化珪素種結晶側に案内するガイド部材であって、前記坩堝上部に固定されたガイド部材上部と、前記坩堝下部に固定されたガイド部材下部とからなると共に、前記ガイド部材上部及びガイド部材下部の少なくとも一方に孔部が設けられているガイド部材とを用いて、
炭化珪素の単結晶の成長開始時には、前記孔部を閉じるように、前記ガイド部材上部と前記ガイド部材下部とを配置して炭化珪素単結晶の成長を行い、
その後、前記坩堝上部及び坩堝下部の相対移動により、前記孔部を開口して炭化珪素単結晶の成長を行う、ことを特徴とする炭化珪素単結晶の成長方法。
【請求項15】
前記原料ガスは前記坩堝の下部に収容された原料から昇華させることを特徴とする請求項12に記載の炭化珪素単結晶の成長方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−201584(P2012−201584A)
【公開日】平成24年10月22日(2012.10.22)
【国際特許分類】
【出願番号】特願2011−70833(P2011−70833)
【出願日】平成23年3月28日(2011.3.28)
【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の委託研究の成果に係る特許出願(平成22年度経済産業省「低炭素社会を実現する新材料パワー半導体プロジェクト」委託研究)、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000002004)昭和電工株式会社 (3,251)
【出願人】(000004260)株式会社デンソー (27,639)
【出願人】(000003609)株式会社豊田中央研究所 (4,200)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】