説明

無機粒子分散体、エネルギー線硬化性樹脂組成物、及びフィルム

【課題】 硬化物の硬度が高く、分散安定性に優れた分散体を提供すること、更に当該特性を有する分散体の製造方法を提供すること。
【解決手段】 表面処理された無機粒子(A)が反応性分散剤に分散された分散体において、
1)表面処理された無機粒子(A)が、(メタ)アクリロイル基を有する化合物(B)で無機粒子(b1)を表面処理することにより得られたものであり、
2)反応性分散剤が、エポキシ基を有する(メタ)アクリル重合体に、(メタ)アクリロイル基及びカルボキシル基を有する単量体を付加反応させてなる反応生成物、又はカルボキシル基を有する(メタ)アクリル重合体に(メタ)アクリロイル基及びエポキシ基を有する単量体を付加反応させてなる反応生成物であって、(メタ)アクリロイル当量が200〜600で、水酸基価が90〜280mg/KOHであることを特徴とする分散体の提供による。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表面処理された無機粒子(A)が反応性分散剤に分散された分散体に関し、更にはその製造方法、該分散体を含有する硬化性樹脂組成物、及び該組成物を硬化させて得られるフィルムに関する。
【背景技術】
【0002】
活性エネルギー線硬化性樹脂組成物を硬化させて得られる硬化塗膜の硬度を上げるには活性エネルギー線硬化性樹脂組成物に、シリカ微粒子を分散させる方法がある。シリカ微粒子には湿式法で製造されるコロイダルシリカや、乾式法で製造されるフュームドシリカがある。シリカ微粒子の表面にはシラノール基があり、シリカ微粒子は親水性である。その為、活性エネルギー線硬化型モノマーやオリゴマー等の組成物中の主成分である有機相となじみが悪い。また、シリカ微粒子は有機相に比較して比重が大きい。その為、活性エネルギー線硬化性樹脂組成物中にシリカ微粒子を長期間にわたり安定して分散させることは一般に困難であり、シリカ微粒子を含有する活性エネルギー線硬化性樹脂組成物は、長期間放置するとシリカ微粒子が凝集や沈降するなど、貯蔵安定性に劣る。加えて、シリカ微粒子は通常、一次粒子間に働く分子間力や静電気力などにより強く凝集しており、このことも貯蔵安定性に悪影響を与えている。
【0003】
活性エネルギー線硬化性樹脂組成物中にシリカ微粒子を安定して分散させる方法として、例えば、シリカ微粒子を、疎水性基を有する反応性シランカップリング剤で表面処理することでシリカ微粒子の表面を疎水性化する方法が記載されている(例えば、特許文献1参照)。しかしながら、特許文献1に記載された方法により得られるシリカ微粒子でも活性エネルギー線硬化性樹脂組成物中での分散安定性は十分ではなく、また、ヘイズ、指紋拭き取り性、油性染料拭き取り性の各評価の記載はあるが、明確な硬化物の硬度についてない。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−348196号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明では、上記背景技術を鑑み、硬化物の硬度が高く、分散安定性に優れた分散体を提供することにある。更に、本発明では、当該特性を有する分散体の製造方法を提供することを課題とする。
【課題を解決するための手段】
【0006】
本発明者らは、上記の課題を解決するため、鋭意検討した結果、表面処理された無機粒子(A)が反応性分散剤に分散された分散体において、
1)表面処理された無機粒子(A)が、(メタ)アクリロイル基を有する化合物(B)で無機粒子(b1)を表面処理することにより得られたものであり、
2)反応性分散剤が、エポキシ基を有する(メタ)アクリル重合体に、(メタ)アクリロイル基及びカルボキシル基を有する単量体を付加反応させてなる反応生成物、又はカルボキシル基を有する(メタ)アクリル重合体に(メタ)アクリロイル基及びエポキシ基を有する単量体を付加反応させてなる反応生成物であって、(メタ)アクリロイル当量が200〜600で、水酸基価が90〜280mg/KOHであることを特徴とする分散体が、上記課題解決に極めて有用であることを見出し、本発明を完成させた。
【0007】
即ち、本発明は、表面処理された無機粒子(A)が反応性分散剤に分散された分散体において、
1)表面処理された無機粒子(A)が、(メタ)アクリロイル基を有する化合物(B)で無機粒子(b1)を表面処理することにより得られたものであり、
2)反応性分散剤が、エポキシ基を有する(メタ)アクリル重合体に、(メタ)アクリロイル基及びカルボキシル基を有する単量体を付加反応させてなる反応生成物、又はカルボキシル基を有する(メタ)アクリル重合体に(メタ)アクリロイル基及びエポキシ基を有する単量体を付加反応させてなる反応生成物であって、(メタ)アクリロイル当量が200〜600で、水酸基価が90〜280mg/KOHであることを特徴とする分散体を提供するものである。
【0008】
また、本発明は、表面処理された無機粒子(A)と反応性分散を含有するスラリーを、円筒形のステータと、ステータの一端に設けられるスラリーの供給口と、ステータの他端に設けられるスラリーの排出口と、ステータ内に充填されるメディアと供給口より供給されたスラリーを攪拌混合するロータと、排出口に連結され、かつロータと一体をなして回転するか、或いはロータとは別個に独立して回転し、遠心力の作用によりメディアとスラリーに分離して、スラリーを排出口より排出させるインペラタイプのセパレータとよりなる湿式攪拌ボールミルにおいて、セパレータを回転駆動するシャフトの軸心を上記排出口と通ずる中空な排出路とした攪拌ボールミルの供給口からメディアが充填されたステータに供給し、該ステータ内でスラリー中の無機粒子の粉砕と反応性分散剤への分散を行った後、該スラリーからメディアを分離することを特徴とする分散体の製造方法を提供するものである。
【0009】
また、本発明は、上記分散体を含有するエネルギー線硬化性樹脂組成物、及び該組成物を硬化させてなる硬化物、及びフィルムを提供するものである。
【発明の効果】
【0010】
本発明によれば、高い硬度を有する硬化物及びフィムル、並びに該硬化物及びフィルムに用いられる分散体の提供が可能となる。
【図面の簡単な説明】
【0011】
【図1】本発明の分散体の製造方法で用いる前記湿式攪拌ボールミルを備えた原料スラリー粉砕処理サイクルの概略図である。
【図2】本発明の分散体の製造方法で用いる前記湿式攪拌ボールミルの縦断面図である。
【図3】本発明の分散体の製造方法で用いる前記湿式攪拌ボールミルのスラリー供給時の供給口の縦断面図である。
【図4】メディア排出時の供給口の縦断面図である。
【図5】本発明の分散体の製造方法で用いる前記湿式攪拌ボールミルのもう一つの例の縦断面図である。
【図6】図5に示す湿式攪拌ボールミルのセパレータの横断面図を表した図である。
【発明を実施するための形態】
【0012】
即ち、本発明は、
1.表面処理された無機粒子(A)が反応性分散剤に分散された分散体において、
1)表面処理された無機粒子(A)が、(メタ)アクリロイル基を有する化合物(B)で無機粒子(b1)を表面処理することにより得られたものであり、
2)反応性分散剤が、エポキシ基を有する(メタ)アクリル重合体に、(メタ)アクリロイル基及びカルボキシル基を有する単量体を付加反応させてなる反応生成物、又はカルボキシル基を有する(メタ)アクリル重合体に(メタ)アクリロイル基及びエポキシ基を有する単量体を付加反応させてなる反応生成物であって、(メタ)アクリロイル当量が200〜600で、水酸基価が90〜280mg/KOHであることを特徴とする分散体、
2.反応性分散剤の(メタ)アクリロイル当量が200〜400で、水酸基価が140〜280mg/KOHである1.に記載の分散体、
3.反応性分散剤が、グリシジル(メタ)アクリレートを重合させて得られたエポキシ基を有する(メタ)アクリル重合体に(メタ)アクリル酸を付加反応させたものである1.又は2.に記載の分散体、
4.反応性分散剤の重量平均分子量が5,000〜100,000である1.〜3.の何れかに記載の分散体、
5.無機粒子(b1)の一次粒子径が10nm〜300nmである1.〜4.の何れかに記載の分散体、
6.無機粒子(b1)がシリカ微粒子である1.〜5.の何れかに記載の分散体、
7.(メタ)アクリロイル基を有する化合物(B)が、一般式(1)
【0013】
【化1】

【0014】
(式中、R、R、Rは、各々独立に炭素数1〜4のアルキル基であり、nは1〜6の整数である。)
で表されるオルガノシラン化合物である1.〜6.の何れかに記載の分散体、
8.1.〜7.の何れかに記載の分散体を含有するエネルギー線硬化性樹脂組成物、
9.1.〜7.の何れかに記載の表面処理された無機粒子(A)と反応性分散を含有するスラリーを、円筒形のステータと、ステータの一端に設けられるスラリーの供給口と、ステータの他端に設けられるスラリーの排出口と、ステータ内に充填されるメディアと供給口より供給されたスラリーを攪拌混合するロータと、排出口に連結され、かつロータと一体をなして回転するか、或いはロータとは別個に独立して回転し、遠心力の作用によりメディアとスラリーに分離して、スラリーを排出口より排出させるインペラタイプのセパレータとよりなる湿式攪拌ボールミルにおいて、セパレータを回転駆動するシャフトの軸心を上記排出口と通ずる中空な排出路とした攪拌ボールミルの供給口からメディアが充填されたステータに供給し、該ステータ内でスラリー中の無機粒子の粉砕と反応性分散剤への分散を行った後、該スラリーからメディアを分離することを特徴とする分散体の製造方法、
10.前記メディアが粒径15〜100μmのジルコニア微粒子である9.に記載の分散体の製造方法、
11.9.に記載の製造方法で得られた分散体を含有することを特徴とするエネルギー線硬化型樹脂組成物、
12.8.又は11.に記載のエネルギー線硬化型樹脂組成物を硬化させて得られる硬化層をフィルム状基材上に有することを特徴とするフィルム、
13.前記フィルム状基材が、ポリエチレンテレフタレート樹脂(PET)のフィルム状基材、ポリカーボネート樹脂のフィルム状基材及びアセチル化セルロース樹脂のフィルム状基材からなる群から選ばれる一種以上のフィルム状基材である12.に記載のフィルム、
14.前記硬化層の膜厚が、フィルム状基材の膜厚に対して3〜100%である12.又は13.に記載のフィルム
に関する。
【0015】
本発明の分散体は、表面処理された無機粒子(A)が、反応性分散剤に分散されたことに特徴を有する。
表面処理された無機粒子(A)は、(メタ)アクリロイル基を有する化合物(B)で表面された特徴を有するが、このような(メタ)アクリロイル基を有する化合物(B)は、無機粒子(b1)と処理することによって、該無機粒子(b1)の表面に(メタ)アクリロイル基を有する化合物(B)が導入されるものであれば制限はない。
【0016】
使用できる(メタ)アクリロイル基を有する化合物(B)としては、無機粒子(b1)との反応性が高いことから、例えば、(メタ)アクリロイル基を有するオルガノシラン化合物を挙げることができる。
【0017】
より具体的には、一般式(1)
【0018】
【化2】

【0019】
(式中、R、R、Rは、各々独立に炭素数1〜4のアルキル基であり、nは1〜6の整数である。)
で表される化合物が特に好ましい。
【0020】
無機粒子(b1)の表面には、(メタ)アクリロイル基を有する化合物(B)と化学結合を形成する基を有することが必要で、例えば、無機粒子(b1)としてシリカ微粒子を用いた場合には、シラノール基が結合を形成する基として機能する。化学結合を形成するための反応条件は、慣用の反応条件でよく、反応を促進させるために触媒を用いても良い。用いられる触媒に制限はないが、例えば、リン酸エステルを挙げることができる。
【0021】
無機粒子(b1)は、特に限定はないが、シリカ微粒子、ジルコニア微粒子、アルミナ微粒子酸価セリウム微粒子、チタニウム微粒子、又はチタン酸バリウム微粒子等のオルガノシラン化合物により表面処理が可能な無機粒子であればよいが、特にシリカ微粒子が好ましい。これらの微粒子の好ましい一次粒子径は、10〜300nmの範囲を挙げることができる。10nm以下であると、分散体中の無機粒子の分散が不十分となり、300nm以上であると、硬化膜の十分な強度が保持できないため好ましくない。
【0022】
本発明の反応性分散剤が有する(メタ)アクリロイル当量は200〜400が好ましい。また、水酸基当量は140〜280が好ましい。
【0023】
本発明において、反応性分散剤とは、活性エネルギー線で重合反応する反応性分散剤であることを意味する。(メタ)アクリル当量とは、(メタ)アクリロイル基(アクリロイル基又はメタクリロイル基を意味する)1モルあたりの反応性分散剤の固形分重量(g/eq)をいう。
【0024】
本発明の反応性分散剤を、便宜上下記の通り略記し、説明する。
反応性分散剤としては、エポキシ基を有する(メタ)アクリル重合体(a1)に(メタ)アクリロイル基及びカルボキシル基を有する単量体(b1)を付加反応させてなる反応性分散剤(A1)、またはカルボキシル基を有する(メタ)アクリル重合体(a2)に(メタ)アクリロイル基及びエポキシ基を有する単量体(b2)を付加反応させてなる反応性分散剤(A2)が挙げられるが、本発明の反応性分散剤としては、(A1)と(A2)のいずれでも良い。
【0025】
前記反応性分散剤(A1)の調製に用いる(メタ)アクリル系重合体(a1)は、例えば、(メタ)アクリロイル基及びエポキシ基を有する重合性単量体と必要に応じて他の重合性単量体との共重合反応によって得られる。
【0026】
前記(メタ)アクリロイル基及びエポキシ基を有する重合性単量体しては、例えば、(メタ)アクリル酸グリシジル、α−エチル(メタ)アクリル酸グリシジル、α−n−プロピル(メタ)アクリル酸グリシジル、α−n−ブチル(メタ)アクリル酸グリシジル、(メタ)アクリル酸−3,4−エポキシブチル、(メタ)アクリル酸−4,5−エポキシペンチル、(メタ)アクリル酸−6,7−エポキシペンチル、α−エチル(メタ)アクリル酸−6,7−エポキシペンチル、βーメチルグリシジル(メタ)アクリレート、(メタ)アクリル酸−3,4−エポキシシクロヘキシル、ラクトン変性(メタ)アクリル酸−3,4−エポキシシクロヘキシル、ビニルシクロヘキセンオキシド等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。
【0027】
(メタ)アクリル重合体(a1)を調整するに当たり、(メタ)アクリロイル基及びエポキシ基を有する重合性単量体の使用量は通常25〜100重量部好ましくは、40〜100重量部である。他の重合性単量体は、任意成分であり、その使用量は通常0〜75重量部、好ましくは、0〜60重量部である。
【0028】
前記反応性分散剤(A2)の調製に用いる(メタ)アクリル重合体(a2)は、例えば、(メタ)アクリロイル基及びカルボキシル基を有する重合性単量体と必要に応じて他の重合性単量体との共重合反応によって得られる。
【0029】
(メタ)アクリロイル基及びカルボキシル基を有する重合性単量体としては、例えば、(メタ)アクリル酸;β−カルボキシエチル(メタ)アクリレート、2ーアクリロイルオキシエチルコハク酸、2ーアクリロイルオキシエチルフタル酸、2ーアクリロイルオキシエチルヘキサヒドロフタル酸及びこれらのラクトン変性物等エステル結合を有する不飽和モノカルボン酸;マレイン酸等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。
【0030】
(メタ)アクリル重合体(a2)を調整するに当たり、(メタ)アクリロイル基及びカルボキシル基を有する重合性単量体の使用量は通常25〜100重量部好ましくは、40〜100重量部である。他の重合性単量体は、任意成分であり、その使用量は通常0〜75重量部、好ましくは、0〜60重量部である。
【0031】
(メタ)アクリル重合体(a1)や(メタ)アクリル重合体(a2)の調製時に必要に応じて共重合させる他の重合性不飽和単量体としては、例えば、以下の重合性単量体等が挙げられる。
【0032】
(1)(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸−t−ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ドコシル等の炭素数1〜22のアルキル基を持つ(メタ)アクリル酸エステル類;
【0033】
(2)(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル等の脂環式のアルキル基を有する(メタ)アクリル酸エステル類;
【0034】
(3)(メタ)アクリル酸ベンゾイルオキシエチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニルエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸フェノキシジエチレングリコール、(メタ)アクリル酸2−ヒドロキシ−3−フェノキシプロピル等の芳香環を有する(メタ)アクリル酸エステル類;
【0035】
(4)(メタ)アクリル酸ヒドロキエチル;(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸グリセロール;ラクトン変性(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコールなどのポリアルキレングリコール基を有する(メタ)アクリル酸エステル等のヒドロキシアルキル基を有するアクリル酸エステル類;
【0036】
(5)フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチル、イタコン酸ジメチル、イタコン酸ジブチル、フマル酸メチルエチル、フマル酸メチルブチル、イタコン酸メチルエチルなどの不飽和ジカルボン酸エステル類;
【0037】
(6)スチレン、α−メチルスチレン、クロロスチレンなどのスチレン誘導体類;
【0038】
(7)ブタジエン、イソプレン、ピペリレン、ジメチルブタジエンなどのジエン系化合物類;
【0039】
(8)塩化ビニル、臭化ビニルなどのハロゲン化ビニルやハロゲン化ビニリデン類;
【0040】
(9)メチルビニルケトン、ブチルビニルケトンなどの不飽和ケトン類;
【0041】
(10)酢酸ビニル、酪酸ビニルなどのビニルエステル類;
【0042】
(11)メチルビニルエーテル、ブチルビニルエーテルなどのビニルエーテル類;
【0043】
(12)アクリロニトリル、メタクリロニトリル、シアン化ビニリデンなどのシアン化ビニル類;
【0044】
(13)アクリルアミドやそのアルキド置換アミド類;
【0045】
(14)N−フェニルマレイミド、N−シクロヘキシルマレイミドなどのN−置換マレイミド類;
【0046】
(15)フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、ブロモトリフルオロエチレン、ペンタフルオロプロピレン若しくはヘキサフルオロプロピレンの如きフッ素含有α−オレフィン類;またはトリフルオロメチルトリフルオロビニルエーテル、ペンタフルオロエチルトリフルオロビニルエーテル若しくはヘプタフルオロプロピルトリフルオロビニルエーテルの如き(パー)フルオロアルキル基の炭素数が1から18なる(パー)フルオロアルキル・パーフルオロビニルエーテル類;2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3−テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H−オクタフルオロペンチル(メタ)アクリレート、1H,1H,2H,2H−ヘプタデカフルオロデシル(メタ)アクリレート若しくはパーフルオロエチルオキシエチル(メタ)アクリレートの如き(パー)フルオロアルキル基の炭素数が1から18なる(パー)フルオロアルキル(メタ)アクリレート類等のフッ素含有エチレン性不飽和単量体類;
【0047】
(16)γ−メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレート類;
【0048】
(17)N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート若しくはN,N−ジエチルアミノプロピル(メタ)アクリレート等のN,N−ジアルキルアミノアルキル(メタ)アクリレート等が挙げられる。
【0049】
これらの(メタ)アクリル重合体(a1)や(メタ)アクリル重合体(a2)を調製する際に用いる他の重合性不飽和単量体は、単独で用いても良いし、2種以上を併用しても良い。
【0050】
前記(メタ)アクリル重合体(a1)と(a2)は、公知慣用の方法を用いて重合(共重合)させれば得られ、その共重合形態は特に制限されない。触媒(重合開始剤)の存在下に、付加重合により製造することができ、ランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれでもよい。また共重合方法も塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の重合方法が使用できる。
【0051】
ここで、溶液重合等に用いることができる溶媒として代表的なものを挙げれば、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチルイソプロピルケトン、メチル−n−ブチルケトン、メチルイソブチルケトン、メチル−n−アミルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、エチル−n−ブチルケトン、ジ−n−プロピルケトン、ジイソブチルケトン、シクロヘキサノン、ホロン等のケトン系溶媒;
【0052】
エチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソアミルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコール、ジオキサン、テトラヒドロフラン等のエーテル系溶媒;
【0053】
ギ酸エチル、ギ酸プロピル、ギ酸−n−ブチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−nーブチル、酢酸−n−アミル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチル−3−エトキシプロピオネート等のエステル系溶媒;
【0054】
メタノール、エタノール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、ジアセトンアルコール、3−メトキシ−1−プロパノール、3−メトキシ−1−ブタノール、3−メチル−3−メトキシブタノール等のアルコール系溶媒;
【0055】
トルエン、キシレン、ソルベッソ100、ソルベッソ150、スワゾール1800、スワゾール310、アイソパーE、アイソパーG、エクソンナフサ5号、エクソンナフサ6号等の炭化水素系溶媒が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良いが、二段目の反応となるエポキシ基を有する(メタ)アクリル重合体(a1)とカルボキシル基を有する単量体(b1)の反応、またはカルボキシル基を有する(メタ)アクリル系単量体(a2)とエポキシ基を有する単量体(b2)の反応を効率的に行うためには100〜150℃の高温で行う方が好ましく、この観点から溶媒の沸点は100℃以上、好ましくは100〜150℃のものを用いるのが好ましい。
【0056】
また、上述の触媒としては、ラジカル重合開始剤として一般的に知られるものが使用でき、例えば2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ化合物;ベンゾイルペルオキシド、ラウロイルペルオキシド、t−ブチルペルオキシピバレート、t−ブチルパーオキシエチルヘキサノエイト、1,1’−ビス−(t−ブチルペルオキシ)シクロヘキサン、t−アミルペルオキシ−2−エチルヘキサノエート、t−ヘキシルペルオキシ−2−エチルヘキサノエート等の有機過酸化物及び過酸化水素等が挙げられる。
【0057】
触媒として過酸化物を用いる場合には、過酸化物を還元剤とともに用いてレドックス型開始剤としてもよい。
【0058】
反応性分散剤(A1)は、前述の通りエポキシ基を有する(メタ)アクリル重合体(a1)と(メタ)アクリロイル基及びカルボキシル基を有する単量体(b1)とを反応させる。(メタ)アクリロイル基及びカルボキシル基を有する単量体(b1)としては、例えば、(メタ)アクリル酸;β−カルボキシエチル(メタ)アクリレート、2−アクリロイルオキシエチルコハク酸、2ーアクリロイルオキシエチルフタル酸、2ーアクリロイルオキシエチヘキサヒドロフタル酸及びこれらのラクトン変性物等エステル結合を有する不飽和モノカルボン酸;マレイン酸等が挙げられる。
【0059】
また、単量体(b1)として無水コハク酸や無水マレイン酸等の無水酸をペンタエリスリトールトリアクリレート等の水酸基含有多官能(メタ)アクリレートモノマーと反応させた後、カルボキシル基含有多官能(メタ)アクリレートモノマーとしたものを用いても良い。これら(メタ)アクリロイル基及びカルボキシル基を有する単量体(b1)は各々単独で用いても良いし、2種以上を併用しても良い。
【0060】
重合体(a1)と単量体(b1)との反応は通常、両成分を混合し、80〜120℃程度に加熱することにより行われる。重合体(a1)と単量体(b1)の使用量は、得られる(A1)の(メタ)アクリル当量が200〜600g/eqになるものであれば特に限定されないが、通常、エポキシ基1モルに対して単量体(b1)中のカルボキシル基のモル数を0.4〜1.1モルとすることが好ましい。
【0061】
反応性分散剤(A2)は、前述の通りカルボキシル基を有する(メタ)アクリル重合体(a2)と(メタ)アクリロイル基及びエポキシ基を有する単量体(b2)とを反応することにより得られる。(メタ)アクリロイル基及びエポキシ基を有する単量体(b2)としては、例えば、(メタ)アクリル酸グリシジル、α−エチル(メタ)アクリル酸グリシジル、α−n−プロピル(メタ)アクリル酸グリシジル、α−n−ブチル(メタ)アクリル酸グリシジル、(メタ)アクリル酸−3,4−エポキシブチル、(メタ)アクリル酸−4,5−エポキシペンチル、(メタ)アクリル酸−6,7−エポキシペンチル、α−エチル(メタ)アクリル酸−6,7−エポキシペンチル、βーメチルグリシジル(メタ)アクリレート、(メタ)アクリル酸−3,4−エポキシシクロヘキシル、ラクトン変性(メタ)アクリル酸−3,4−エポキシシクロヘキシル、ビニルシクロヘキセンオキシド等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。
【0062】
重合体(a2)と単量体(b1)との反応は通常、両成分を混合し、80〜120℃程度に加熱することにより行われる。重合体(a1)と単量体(b1)の使用量は、得られる(A1)の(メタ)アクリル当量が200〜600g/eqになるものであれば特に限定されないが、通常、カルボキシル基1モルに対して単量体(b1)中のエポキシ基のモル数を0.4〜1.1モルとすることが好ましい。
【0063】
前記エポキシ基を有する(メタ)アクリル重合体(a1)と(メタ)アクリロイル基及びカルボキシル基を有する単量体(b1)との反応や、カルボキシル基を有する(メタ)アクリル重合体(a2)と(メタ)アクリロイル基及びエポキシ基を有する単量体(b2)との反応は、例えば以下の方法でも行なう事もできる。
【0064】
方法1:(メタ)アクリル重合体(a1)を溶液重合法にて重合し、反応系に(メタ)アクリロイル基及びカルボキシル基を有する単量体(b1)を加えて反応させる方法。
【0065】
方法2:(メタ)アクリル重合体(a2)を溶液重合法にて重合し、(メタ)アクリロイル基及びエポキシ基を有する単量体(b2)を加えて反応させる方法。
【0066】
尚、本発明の反応性分散剤は重合性不飽和二重結合を1分子あたり一つ有する単量体を重合して得られる構造を主骨格とする重合体が好ましいが、重合時のゲル化を生じない範囲で重合性不飽和二重結合を二つ以上有する単量体を併用しても良い。
【0067】
前述の通り、本発明の反応性分散剤は反応性分散剤(A1)〔エポキシ基を有する(メタ)アクリル重合体(a1)と(メタ)アクリロイル基及びカルボキシル基を有する単量体(b1)とを反応することにより得られる重合体〕は、グリシジル(メタ)アクリレートを含有する重合性単量体を重合させて得られたエポキシ基含有アクリル系重合体と(メタ)アクリル酸とを反応させて得られたアクリル系重合体が好ましい。
【0068】
前記エポキシ基含有アクリル重合体(a1)のエポキシ当量としては、140〜500g/eqが好ましく、140〜300g/eqがより好ましい。更にエポキシ基含有アクリル系重合体(a1)のガラス転移温度としては、30℃以上が好ましく、30〜100℃がより好ましい。
【0069】
なお、本発明においてエポキシ当量とは、JIS−K−7236にて定義される値である。
【0070】
本発明で重量平均分子量と数平均分子量の測定は、ゲルパーミエーションクロマトグラ
フ(GPC)を用い、下記の条件により求めた。
【0071】
測定装置 ; 東ソー株式会社製 HLC−8220
カラム ; 東ソー株式会社製ガードカラムHXL−H
+東ソー株式会社製 TSKgel G5000HXL
+東ソー株式会社製 TSKgel G4000HXL
+東ソー株式会社製 TSKgel G3000HXL
+東ソー株式会社製 TSKgel G2000HXL
検出器 ; RI(示差屈折計)
データ処理:東ソー株式会社製 SC−8010
測定条件: カラム温度 40℃
溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 ;ポリスチレン
試料 ;樹脂固形分換算で0.4重量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
【0072】
本発明の反応性分散剤の重量平均分子量としては、硬化収縮効果とレベリング性の観点から5,000〜100,000が好ましく、5,000〜50,000がより好ましい。
【0073】
本発明の反応性分散剤は、反応性分散剤の有する水酸基と一つのイソシアネートと(メタ)アクリロイル基を有する単量体とを本発明の効果を損なわない範囲で反応させてもよい。これにより、(メタ)アクリロイル基当量と水酸基当量を適宜調整することが可能である。
【0074】
前記一つのイソシアネートと(メタ)アクリロイル基を有する単量体としては、例えば、一つのイソシアネートと一つの(メタ)アクリロイル基を有する単量体、一つのイソシアネートと二つの(メタ)アクリロイル基を有する単量体、一つのイソシアネートと三つの(メタ)アクリロイル基を有する単量体、一つのイソシアネートと四つの(メタ)アクリロイル基を有する単量体、一つのイソシアネートと五つの(メタ)アクリロイル基を有する単量体等が挙げられる。このような単量体としては、例えば、下記式[化3]で表される化合物を好ましく例示することができる。
【0075】
【化3】

【0076】
一般式(1)中、Rは水素原子又はメチル基である。Rは炭素原子数2から4のアルキレン基である。nは1〜5の整数を表す。具体的には、例えば、カレンズAOI、カレンズMOI、カレンズBEI(商品名、昭和電工(株)製)の他、ジイソシアネート化合物とヒドロキシアクリレートとの反応付加物等が例示できる。ここで、ジイソシアネート化合物としては、公知のものを特に限定されず使用することができ、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等が挙げられる。ヒドロキシアクリレートとしては、水酸基及び(メタ)アクリル基を有する化合物であれば特に限定されず、公知のものを使用することができるが、例えば、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート、グリセリンジアクリレート、トリメチロールプロパンジアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等が挙げられる。中でも、架橋密度を高めることが出来る点で、カレンズBEIの如く一分子中に2個以上の(メタ)アクリロイル基を持つものが好ましい。
【0077】
本発明の反応性分散剤に一つのイソシアネートと(メタ)アクリロイル基を有する単量体を反応させる方法は、特に限定されず、公知の方法を採用することができる。具体的には、例えば、本発明の反応性分散剤に一つのイソシアネートと(メタ)アクリロイル基を有する単量体を滴下しながら加え、50〜120℃、より好ましくは、60〜90℃に加熱し反応させれば良い。なお、反応性分散剤と一つのイソシアネートと(メタ)アクリロイル基を有する単量体の使用量は特に限定されないが、通常、反応性分散剤の水酸基(モル):一つのイソシアネートと(メタ)アクリロイル基を有する単量体のイソシアネート基(モル)=1:0.1〜1:0.9であり、好ましくは、1:0.1〜1:0.7である。
【0078】
本発明の反応性分散剤は種々の無機粒子の反応性分散剤として好適に用いることができる。無機粒子としては、乾式シリカ微粒子、湿式シリカ微粒子等が挙げられる。乾式シリカ微粒子は、例えば、四塩化珪素を酸素または水素炎中で燃焼することにより得られるシリカ微粒子である。また、湿式シリカ微粒子は、例えば、珪酸ナトリウムを鉱酸で中和して得られるシリカ微粒子である。本発明の反応性分散剤はシリカ微粒子の分散性が高い。その為、本発明の反応性分散剤中に無機粒子を分散させた分散体は長期間にわたり分散安定性が良好に保たれる。また、該分散体をウレタン(メタ)アクリレートやエポキシ(メタ)アクリレート等の活性エネルギー線硬化型オリゴマーや活性エネルギー線硬化型モノマーに加えて活性エネルギー線硬化性樹脂組成物を調製した場合でも、該活性エネルギー線硬化性樹脂組成物中で無機粒子は長期間にわたって安定して分散する。このように本発明の反応性分散剤は無機粒子の分散性が高い為、組成物中で分散性安定性が悪い無機粒子を分散させる際の反応性分散剤として用いるのが好ましい。また、本発明の反応性分散剤は、(メタ)アクリロイル基を有する化合物に無機粒子を分散させる際に用いる反応性分散剤として用いるのが好ましい。
【0079】
本発明の反応性分散剤は平均一次粒子径10nm〜300nmの無機粒子の反応性分散剤として用いるのが好ましく、平均一次粒子径10nm〜200nmの無機粒子の反応性分散剤として用いるのがより好ましい。
【0080】
本発明の反応性分散剤を用いて無機粒子が分散してなる反応性分散体を調製することができる。反応性分散体における各成分の含有量は特に制限されないが、本発明の反応性分散剤とシリカ微粒子とを、〔(反応性分散剤):(無機粒子)〕で10〜90重量部:90〜10重量部となるように含有するのが好ましく、30〜90重量部:70〜10重量部となるように含有するのがより好ましい。また、本発明の分散体中の反応性分散剤とシリカ微粒子との合計の含有率は、固形分換算で1〜50重量%が好ましく、1〜30重量%がより好ましい。
【0081】
反応性分散体を製造する際に、本発明の反応性分散剤と無機粒子と前記反応性分散剤以外の(メタ)アクリロイル基を有する化合物とを含有することでエネルギー線硬化性樹脂組成物とすることができる。前記反応性分散剤以外の(メタ)アクリロイル基を有する化合物としては、例えば、活性エネルギー線硬化型モノマー又は活性エネルギー線硬化型オリゴマー等が挙げられる。各成分の含有量は特に制限されないが、本発明の反応性分散剤と活性エネルギー線硬化型モノマー又は活性エネルギー線硬化型オリゴマーとを、〔(反応性分散剤):(活性エネルギー線硬化型モノマー又は活性エネルギー線硬化型オリゴマー)〕で10〜90重量部:90〜10重量部となるように含有するのが好ましく、30〜90重量部:70〜10重量部となるように含有するのがより好ましい。
【0082】
前記活性エネルギー線硬化型モノマーとしては、例えば、本発明の反応性分散剤の調製で用いることができる前記重合性単量体等の他に、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、
【0083】
ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブチレングリコールジ(メタ)アクリレート、1,6−ヘキサメチレングリコールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールにカプロラクトン付加した化合物のジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、
【0084】
トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、テトラメチロールメタン、及びそれらに1〜20モルのアルキレンオキサイドを付加させた水酸基含有化合物などの水酸基を3つ以上有する化合物に(メタ)アクリル酸が3分子以上エステル結合した化合物等が挙げられる。
【0085】
前記活性エネルギー線硬化型オリゴマーとしては、例えば、本発明の反応性分散剤以外のアクリル(メタ)アクリレート、ウレタン(メタ)アクリレート、エステル(メタ)アクリレート、エポキシ(メタ)アクリレート等からなる群から選ばれる1種以上の(メタ)アクリレート化合物が挙げられる。
【0086】
ウレタン(メタ)アクリレートとしては、例えば、イソシアネート化合物を水酸基含有(メタ)アクリレート化合物と反応せしめてなる多官能ウレタン(メタ)アクリレートが挙げられる。ここで用いるイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、水添キシレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ノルボルネンジイソシアネートなどの脂肪族若しくは脂環式のジイソシアネート化合物;トルエンジイソシアネート、4,4’―ジフェニルメタンジイソシアネートなどの芳香族ジイソシアネート;ジイソシアネート化合物の3量体であるイソシアヌレート型イソシアネートプレポリマー等が挙げられる。また、該多官能ウレタン(メタ)アクリレートを製造する際に、イソシアネート化合物と反応せしめる水酸基含有(メタ)アクリレート化合物の一部を2価〜4価のアルコール又はポリオール化合物で置換して重合せしめたものでも良い。
【0087】
また、エステルアクリレートとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ネオペンチルグリコール、ビスフェノールA、水添ビスフェノールA、エトキシ化ビスフェノールA、エトキシ化水添ビスフェノールA、プロポキシ化ビスフェノールA、プロポキシ化水添ビスフェノールA及び2価以上の多価アルコールから選ばれる1種以上と、無水フタル酸、イソフタル酸、テレフタル酸、アジピン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水マレイン酸、フマル酸、無水トリメリット酸、無水ピロメリット酸などに代表される多塩基酸から選ばれる1種以上をエステル化反応せしめて得られる水酸基を有するエステルポリオールをさらに(メタ)アクリレート化した多官能エステル(メタ)アクリレートなどが挙げられる。
【0088】
更に、エポキシアクリレートとしては、例えば、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、ヒドロキシピバリン酸ネオペンチルグリコール、ビスフェノールA、エトキシ化ビスフェノールAなどの2価のアルコールのトリグリシジルエーテル化物等のジエポキシ化合物に(メタ)アクリル酸を付加せしめて得られる2価のエポキシ(メタ)アクリレート化合物;トリメチロールプロパン、エトキシ化トリメチロールプロパン、プロポキシ化トリメチロールプロパン、グリセリンなどの3価アルコールをエポキシ化して得られるエポキシ化合物に、(メタ)アクリル酸を付加せしめて得られる平均3個以上のラジカル重合性不飽和二重結合を有するエポキシトリ(メタ)アクリレート化合物;少なくとも1個の芳香環を有する多価フェノールまたはそのアルキレンオキサイド付加体にグリシジルエーテルを反応せしめたエポキシ化合物に(メタ)アクリル酸を付加せしめて得られるフェノールノボラック、クレゾールノボラック等の多官能芳香族エポキシアクリレート;これら多官能芳香族エポキシアクリレートの水添タイプである多官能脂環式エポキシアクリレート;さらに分子中に存在する2級の水酸基とジイソシアネート化合物の片方のイソシアネート基でウレタン化した後、残存する片末端のイソシアネート基と水酸基含有(メタ)アクリレートを反応させて得られるウレタン変性エポキシアクリレートなどが挙げられる。
【0089】
これらの中でも、それぞれ、平均3個以上のラジカル重合性不飽和二重結合を有する、エステルアクリレートとウレタンアクリレートは、硬化塗膜の耐摩耗性が良好なため、特に好ましい。
【0090】
反応性分散体の製造方法は特に限定されないが、例えばエポキシ基を有する(メタ)アクリル重合体(a1)に(メタ)アクリロイル基及びカルボキシル基を有する単量体(b1)を付加反応させてなる(メタ)アクリロイル当量が200〜600で、水酸基価が90〜280mg/KOHの反応生成物または、カルボキシル基を有する(メタ)アクリル重合体(a2)に(メタ)アクリロイル基及びエポキシ基を有する単量体(b2)を付加反応させてなる(メタ)アクリロイル当量が200〜600で、水酸基価が90〜280mg/KOHの反応生成物(以下、反応性分散剤)10〜90重量部と無機粒子90〜10重量部とを、反応性分散剤とシリカ微粒子との合計の濃度が1〜50重量%となるように分散媒(有機溶剤)で希釈して、機械的手段を用いて分散させる方法が挙げられる。
【0091】
前記有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン類、テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の芳香族類、カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール類が挙げられ、これらを単独又は併用して使用可能であるが、中でも、反応性分散剤の合成溶媒であるメチルエチルケトンが塗工時の揮発性や溶媒回収の面から好ましい。
【0092】
機械的手段としては、例えば、ディスパー、タービン翼等攪拌翼を有する分散機、ペイントシェイカー、ロールミル、ボールミル、アトライター、サンドミル、ビーズミル等が挙げられる。反応性分散体を製造するには、得られる分散体をコーティング剤等に用いる場合には、塗工性、塗料安定性及び硬化被膜の透明性等の点から、ガラスビーズ、ジルコニアビーズ等の分散メディアを使用するビーズミルによる分散が好ましい。
【0093】
前記ビーズミルとしては、例えば、アシザワ・ファインテック(株)製のスターミル;三井鉱山(株)製のMSC−MILL、SC−MILL、アトライター MA01SC;浅田鉄工(株)のナノグレンミル、ピコグレンミル、ピュアグレンミル、メガキャッパーグレンミル、セラパワーグレンミル、デュアルグレンミル、ADミル、ツインADミル、バスケットミル、ツインバスケットミル:寿工業(株)製のアスペックミル、ウルトラアスペックミル、スーパーアスペックミル等が挙げられる。
【0094】
上記ウルトラアスペックミルは、円筒形のステータと、ステータの一端に設けられるスラリー(本願発明の反応性分散剤とシリカ微粒子の混合物、以下同じ。)の供給口と、ステータの他端に設けられるスラリーの排出口と、ステータ内に充填されるメディアと供給口より供給されたスラリーを攪拌混合するロータと、排出口に連結され、かつロータと一体をなして回転するか、或いはロータとは別個に独立して回転し、遠心力の作用によりメディアとスラリーに分離して、スラリーを排出口より排出させるインペラタイプのセパレータとよりなる湿式攪拌ボールミルにおいて、セパレータを回転駆動するシャフトの軸心を上記排出口と通ずる中空な排出路としたことを特徴とする湿式攪拌ボールミルであり、これを用いた分散体の製造方法は反応性分散剤とシリカ微粒子とを含有するスラリーを該湿式攪拌ボールミルの供給口からメディアが充填されたステータに供給し、該ステータ内でスラリー中のシリカ微粒子の粉砕と反応性分散剤への分散を行った後、該スラリーからメディアを分離する方法である。
【0095】
以下、図面により、上記のようなボールミルを用いた本発明の製造方法について詳しく説明する。
【0096】
図1は、本発明の分散体の製造方法で用いる前記湿式攪拌ボールミルを備えた原料スラリー粉砕処理サイクルの概略図、図2は、本発明の分散体の製造方法で用いる前記湿式攪拌ボールミルの縦断面図、図3は、本発明の分散体の製造方法で用いる前記湿式攪拌ボールミルのスラリー供給時の供給口の縦断面図、図4は、メディア排出時の供給口の縦断面図、図5は、本発明の分散体の製造方法で用いる前記湿式攪拌ボールミルのもう一つの例の縦断面図、図6は、図5に示す湿式攪拌ボールミルのセパレータの横断面図を表した図である。
【0097】
図1において、スラリーを貯蔵する原料タンク1より原料ポンプ2で抜き出されたスラリーは、縦型の摩砕型湿式攪拌ボールミル3に供給され、該ミル3でメディアと共に攪拌されることにより粉砕されたのち、セパレータ4でメディアを分離してシャフト5の軸心を通って排出され、タンク1に戻される経路を辿り、循環粉砕されるようになっている。
【0098】
スラリーには、必要に応じて有機溶剤、各種添加剤等を適宜添加することができる。スラリーには有機溶剤を含有させるのが好ましい。
【0099】
前記有機溶剤の使用量としては、本発明の反応性分散剤とシリカ微粒子の合計100重量部に対して150〜500重量部が好ましく、中でも200〜300重量部がビーズミル操作時にスラリーとメディアとの分離が良好で、かつスラリー濃縮時の工程が短時間で済むことから好ましい。
【0100】
スラリーを調製するには、本発明の反応性分散剤に有機溶剤を加えて反応性分散剤の有機溶剤溶液を得た後、シリカ微粒子を加えるのが好ましい。
【0101】
前記各種添加剤としては、例えば、カップリング剤が挙げられる。カップリング剤としては、例えば、ビニル系のシランカップリング剤、エポキシ系のシランカップリング剤、スチレン系のシランカップリング剤、メタクリロキシ系のシランカップリング剤、アクリロキシ系のシランカップリング剤、アミノ系のシランカップリング剤、ウレイド系のシランカップリング剤、クロロプロピル系のシランカップリング剤、メルカプト系のシランカップリング剤、スルフィド系のシランカップリング剤、イソシアネート系のシランカップリング剤、アルミニウム系のシランカップリング剤等が挙げられる。
【0102】
ビニル系のシランカップリング剤としては、例えば、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル・ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、特殊アミノシラン、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、トリクロロビニルシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シランが挙げられる。
【0103】
エポキシ系のシランカップリング剤としては、例えば、ジエトキシ(グリシディルオキシプロピル)メチルシラン、2−(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−ブリシドキシプロピルトリエトキシシラン等が挙げられる。
【0104】
スチレン系のシランカップリング剤としては、例えば、p−スチリルトリメトキシシラン等が挙げられる。
【0105】
メタクリロキシ系のシランカップリング剤としては、例えば、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシランが例示される。
【0106】
アクリロキシ系のシランカップリング剤としては、例えば、3−アクリロキシプロピルトリメトキシシラン等が挙げられる。
【0107】
アミノ系のシランカップリング剤としては、例えば、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1、3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン等が挙げられる。
【0108】
ウレイド系のシランカップリング剤としては、例えば、3−ウレイドプロピルトリエトキシシラン等が挙げられる。
【0109】
クロロプロピル系のシランカップリング剤としては、例えば、3−クロロプロピルトリメトキシシランが例示される。
【0110】
メルカプト系のシランカップリング剤としては、例えば、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキンシラン等が挙げられる。
【0111】
スルフィド系のシランカップリング剤としては、例えば、ビス(トリエトキシシリルプロピル)テトラスルファイド等が挙げられる。
【0112】
イソシアネート系のシランカップリング剤としては、例えば、3−イソシアネートプロ
ピルトリエトキシシラン等が挙げられる。
【0113】
アルミニウム系カップリング剤としては、例えば、アセトアルコキシアルミニウムジイソプロピレート等が挙げられる。
【0114】
前記ミル3は、図2に詳細に示されるように、縦向きの円筒形で、かつミル冷却のための冷却水が通されるジャケット6を備えたステータ7と、ステータ7の軸心に位置してステータ上部において回転可能に軸承されると共に、軸承部にメカニカルシールを備え、かつ上側部の軸心を中空な排出路9としたシャフト5と、シャフト下端部に径方向に突設されるピンないしディスク状のロータ11と、シャフト上部に固着され、図1に示すモータ12のプーリ13とベルト掛けされるプーリ14と、シャフト上端の開口端に装着されるロータリージョイント15と、ステータ内の上部近くにおいてシャフト5に固着されるメディア分離のためのセパレータ4と、ステータ底部にシャフト5の軸端に対向して設けられる原料スラリーの供給口16と、ステータ底部の偏心位置に設けられる製品スラリー取出し口19に設置される格子状のスクリーンサポート17上に取着され、メディアを分離するスクリーン18とからなっている。
【0115】
セパレータ4は、シャフト5に一定の間隔を存して固着される一対のディスク21と、両ディスク21を連結するブレード22とよりなってインペラを構成し、シャフト5と共に回転してディスク間に入り込んだメディアとスラリーに遠心力を付与し、その比重差によりメディアを径方向外方に飛ばす一方、スラリーをシャフト5の軸心の排出路9を通って排出させるようにしている。
【0116】
原料スラリーの供給口16は、図3に詳細に示されるように、ステータ底部に形成される弁座24と、弁座24に昇降可能に嵌合する逆台形状の弁体25と、ステータ底部より下向きに突出し、原料スラリーの導入口27を形成した有底の円筒体26及び該円筒体より下向きに突出し、エアーの導入口29を備えた有底の円筒体28と、円筒体28に昇降可能に嵌合するピストン31と、ピストン31と弁体25を連結するロッド32と、円筒体28内のピストン上に装着され、ピストン31を押し下げて弁体25を常には下向きに付勢するバネ33と、円筒体28より突出するロッド端に捩込まれて位置調整可能に取着されるナット34よりなり、原料スラリーの供給により弁体25が押し上げられると、弁座24との間に環状のスリットが形成され、これより原料スラリーがミル内に供給されるようになるが、上記スリットの巾はナット34を捩込み、或いは弛めることにより調整可能で、原料供給時にはナット34が円筒体28に突き当たって最大限広がったときでも、メディアが通り抜けできないような巾に設定される。原料供給時の弁体25は、円筒体26内に送り込まれた原料スラリーの供給圧によりミル内の圧力及びバネ33の作用に抗して上昇し、弁座24との間にスリットを形成するが、原料スラリーの供給圧は原料スラリーの供給によって形成されるスリットの巾が、ナット34で規制される最大スリット巾よりも若干小さくなるようにしてあり、したがってナット34と円筒体28との間には若干の余裕がある。
【0117】
弁座24と弁体25との間に形成されるスリットを通ってミル内に供給される原料スラリー中には粗粒子が含まれ、これが弁座と弁体との間に噛み込んで詰まりを生ずることが予想されるが、噛み込みによって詰まりを生じた場合、供給圧の上昇によって弁体25が限度一杯まで上昇し、スリット巾を最大にする。このために噛み込んだ粗粒子が流出して詰まりが解消される。詰まりが解消されると、供給圧が低下し、弁体25が降下する。
【0118】
スリットでの詰まりを解消するため、図示する例においては更に、図示省略した圧縮空気源より圧縮空気がレギュレータ23を通り、電磁切換弁30を経て導入口29より円筒体28内に供給されるようにしてあり、電磁切換弁30を短い周期でON−OFFに繰返して切り換えることにより圧縮空気が断続して供給され、これにより弁体25が短い周期で上限位置まで上昇する上下動を繰返して噛み込みを解消できるようにしてある。
【0119】
この弁体25の振動は、常時行っておいてもよいし、原料スラリー中に粗粒子が多量に含まれる場合に行ってもよく、また詰まりによって原料スラリーの供給圧が上昇したとき、これに連動して行われるようにしてもよい。
【0120】
粉砕終了後、攪拌したメディアを製品スラリーと共に、或いは製品スラリー抜出後、取り出すときには、図に示すようにナット34の取付け位置を下げる。そして電磁切換弁30をONに切り換える。これにより、導入口29より導入された圧縮空気で弁体25が弁座24のエッジ上に持上げられる。
【0121】
上記実施形態では、ロータ11とセパレータ4は同じシャフト5に固定されているが、別の実施形態では同軸上に配置した別々のシャフトに固定され、別個に回転駆動される。
ロータとセパレータを同じシャフトに取り付けた上記図示する実施形態においては、駆動装置が一つですむため構造が簡単となるのに対し、ロータとシャフトを別々のシャフトに取り付けて、別々の駆動装置によって回転駆動させるようにした後者の実施形態では、ロータとセパレータをそれぞれ最適な回転数で回転駆動させることができる。
【0122】
図5に示すボールミルは、シャフト43を段付軸とし、シャフト下端よりセパレータ44を嵌挿し、ついでスペーサ45とディスクないしピン状のロータ46とを交互に嵌挿したのち、シャフト下端にストッパー47をネジ48により止着し、シャフト43の段43aとストッパー47とによりセパレータ44、スペーサ45及びロータ46を挟み込んで連結し固定したもので、セパレータ44は図6に示すように、内側に対向する面にそれぞれブレード嵌合溝51を形成した一対のディスク52と、両ディスク間に介在してブレード嵌合溝51に嵌合させたブレード53と、両ディスク52を一定の間隔に維持し、排出路54に通ずる孔55を形成した環状のスペーサ56とよりなってインペラを構成している。
【0123】
次に図1に示す装置を用いたスラリーの粉砕方法について説明する。ボールミル3のステータ7内にメディアを充填する。メディアとしては、例えば、種々の微小ビーズが用いられる。微小ビーズの素材は、例えば、ジルコニア、ガラス、酸化チタン、銅、珪酸ジルコニア等が挙げられる。
【0124】
メディアの粒径としては、セパレータ44での分散メディアの分離が良好で、かつ、ローター11でのシリカ微粒子分散も良好なこと、分散にかかる時間も長時間になりにくいこと、シリカ粒子への衝撃が強すぎず、シリカ微粒子の破壊による過分散現象がおきにくいことから15〜100μmが好ましく、15〜50μmがより好ましい。
【0125】
前記過分散現象とは、シリカ微粒子の破壊により新たな活性表面が生成し、再凝集を起こす現象をいう。過分散すると、分散液はゼリー状になる。
【0126】
メディアのステータ内の充填率としては、例えば、ステータ内容積の80〜90%である。充填率をステータ内容積の80〜90%にすることで単位重量の製品スラリーを得るのに要する動力が最も少なくなる。即ち、最も効率的に粉砕を行うことができる。
【0127】
ボールミル3のステータ7内にメディアを充填した後、バルブ58、59及び60を閉め、かつバルブ61及び62を開けた状態で先ずモータ12を駆動し、ついで原料ポンプ2を駆動する。前者のモータ12の駆動によりロータ11及びセパレータ4が回転駆動される一方、後者の原料ポンプ2の駆動により原料タンク1内の原料スラリーが一定量ずつ供給口16の導入口27に送られ、これにより弁座24のエッジと弁体25との間に形成されるスリットを通してミル内に供給される。
【0128】
モータ12を駆動し、ロータ11及びセパレータ4の回転させる際は、回転数が大きく周速が大きいほど大きい遠心力を受け、また、メディアとシリカ微粒子との衝突する際の衝撃も大きくなる。メディアとして粒径15μmのメディアを用いる際の周速は15m/sec以上が好ましい。メディアとして粒径30μmのメディアを用いる際の周速は8m/sec以上が好ましい。
【0129】
ロータ11の回転によりミル内のスラリーとメディアが攪拌混合されてスラリーの粉砕が行われ、またセパレータ4の回転により、セパレータ内に入り込んだメディアとスラリーが比重差により分離され、比重の重いメディアが径方向外方に飛ばされるのに対し、比重の軽いスラリーがシャフト5の軸心に形成される排出路9を通して排出され、原料タンク1に戻される。
【0130】
原料タンク1に戻されたスラリーは、再度原料ポンプ2によりミルに供給されるサイクルを繰返し、粉砕が進行する。粉砕がある程度進行した段階でスラリーの粒度を適宜測定し、所望粒度に達すると、一旦原料ポンプを停止し、ついでモータ12を停止させてミル3の運転を停止し、粉砕を終了する。その後、バルブ58及び59を開けると共にバルブ61及び62を閉め、かつ原料ポンプ及びモータ12を再起動したのちバルブ60を聞く。すると、原料タンク1内の製品スラリーが原料ポンプ2により抜き出されて製品タンク63内に送られる一方、ミル内の製品スラリーがロータ7の回転によって攪拌されながら、バルブ60及び排出路9を通って、或いはミル上部よりミル内に供給される圧縮空気又はNガスによりスクリーン18を通って押し出され、製品タンク63に送られる。以上のようにして原料タンク1及びミル3内の製品スラリーが製品タンク63に回収される。
【0131】
シリカ微粒子の分散にかける時間としては、分散が良好になり、且つ、生産性が良好となることから、原料ポンプ2によりスラリーがミルに供給されるサイクル(循環流量)が1.5L/時間の場合、通常5〜60分が好ましく、10〜40分がより好ましい。
【0132】
また、前記循環流量は5〜15L/時間が好ましく、8〜10L/時間がより好ましい。
【0133】
なお、製品回収時において、ロータ7を回転させるのは、ミル内にメディアが沈降してミル下層部に偏在しないように混合し、スクリーン18での目詰まりを防止するためで、目詰まり解消のため適宜圧縮空気又はNガスを取出し口19より導入し、スクリーン18が逆洗される。
【0134】
また、本発明の製造方法ではアシザワ・ファインテック株式会社製のスターミルも好ましく用いることができる。該スターミルは、一端側にスラリー入り口を有する筒状の容器と、前記容器内に長手方向に延びるように配置された回転自在な攪拌軸と、前記容器の外において前記攪拌軸に連結された駆動装置とを備え、前記攪拌軸は、攪拌部材を有し、前記攪拌軸と前記容器内面との間の空間に粉砕媒体が入れられており、前記スラリー入り口からスラリーを導入しながら前記駆動装置により前記攪拌軸を回転駆動することにより、該スラリー内のシリカ微粒子が粉砕されるようになっており、前記攪拌軸は、前記容器の他端近傍にメディア入り口を有する中空部が形成され、前記攪拌軸にはこの中空部を前記攪拌軸と前記容器内面との間の前記空間に連通させるスリットが形成され、スラリーの動きに伴って前記容器の前記他端近傍に達した前記メディアが、前記スラリー入り口から前
記攪拌軸の前記中空部に入り、前記スリットから前記攪拌軸と前記容器内面との間の前記空間に戻る循環運動をするようになった媒体攪拌型粉砕装置であって、前記攪拌軸の前記中空部内にスラリー出口が配置され、前記中空部内に前記スラリー出口を囲むようにスクリーンが設けられ、前記スクリーンが回転駆動されるようになったことを特徴とする媒体攪拌型粉砕装置である。
【0135】
前記媒体攪拌型粉砕装置ではスラリーからメディアを分離するためのスクリーンが回転駆動されるため、スクリーン近傍に達したスラリー及びメディアには回転運動が誘起され、この回転運動による遠心力はスラリーよりもメディアの方が高くなるため、メディアにはスクリーンから離れる付勢力が生じる。このため、メディアはスクリーンに接近することなく循環することになる。その為、スラリーから効率的にメディアを除去することが可能となる。
【0136】
本発明の製造方法で得られた分散体は、他の化合物と混合することにより活性エネルギー線硬化性樹脂組成物とすることができる。これらの化合物としては前記した活性エネルギー線硬化型モノマー、活性エネルギー線硬化型オリゴマー、紫外線吸収剤、酸化防止剤、シリコン系添加剤、フッ素系添加剤、レオロジーコントロール剤、脱泡剤、離型剤、シランカップリング剤、帯電防止剤、防曇剤、着色剤等が挙げられる。
【0137】
前記紫外線吸収剤としては、例えば、2−[4−{(2−ヒドロキシ−3−ドデシルオキシプロピル)オキシ}−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、2−[4−{(2−ヒドロキシ−3−トリデシルオキシプロピル)オキシ}−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン等のトリアジン誘導体、2−(2’−キサンテンカルボキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−o−ニトロベンジロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−キサンテンカルボキシ−4−ドデシロキシベンゾフェノン、2−o−ニトロベンジロキシ−4−ドデシロキシベンゾフェノン等が挙げられる。
【0138】
前記酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、有機硫黄系酸化防止剤、リン酸エステル系酸化防止剤等が挙げられる。
【0139】
前記シリコン系添加剤としては、例えば、ジメチルポリシロキサン、メチルフェニルポリシロキサン、環状ジメチルポリシロキサン、メチルハイドロゲンポリシロキサン、ポリエーテル変性ジメチルポリシロキサン共重合体、ポリエステル変性ジメチルポリシロキサン共重合体、フッ素変性ジメチルポリシロキサン共重合体、アミノ変性ジメチルポリシロキサン共重合体など如きアルキル基やフェニル基を有するポリオルガノシロキサン類が挙げられる。
【0140】
上記した如き種々の添加剤の使用量としては、その効果を十分発揮し、また紫外線硬化を阻害しない範囲であることから、該注型重合用活性エネルギー線硬化性樹脂組成物100重量部に対し、それぞれ0.01〜10重量部の範囲であることが好ましい。
【0141】
本発明の分散体に加えることができる光重合開始剤としては、例えば、ベンゾフェノン、3,3’−ジメチル−4−メトキシベンゾフェノン、4,4’−ビスジメチルアミノベンゾフェノン、4,4’−ビスジエチルアミノベンゾフェノン、4,4’−ジクロロベンゾフェノン、ミヒラーズケトン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン類;
【0142】
キサントン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2,4−ジエチルチオキサントンなどのキサントン、チオキサントン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのアシロインエーテル類;
【0143】
ベンジル、ジアセチルなどのα-ジケトン類;テトラメチルチウラムジスルフィド、p−トリルジスルフィドなどのスルフィド類;4−ジメチルアミノ安息香酸、4−ジメチルアミノ安息香酸エチルなどの安息香酸類;
【0144】
3,3’-カルボニル-ビス(7-ジエチルアミノ)クマリン、1−ヒドロキシシクロへキシルフェニルケトン、2,2’−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルフオリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド、1−〔4−(2−ヒドロキシエトキシ)フェニル〕−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、1−(4−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−ベンゾイル−4’−メチルジメチルスルフィド、2,2’−ジエトキシアセトフェノン、ベンジルジメチルケタ−ル、ベンジル−β−メトキシエチルアセタール、o−ベンゾイル安息香酸メチル、ビス(4−ジメチルアミノフェニル)ケトン、p−ジメチルアミノアセトフェノン、α,α−ジクロロ−4−フェノキシアセトフェノン、ペンチル−4−ジメチルアミノベンゾエート、2−(o−クロロフェニル)−4,5−ジフェニルイミダゾリルニ量体、2,4−ビス−トリクロロメチル−6−[ジ−(エトキシカルボニルメチル)アミノ]フェニル−S−トリアジン、2,4−ビス−トリクロロメチル−6−(4−エトキシ)フェニル−S−トリアジン、2,4−ビス−トリクロロメチル−6−(3−ブロモ−4−エトキシ)フェニル−S−トリアジンアントラキノン、2−t−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン等が挙げられる。
【0145】
前記光重合開始剤は、単独あるいは2種以上を組み合わせて用いることもできる。その
使用量は特に制限はないが、感度を良好に保ち、結晶の析出、塗膜物性の劣化等防止する
ため、活性エネルギー線硬化性樹脂組成物100重量部に対して0.05〜20重量部用
いることが好ましく、なかでも0.1〜10重量部が特に好ましい。
【0146】
前記光重合開始剤としては、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドキシ−2−メチル−1−フェニルプロパン−1−オン、1−〔4−(2−ヒドロキシエトキシ)フェニル〕−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、チオキサントン及びチオキサントン誘導体、2,2’−ジメトキシ−1,2−ジフェニルエタン−1−オン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−1−プロパノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタン−1−オンの群から選ばれる1種または2種類以上の混合系が、硬化性が高いコーティング用活性エネルギー線硬化型樹脂組成物が得られるため特に好ましい。
【0147】
前記光重合開始剤の市販品としては、例えば、Irgacure−184、同149、同261、同369、同500、同651、同754、同784、同819、同907、同1116、同1664、同1700、同1800、同1850、同2959、同4043、Darocur−1173(チバスペシャルティーケミカルズ社製)、ルシリンTPO(BASFF社製)、KAYACURE−DETX、同MBP、同DMBI、同EPA、同OA〔日本化薬(株)製〕、VICURE−10、同55(STAUFFER Co.LTD製)、TRIGONALP1(AKZO Co.LTD製)、SANDORY 1000(SANDOZ Co.LTD製)、DEAP(APJOHN Co.LTD製)、QUANTACURE−PDO、同ITX、同EPD(WARD BLEKINSOP Co.LTD製)等が挙げられる。
【0148】
さらに、活性エネルギー線硬化性樹脂組成物では、前記光重合開始剤に種々の光増感剤を併用することができる。光増感剤としては、例えば、アミン類、尿素類、含硫黄化合物、含燐化合物、含塩素化合物またはニトリル類若しくはその他の含窒素化合物等が挙げられる。
【0149】
更に活性エネルギー線硬化性樹脂組成物は、フィルム基材への接着性改良等を目的としてその他の樹脂を併用することができる。
【0150】
前記その他の樹脂としては、例えば、メチルメタクリレート樹脂、メチルメタクリレート系共重合物等のアクリル樹脂;ポリスチレン、メチルメタクリレート−スチレン系共重合物;ポリエステル樹脂;ポリウレタン樹脂;ポリブタジエンやブタジエン−アクリロニトリル系共重合物などのポリブタジエン樹脂;ビスフェノール型エポキシ樹脂、フェノキシ樹脂やノボラック型エポキシ樹脂などのエポキシ樹脂等が挙げられる。
【0151】
本発明の製造方法で得られる分散体を用いた活性エネルギー線硬化性樹脂組成物は,特に、フィルム基材等の薄膜のプラスチック基材への塗工した際にも硬度が得られ、且つ、硬化の際も低収縮でフィルムの反り(カール)が少ない特徴を有する。また、従って、フィルム基材のコーティングに好適に用いることができる。
【0152】
前記フィルム基材に塗布する際の塗布量としては、例えば、各種フィルム基材上に、乾燥後の重量が0.1〜30g/m、好ましくは1〜20g/mになるように塗布するのが好ましい。また、硬化層の膜厚が、フィルム状基材の膜厚に対して3%以上であるフィルムがハードコートとしての硬度を達成しやすいことから好ましい。中でも、硬化層の膜厚が、フィルム状基材の膜厚に対して3〜100%であるフィルムがより好ましく、硬化層の膜厚が、フィルム状基材の膜厚に対して5〜100%であるフィルムが更に好ましく、硬化層の膜厚が、フィルム状基材の膜厚に対して5〜50%であるフィルムが特に好ましい。
【0153】
活性エネルギー線硬化性樹脂組成物を塗布するフィルム状基材としては、各種公知の基材にもちいることができる。具体的には、例えば、プラスチックフィルム状基材等が挙げられる。プラスチックフィルム状基としては、例えば、ポリカーボネート、ポリメチルメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース樹脂、ABS樹脂、AS樹脂、ノルボルネン系樹脂、環状オレフィン、ポリイミド樹脂等のフィルム基材等が挙げられる。
【0154】
活性エネルギー線硬化性樹脂組成物の塗布方法としては、特に限定されず公知の方法を採用することができ、例えばバーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、リバースグラビア塗工、オフセット印刷、フレキソ印刷、スクリーン印刷法等が挙げられる。
【0155】
照射する活性エネルギー線としては、例えば、紫外線や電子線が挙げられる。紫外線により硬化させる場合、光源としてキセノンランプ、高圧水銀灯、メタルハライドランプを有する紫外線照射装置が使用され、必要に応じて光量、光源の配置などが調整されるが、高圧水銀灯を使用する場合、通常80〜160W/cmの光量を有したランプ1灯に対して搬送速度5〜50m/分で硬化させるのが好ましい。一方、電子線により硬化させる場合、通常10〜300kVの加速電圧を有する電子線加速装置にて、搬送速度5〜50m/分で硬化させるのが好ましい。
【0156】
前記活性エネルギー線硬化性樹脂組成物は、前述の通り、硬化時の収縮性が少なく、且つ、硬度も高い。その為、該組成物を用いることにより、フィルム基材上に該組成物の硬化層を設けたフィルムを提供することができる。このようなフィルムは、例えば、偏光板保護フィルム、タッチパネル等の光学物品用ハードコートフィルムに代表される各種保護フィルム、反射防止フィルム、拡散フィルムやプリズムシートのバックコーティング等に好適に使用できる。
【0157】
加えて、前記活性エネルギー線硬化性樹脂組成物は上記偏光版、タッチパネル等の平面状の物品を保護する保護フィルムとしてだけでなく、上記平面状の物品以外のプラスチック物品、例えば、携帯電話等の家電製品や自動車のバンパー等の成形品の表面を保護する為にも好適に用いられる。
【0158】
活性エネルギー線硬化性樹脂組成物を用いて成形品の表面を保護する保護層を形成する方法には塗装法、転写法、シート接着法等が挙げられる。
【0159】
塗装法は活性エネルギー線硬化性樹脂組成物からなる塗装剤をスプレーコートするか、若しくはカーテンコーター、ロールコーター、グラビアコーター等の印刷機器を用いて成形品にトップコートとして塗装せしめた後、活性エネルギー線を照射してトップコートを架橋する方法である。
【0160】
転写法は、離型性を有する基体シート上に活性エネルギー線硬化性樹脂組成物が塗装された転写材を成形品表面に接着させた後、基体シートを剥離する事により成型品表面にトップコートを転写し、次いで活性エネルギー線を照射して架橋塗膜を作製する、或いは、該転写材を成形品表面に接着させた後、活性エネルギー線を照射して架橋塗膜を作製し、次いで基体シートを剥離する事により成型品表面にトップコートを転写する方法である。
【0161】
そして、シート接着法は、基体シート上に保護層と必要に応じて加飾層とを有する保護シートをプラスチック成形品に接着することにより成形品表面に保護層を形成する方法である。中でも、本発明のコーティング用活性エネルギー線硬化性樹脂組成物は転写法又はシート接着法用途に好ましく用いることができる。以下に、転写法、シート接着法による保護層の形成方法について詳述する。
【0162】
活性エネルギー線硬化性樹脂組成物を用いて転写法により保護層を形成するには、まず、転写材を作製する。転写材は、例えば、活性エネルギー線硬化性樹脂組成物を単独、または多官能イソシアネートと配合し、混合した後に基材シート上に塗布し、加熱することにより硬化性樹脂組成物を半硬化(B−ステージ化)することにより製造することができる。
【0163】
活性エネルギー線硬化性樹脂組成物と併用する多官能イソシアネートとしては、格別の限定はなく、公知の各種を使用できる。たとえば、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,6−ヘキサンジイソシアネート、上記の3量体、多価アルコールと上記ジイソシアネートを反応させたプレポリマーなどを用いることができる。すなわち、ポリマーに含有される水酸基と、多官能イソシアネートのイソシアネート基とを反応させることでB−ステージ化させる。
【0164】
活性エネルギー線硬化性樹脂組成物と多官能イソシアネートの使用割合は、活性エネルギー線硬化性樹脂組成物の水酸基と多官能イソシアネートのイソシアネート基との割合が1/0.01〜1/1、好ましくは1/0.05〜1/0.8であることが好ましい。
【0165】
基材シートとしては、離型性を有するものが好ましい。そのような基材シートとしては、例えば、プラスチックシート、金属箔、セルロースシート、これらのシートの複合体等が挙げられる。
【0166】
前記プラスチックシートとしては、例えば、前記したプラスチック状フィルム等が挙げられる。
【0167】
前記金属箔としては、例えば、アルミニウム箔、銅箔等が挙げられる。また、前記セルロースシートとしては、例えば、グラシン紙、コート紙、セロハン等が挙げられる。
【0168】
基材シートとしてはプラスチックシートが好ましく、中でもポリエステルシートがより好ましい。
【0169】
転写材を製造するには、まず、基材シート上に活性エネルギー線硬化性樹脂組成物を塗装する。この樹脂組成物は、後述する保護層の形成方法において、成形品表面の最外層となり、薬品や摩擦から成形品や成形品上の絵柄層を保護するための層となる。転写材用硬化性樹脂組成物を塗装する方法としては、例えば、グラビアコート法、ロールコート法、スプレーコート法、リップコート法、コンマコート法などのコート法、グラビア印刷法、スクリーン印刷法などの印刷法等が挙げられる。塗装する際には、耐摩耗性及び耐薬品性が良好となることから、保護層の厚さが0.5〜30μmとなる様に塗装するのが好ましく、なかでも保護層の厚さが1〜6μmとなる様に塗装するのがより好ましい。
【0170】
前記保護層が基体シートからの剥離性に優れる場合には、基体シート上に保護層を直接設けるように転写材用硬化性樹脂組成物を塗装すればよいが、保護層の基体シートからの剥離性を改善するためには、基体シート上に保護層を設ける前に、離型層を全面的に形成してもよい。離型層は、後述する成形品の保護層の形成方法において、転写材上の保護層を成形品表面に転写するために基体シートを成形品から剥離した際に、基体シートとともに保護層から離型する。離型層を形成するための離型剤としては、例えば、メラミン樹脂系離型剤、シリコン樹脂系離型剤、フッ素樹脂系離型剤、セルロース誘導体系離型剤、尿素樹脂系離型剤、ポリオレフィン樹脂系離型剤、パラフィン系離型剤、これらの複合型離型剤等を用いることができる。離型層の形成方法としては、グラビアコート法、ロールコート法、スプレーコート法、リップコート法、コンマコート法などのコート法、グラビア印刷法、スクリーン印刷法などの印刷法が挙げられる。
【0171】
基材シート上に転写材用硬化性樹脂組成物を塗装した後、乾燥させる。乾燥は例えば、加熱により行うことができる。この加熱によりコーティング用活性エネルギー線硬化型樹脂組成物が有機溶剤を含んでいる場合、有機溶剤が除去される。加熱は通常55〜160℃、好ましくは100〜140℃である。加熱時間は通常30秒〜30分間、好ましくは1〜10分、より好ましくは1〜5分である。
【0172】
本発明の転写材上のB−ステージ化された樹脂層は、該樹脂層上に他の層を刷り重ねたり転写材を巻き取ったりすることが容易になることから、活性エネルギー線を照射する前の段階でタックフリーの状態にあることが望ましい。
【0173】
転写材は絵柄層を形成させても良い。絵柄層は、B−ステージ化された樹脂層の上に、通常は印刷層として形成する。印刷層の材質としては、ポリビニル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリビニルアセタール系樹脂、ポリエステルウレタン系樹脂、セルロースエステル系樹脂、アルキド樹脂などの樹脂をバインダーとし、適切な色の顔料または染料を着色剤として含有する着色インキを用いるとよい。絵柄層の形成方法としては、例えば、オフセット印刷法、グラビア印刷法、スクリーン印刷法などの通常の印刷法などを用いるとよい。特に、多色刷りや階調表現を行うには、オフセット印刷法やグラビア印刷法が適している。また、単色の場合には、グラビアコート法、ロールコート法、コンマコート法、リップコート法などのコート法を採用することもできる。絵柄層は、表現したい絵柄に応じて、全面的に設ける場合や部分的に設ける場合もある。また、絵柄層は、金属蒸着層からなるものや、印刷層と金属蒸着層との組み合わせからなるものでもよい。
【0174】
また、保護層や絵柄層が成形品に対して充分接着性を有する場合には、接着層を設けなくてもよいが、必要に応じて接着層を形成させても良い。接着層は、成形品表面に前記の各層を有する転写材を接着するものである。接着層は、保護層または絵柄層上の接着させたい部分に形成する。すなわち、接着させたい部分が全面的なら接着層を全面的に形成する。また、接着させたい部分が部分的なら接着層を部分的に形成する。接着層としては、成形品の素材に適した感熱性あるいは感圧性の樹脂を適宜使用する。例えば、成形品の材質がポリアクリル系樹脂の場合はポリアクリル系樹脂を用いるとよい。また、成形品の材質がポリフェニレンオキシド・ポリスチレン系樹脂、ポリカーボネート系樹脂、スチレン共重合体系樹脂、ポリスチレン系ブレンド樹脂の場合は、これらの樹脂と親和性のあるポリアクリル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂などを使用すればよい。さらに、成形品の材質がポリプロピレン樹脂の場合は、塩素化ポリオレフィン樹脂、塩素化エチレン−酢酸ビニル共重合体樹脂、環化ゴム、クマロンインデン樹脂が使用可能である。接着層の形成方法としては、グラビアコート法、ロールコート法、コンマコート法などのコート法、グラビア印刷法、スクリーン印刷法などの印刷法が挙げられる。
【0175】
なお、転写材の構成は、上記した態様に限定されるものではなく、例えば、成形品の地模様や透明性を生かし、表面保護処理だけを目的とした転写材を用いる場合には、基体シートの上にB−ステージ化された樹脂層及び接着層を上述のように順次形成して転写材から絵柄層を省略することができる。
【0176】
また、転写材がB−ステージ化された樹脂層上に絵柄層や接着層を有する場合、これらの層間にアンカー層を設けてもよい。アンカー層は、これらの層間の密着性を高めたり、薬品から成形品や絵柄層を保護するための樹脂層であり、例えば、二液硬化性ウレタン樹脂、メラミン系樹脂、エポキシ系樹脂などの熱硬化性樹脂、塩化ビニル共重合体樹脂などの熱可塑性樹脂を用いることができる。アンカー層の形成方法としては、グラビアコート法、ロールコート法、コンマコート法などのコート法、グラビア印刷法やスクリーン印刷法などの印刷法がある。
【0177】
前記転写材を用いて成形品の保護層を形成するには、例えば、前記転写材のB−ステージ化された樹脂層と成形品とを接着した後、活性エネルギー線を照射して樹脂層を硬化させれば良い。具体的には、例えば、転写材のB−ステージ化された樹脂層を成形品表面に接着させ、その後、転写材の基体シートを剥離することにより転写材のB−ステージ化された樹脂層を成形品表面上に転写させた後、活性エネルギー線照射によりエネルギー線硬化せしめて樹脂層の架橋硬化を行う方法(転写法)や、前記転写材を成形金型内に挟み込み、キャビテイ内に樹脂を射出充満させ、樹脂成形品を得るのと同時にその表面に転写材を接着させ、基体シートを剥離して成形品上に転写した後、活性エネルギー線照射によりエネルギー線硬化せしめて樹脂層の架橋硬化を行う方法(成形同時転写法)等が挙げられる。
【0178】
なお、樹脂層の架橋硬化と転写の工程は、前記方法に示したように転写材を成形品表面に接着させ、その後、基体シートを剥離することにより成形品表面上に転写させた後、活性エネルギー線照射を行う順序の工程が好ましいが、転写材を成形品表面に接着させた後、基体シート側から活性エネルギー線を照射して保護層を硬化させ、次いで基体シートを剥離して転写せしめるという順序の工程でも良い。
【0179】
前記成形品としては、材質を限定されることはないが、例えば、樹脂成形品、木工製品、これらの複合製品などを挙げることができる。これらは、透明、半透明、不透明のいずれでもよい。また、成形品は、着色されていても、着色されていなくてもよい。樹脂としては、ポリスチレン系樹脂、ポリオレフィン系樹脂、ABS樹脂、AS樹脂などの汎用樹脂を挙げることができる。また、ポリフェニレンオキシド・ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂、アクリル系樹脂、ポリカーボネート変性ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、超高分子量ポリエチレン樹脂などの汎用エンジニアリング樹脂や、ポリスルホン樹脂、ポリフェニレンサルファイド系樹脂、ポリフェニレンオキシド系樹脂、ポリアクリレート樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、液晶ポリエステル樹脂、ポリアリル系耐熱樹脂などのスーパーエンジニアリング樹脂を使用することもできる。さらに、ガラス繊維や無機フィラーなどの補強材を添加した複合樹脂も使用できる。
【0180】
本発明の成形品の保護層の形成方法で用いる活性エネルギー線としては、例えば、電子線、紫外線、ガンマ線などを挙げることができる。照射条件は、保護層を得るのに用いた転写材用硬化性樹脂組成物の組成に応じて定められるが、通常積算光量が50〜5000mJ/cmとなるように照射するのが好ましく、積算光量が500〜2000mJ/cmとなるように照射するのがより好ましい。
【0181】
以下に、前記転写法による成形品の保護層の形成方法を具体的に説明する。まず、成形品上に接着層側を下にして転写材を配置する。次に、耐熱ゴム状弾性体、例えばシリコンラバーを備えたロール転写機、アップダウン転写機などの転写機を用い、温度80〜260℃、圧力50〜200kg/mの条件に設定した耐熱ゴム状弾性体を介して転写材の基体シート側から熱または/及び圧力を加える。こうすることにより、接着層が成形品表面に接着する。次いで、冷却後に基体シートを剥がすと、基体シートと樹脂層との境界面で剥離が起こる。また、基体シート上に離型層を設けた場合は、基体シートを剥がすと、離型層と樹脂層との境界面で剥離が起こる。最後に、活性エネルギー線を照射することにより、成形品に転写された樹脂層を完全に架橋硬化させ、保護層を形成させる。なお、活性エネルギー線を照射する工程を、基体シートを剥離する工程の前に行なってもよい。
【0182】
次に、射出成形を利用した成形同時転写法による成形品の保護層の形成方法を具体的に説明する。まず、可動型と固定型とからなる成形用金型内に接着層を内側にして、つまり、基体シートが固定型に接するように転写材を送り込む。この際、枚葉の転写材を1枚ずつ送り込んでもよいし、長尺の転写材の必要部分を間欠的に送り込んでもよい。長尺の転写材を使用する場合、位置決め機構を有する送り装置を使用して、転写材の絵柄層と成形用金型との見当が一致するようにするとよい。また、転写材を間欠的に送り込む際に、転写材の位置をセンサーで検出した後に転写材を可動型と固定型とで固定するようにすれば、常に同じ位置で転写材を固定することができ、絵柄層の位置ずれが生じないので便利である。成形用金型を閉じた後、可動型に設けたゲートより溶融樹脂を金型内に射出充満させ、成形品を形成するのと同時にその面に転写材を接着させる。樹脂成形品を冷却した後、成形用金型を開いて樹脂成形品を取り出す。最後に、基体シートを剥がした後、活性エネルギー線を照射することにより樹脂層を完全に架橋硬化させ保護層を形成させる。また、活性エネルギー線を照射した後、基体シートを剥がしてもよい。
【0183】
なお、本発明の転写材用硬化性樹脂組成物は、転写材製造用の組成物としてのみならず、前記したグラビアコート法、ロールコート法、コンマコート法などのコート法、グラビア印刷法やスクリーン印刷法などの印刷法、スプレー塗装等によりフィルム、シート、成型物等の成型品に塗装せしめる事も出来る。
【0184】
次にシート接着法について説明する。シート接着法としては、例えば、予め作製しておいた保護層形成用シートの基体シートと成形品とを接着させた後、加熱により熱硬化せしめてB−ステージ化してなる樹脂層の架橋硬化を行う方法(後接着法)や、前記保護層形成用シートを成形金型内に挟み込み、キャビテイ内に樹脂を射出充満させ、樹脂成形品を得るのと同時にその表面と保護層形成用シートを接着させ後、加熱により熱硬化せしめて樹脂層の架橋硬化を行う方法(成形同時接着法)等が挙げられる。
【0185】
前記保護層形成用シートは、例えば、前記転写材を製造する方法等により製造することができる。このときに、基体シート上に硬化性樹脂組成物を塗装する際に、基体シートと硬化性樹脂組成物との接着力が十分でない場合には、
1.基体シートの硬化性樹脂組成物を塗装する面にプライマーを塗布しておき、そこに、硬化性樹脂組成物を塗装する、
2.コロナ放電等により基体シートの表面を活性しておく等の方法により基体シートと硬化性樹脂組成物との接着性を向上させることもできる。
前記1.で用いるプライマーとしては、例えば、二液硬化性ウレタン樹脂、メラミン系樹脂、エポキシ系樹脂などの熱硬化性樹脂、塩化ビニル共重合体樹脂、アクリル樹脂からなる水性ラテックスなどの熱可塑性樹脂を用いることができる。接着剤を塗布する方法としては、例えば、グラビアコート法、ロールコート法、コンマコート法などのコート法、グラビア印刷法、スクリーン印刷法などの印刷法が挙げられる。
【0186】
前記転写材を製造する方法において基体シートに活性エネルギー線硬化性樹脂組成物を塗装した後、活性エネルギー線を照射する。この活性エネルギー線照射により硬化性樹脂組成物中の(メタ)アクリロイル基がラジカル重合反応により結合し、3次元架橋が形成され硬化性樹脂組成物が硬化する。
【0187】
活性エネルギー線硬化性樹脂組成物として有機溶剤を含有している活性エネルギー線硬化性樹脂組成物を用いるときは、基体シートに塗布後有機溶剤を除去しても良い。有機溶剤を除去するには、例えば、活性エネルギー線を照射した後でも良いし、活性エネルギー線を照射する前でも良い。除去する方法としては、そのまま放置して揮発するのを待っても良いし、乾燥機等を用いて乾燥させても良いが、有機溶剤を除去する際の温度は通常70〜130℃で10秒〜10分間程度が好ましい。
【0188】
なお、保護層形成用シートの構成は、上記した態様に限定されるものではなく、例えば、成形品の地模様や透明性を生かし、表面保護処理だけを目的とした保護層形成用シートを用いる場合には、基体シートの上に硬化した樹脂層及び接着層を順次形成して保護層形成用シートから絵柄層を省略することができる。
【0189】
また、保護層形成用シートが絵柄層の上に樹脂層を有する場合、これらの層間にアンカー層を設けてもよい。アンカー層は、これらの層間の密着性を高めるための樹脂層であり、例えば、二液硬化性ウレタン樹脂、メラミン系樹脂、エポキシ系樹脂などの熱硬化性樹脂、塩化ビニル共重合体樹脂などの熱可塑性樹脂を用いることができる。アンカー層の形成方法としては、グラビアコート法、ロールコート法、コンマコート法などのコート法、グラビア印刷法やスクリーン印刷法などの印刷法がある。
【0190】
シート接着法で用いる成形品としては、例えば、前記転写法で例示した成形品を用いることができる。
【0191】
後接着法における成形品と保護層形成用シートとの接着を行う方法としては、例えば、保護層形成シートの基体シート又は成型品表面に接着剤を塗布し保護層形成シートの基体シートと成型品表面とを接着させる方法、保護層形成シートの基体シート又は成型品表面に両面粘着テープを貼り付けた後、両面粘着テープの離型保護シートを剥離して粘着面を露出させ、保護層形成シートの基体シートと成型品表面とを接着させる方法、保護層形成シートの基体シートに接着剤を塗布し接着面を形成させた後、接着面を剥離保護シートで保護した保護層形成シートを予め作製しておき、該保護層形成シートの剥離保護シートを剥がし、基体シートの接着面と成型品表面とを接着させる方法等が挙げられる。成形同時接着法においては接着剤を用いることなくインモールド成形時の熱により基体シートを溶融することで保護層形成用シートと成型品と一体化させることにより保護層形成用シートと成型品とを接着することができる。ここで、前記後接着法で用いる接着剤としては、例えば、ウレタン系接着剤、エポキシ系接着剤、エステル系接着剤、アクリル系接着剤や、ホットメルト型接着剤等が挙げられる。
【0192】
以下に、前記後接着法による成形品の保護層の形成方法を具体的に説明する。まず、成形品上に接着層側を下にして保護層形成用シートを配置する。次に、耐熱ゴム状弾性体、例えばシリコンラバーを備えたロール転写機、アップダウン転写機などの転写機を用い、温度80〜260℃、圧力50〜200kg/mの条件に設定した耐熱ゴム状弾性体を介して保護層形成用シートの保護層側から熱または/及び圧力を加える。こうすることにより、接着層が成形品表面に接着する。最後に、加熱することにより、成形品上に形成された樹脂層を完全に架橋硬化させ、保護層を形成させる。
【0193】
次に、射出成形を利用した成形同時接着法による成形品の保護層の形成方法を具体的に説明する。まず、可動型と固定型とからなる成形用金型内に接着層を内側にして、つまり、基体シートが固定型に接するように保護層形成用シートを送り込む。この際、枚葉の転写材を1枚ずつ送り込んでもよいし、長尺の転写材の必要部分を間欠的に送り込んでもよい。長尺の保護層形成用シートを使用する場合、位置決め機構を有する送り装置を使用して、保護層形成用シートの絵柄層と成形用金型との見当が一致するようにするとよい。また、保護層形成用シートを間欠的に送り込む際に、保護層形成用シートの位置をセンサーで検出した後に保護層形成用シートを可動型と固定型とで固定するようにすれば、常に同じ位置で保護層形成用シートを固定することができ、絵柄層の位置ずれが生じないので便利である。成形用金型を閉じた後、可動型に設けたゲートより溶融樹脂を金型内に射出充満させ、成形品を形成するのと同時にその面に保護層形成用シートを接着させる。樹脂成形品を冷却した後、成形用金型を開いて樹脂成形品を取り出す。最後に、熱風式オーブン等で加熱することにより樹脂層を完全に架橋硬化させ保護層を形成させる。
【実施例】
【0194】
以下に実施例及び比較例を挙げて、本発明をより具体的に説明する。例中の部及び%は、特に記載のない限り、すべて質量基準である。
【0195】
(製造例1)
撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、グリシジルメタクリレート(以下、GMAという)250g、メチルイソブチルケトン(以下、MIBKという)1000g及びt−ブチルパーオキシエチルヘキサノエイト(以下、P−Oという)10gを仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA750g、P−Oが30gからなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を約2時間要して系内に滴下し、3時間同温度に保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却後、窒素導入管を空気導入管につけ替え、アクリル酸(以下、AAという)507g、メトキノン2.3g及びトリフェニルフォスフィン9.3gを仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.6gを仕込み、冷却して、不揮発分が50%となるようMIBKを加え、反応性分散剤(A−1)の溶液を得た。該反応性分散剤(A−1)は、アクリル当量が約214g/eq、水酸基価が約262mgKOH/g、重量平均分子量が約30,000であった。
【0196】
(製造例2)
製造例1と同じ反応装置を用い、GMAを125g、メチルメタクリレート(以下、MMAという)を125g、MIBKを1000g及びP−Oを10g仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMAを375g、MMAを375g、P−Oを30gからなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を約2時間要して系内に滴下し、3時間同温に保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却後、窒素導入管を空気導入管につけ替え、AAを254g、メトキノン2.3g及びトリフェニルフォスフィン9.3gを仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.6gを仕込み、冷却して、不揮発分が50%となるようMIBKを加え、反応性分散剤(A−2)の溶液を得た。該反応性反応性分散剤(A−2)は、アクリル当量が約356g/eq、水酸基価が約158mgKOH/g、重量平均分子量が約40,000であった。
【0197】
(製造例3)
製造例1と同じ反応装置を用い、GMAを75g、MMAを175g、MIBKを1000g及びP−Oを8g仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMAを300g、MMAを700g、P−Oを23gからなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を約2時間要して系内に滴下し、3時間同温度に保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却後、窒素導入管を空気導入管につけ替え、AAを152g、メトキノン2.3g及びトリフェニルフォスフィン5.6gを仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.6gを仕込み、冷却して、不揮発分が50%となるようMIBKを加え、反応性分散剤(A−3)の溶液を得た。該反応性分散剤(A−3)は、アクリル当量が約545g/eq、水酸基価が約103mgKOH/g、重量平均分子量が約70,000であった。
【0198】
(実施例1)
攪拌装置、冷却管、滴下ロート及び空気導入菅を備えた反応装置に、シリカ微粒子(アエロジル50、日本アエロジル製、平均一次粒子径30nm)50g、MIBK500g及びメタクリロキシプロピルトリメトキシシラン(KBM503、信越化学製)4g、リン酸エステル(フォスレックスA−3、SC有機化学製)の5%水溶液を0.88g添加した後、空気気流下に100℃まで上昇した。6時間保温し、表面処理された無機粒子のスラリーを得た。
得られた表面処理された無機粒子のスラリー(固形分で50g分)に、製造例1で得られた反応性分散剤(A−1)25g、及びジペンタエリスリトールヘキサアクリレート50gを加え、配合物を得た。
【0199】
この配合物中のシリカ微粒子の分散を、寿工業(株)製のウルトラアペックスミル UAM015を用いて行った。用いたウルトラアペックスミル UAM015は、図1において、ステータ7の内径が50mmφ、内容積が0.17リットル、セパレータ4の径が40mmφ、セパレータ4のディスク21間の間隔を5mmとしたミル3を有しており、分散体製造するにあたり、ミル3内にメディアとして30μm径のジルコニアビーズをミル3の容積に対して50%充填した。
【0200】
図1の原料タンク1より前記配合物を供給口16より供給した。そしてロータの回転速度を一定(ロータ先端での周速が8m/sec)でミル3を運転し、毎分1.5リットルの流量で配合物の循環粉砕を行った。循環粉砕を30分間行いシリカ微粒子が、反応性分散剤(A−1)、DPHA及びMIBKの混合物中に分散した分散体を得た。得られた分散体をウルトラアペックスミル UAM015の取り出し口から取り出し、エバポレーターを用いてMIBKを除去し、不揮発分濃度50%の分散体を得た。
【0201】
この分散体100部にイルガキュア#184(光開始剤)2部を加えて、活性エネルギー線硬化性樹脂組成物を得た。活性エネルギー線硬化性樹脂組成物は室温(25℃)に2ヶ月保管しても沈降物が発生することなく保存安定性が良好であった。また、下記条件にて硬化塗膜を作製し、鉛筆硬度を測定したところ、4Hであった。
【0202】
(実施例2)
実施例1の表面修飾されたシリカ微粒子の替わりに、メタクリル基で修飾されたシリカ微粒子(RM50、日本アエロジル製、平均一次粒子径30nm)を用いた他は、実施例1と同様にして分散体を得た。活性エネルギー線硬化性樹脂組成物は室温(25℃)に2ヶ月保管しても沈降物が発生することなく保存安定性が良好であった。同様にして鉛筆硬度を測定したところ、4Hであった。
【0203】
(実施例3)
実施例1の表面修飾されたシリカ微粒子の替わりに、メタクリル基で修飾されたシリカ微粒子(R711、日本アエロジル製、平均一次粒子径12nm)を用いた他は、実施例1と同様にして分散体を得た。活性エネルギー線硬化性樹脂組成物は室温(25℃)に2ヶ月保管しても沈降物が発生することなく保存安定性が良好であった。同様にして鉛筆硬度を測定したところ、4Hであった。
【0204】
(実施例4)
実施例1の表面修飾されたシリカ微粒子の替わりに、シリカ微粒子(R7200、日本アエロジル製、平均一次粒子径12nm)を用いた他は、実施例1と同様にして分散体を得た。活性エネルギー線硬化性樹脂組成物は室温(25℃)に2ヶ月保管しても沈降物が発生することなく保存安定性が良好であった。同様にして鉛筆硬度を測定したところ、4Hであった。
【0205】
(実施例5)
実施例1のメタクリロキシプロピルトリメトキシシラン(KBM503、信越化学製)4gの替わりに、メタクリロキシプロピルトリメトキシシラン(KBM503、信越化学製)8gを用いた他は、実施例1と同様にして、分散体を得た。活性エネルギー線硬化性樹脂組成物は室温(25℃)に2ヶ月保管しても沈降物が発生することなく保存安定性が良好であった。同様にして鉛筆硬度を測定したところ、5Hであった。
【0206】
<鉛筆硬度の測定方法>
1.硬化塗膜の作製方法
活性エネルギー線硬化性樹脂組成物を、トリアセチルセルロース(TAC)フィルム(膜厚40um)上にバーコーターで塗布し(膜厚10μm)、70℃で1分乾燥させ、窒素下で高圧水銀灯を用いて250mJ/cmの照射量で通過させて硬化させることにより、硬化塗膜を有する試験片を得た。
【0207】
2.硬化塗膜の評価方法
上記試験片の硬化被膜をJIS K5400に従い荷重500gの鉛筆引っかき試験によって評価した。
【0208】
(実施例6)
実施例1の反応性分散剤(A―1)25gの替わりに、製造例2で得られた反応性分散剤(A―2)25gを用いた他は、実施例1と同様にして、分散体を得た。活性エネルギー線硬化性樹脂組成物は室温(25℃)に2ヶ月保管しても沈降物が発生することなく保存安定性が良好であった。同様にして鉛筆硬度を測定したところ、5Hであった。
【0209】
(実施例7)
実施例1の反応性分散剤(A―1)25gの替わりに、製造例3で得られた反応性分散剤(A−3)25gを用いた他は、実施例1と同様にして、分散体を得た。活性エネルギー線硬化性樹脂組成物は室温(25℃)に2ヶ月保管しても沈降物が発生することなく保存安定性が良好であった。同様にして鉛筆硬度を測定したところ、5Hであった。
【0210】
(比較例1)
製造例1で得られた反応性分散剤(A−1)を固形分で25g、ジペンタエリスリトールヘキサアクリレート(DPHA)25g、シリカ微粒子(日本アエロジル(株)製 アエロジル50、平均一次粒子径約12nm)50g及びMIBK 200gを配合し、配合物を得た。活性エネルギー線硬化性樹脂組成物は室温(25℃)に2ヶ月保管しても沈降物が発生することなく保存安定性が良好であった。この配合物の分散を、実施例1と同様にして硬化塗膜を作製し、鉛筆硬度を測定したところ、2Hであった。
【0211】
(比較例2)
メタクリル基で修飾されたシリカ微粒子(RM50、日本アエロジル製、平均一次粒子径30nm)50gと、ビスフェノールAエポキシアクリレート(DIC(株)製、ユニディックV−5500)を50gと、MIBKを200部とを用いた以外は実施例1と同様にして不揮発分濃度50%の比較対照用反応性分散体を得た。
【0212】
この比較対照用反応性分散体100部にイルガキュア#184 2部を加えて、比較対照用活性エネルギー線硬化性樹脂組成物を得た。比較対照用活性エネルギー線硬化性樹脂組成物は室温(25℃)に1時間保管した時点で沈降物が発生した。また、実施例1と同様にして硬化塗膜を作製し、鉛筆硬度を測定したところ、2Hであった。
【0213】
(比較例3)
メタクリル基で修飾されたシリカ微粒子(R711、日本アエロジル製、平均一次粒子径12nm)50部と、DPHAを50部と、MIBKを200部とを用いた以外は実施例1と同様にして不揮発分濃度50%の比較対照用反応性分散体を得た。
【0214】
この比較対照用反応性分散体100部にイルガキュア#184 2部を加えて、比較対照用活性エネルギー線硬化性樹脂組成物を得た。比較対照用活性エネルギー線硬化性樹脂組成物は室温(25℃)に1週間保管した時点で沈降物が発生した。また、実施例4と同様にして硬化塗膜を作製し、鉛筆硬度を測定したところ、3Hであった。
【符号の説明】
【0215】
1・・・・・・原料タンク
2・・・・・・原料ポンプ
3・・・・・・摩砕型湿式攪拌ボールミル
4・・・・・・セパレータ
5・・・・・・シャフト
6・・・・・・ジャケット
7・・・・・・ステータ
9・・・・・・排出路
11・・・・・ロータ
12・・・・・モータ
13・・・・・プーリ
14・・・・・プーリ
15・・・・・ロータリージョイント
16・・・・・供給口
17・・・・・スクリーンサポート
18・・・・・スクリーン
19・・・・・取出し口
21・・・・・ディスク
22・・・・・ブレード
23・・・・・レギュレータ
24・・・・・弁座
25・・・・・弁体
26・・・・・円筒体
27・・・・・導入口
28・・・・・円筒体
29・・・・・エアーの導入口
30・・・・・電磁切換弁
31・・・・・ピストン
32・・・・・ロッド
33・・・・・バネ
34・・・・・ナット
43・・・・・シャフト
43a・・・・シャフト43の段
44・・・・・セパレータ
45・・・・・スペーサ
45・・・・・ロータ
47・・・・・ストッパー
48・・・・・ネジ
51・・・・・ブレード嵌合溝
52・・・・・ディスク
53・・・・・ブレード
54・・・・・排出路
55・・・・・孔
56・・・・・環状のスペーサ
58・・・・・バルブ
59・・・・・バルブ
60・・・・・バルブ
61・・・・・バルブ
62・・・・・バルブ
63・・・・・製品タンク

【特許請求の範囲】
【請求項1】
表面処理された無機粒子(A)が反応性分散剤に分散された分散体において、
1)表面処理された無機粒子(A)が、(メタ)アクリロイル基を有する化合物(B)で無機粒子(C)を表面処理することにより得られたものであり、且つ
2)反応性分散剤が、エポキシ基を有する(メタ)アクリル重合体(a1)に、(メタ)アクリロイル基及びカルボキシル基を有する単量体(b1)を付加反応させてなる反応生成物、又はカルボキシル基を有する(メタ)アクリル重合体(a2)に(メタ)アクリロイル基及びエポキシ基を有する単量体(b2)を付加反応させてなる反応生成物であって、(メタ)アクリロイル当量が200〜600で、水酸基価が90〜280mg/KOHであることを特徴とする分散体。
【請求項2】
反応性分散剤の(メタ)アクリロイル当量が200〜400で、水酸基価が140〜280mg/KOHである請求項1に記載の分散体。
【請求項3】
反応性分散剤が、グリシジル(メタ)アクリレートを重合させて得られたエポキシ基を有する(メタ)アクリル重合体に(メタ)アクリル酸を付加反応させたものである請求項1又は2に記載の分散体。
【請求項4】
反応性分散剤の重量平均分子量が5,000〜100,000である請求項1〜3の何れかに記載の分散体。
【請求項5】
無機粒子(C)の一次粒子径が10nm〜300nmである請求項1〜4の何れかに記載の分散体。
【請求項6】
無機粒子(C)がシリカ微粒子である請求項1〜5の何れかに記載の分散体。
【請求項7】
(メタ)アクリロイル基を有する化合物(B)が、一般式(1)
【化1】

(式中、R、R、Rは、各々独立に炭素数1〜4のアルキル基であり、nは1〜6の整数である。)
で表されるオルガノシラン化合物である請求項1〜6の何れかに記載の分散体。
【請求項8】
請求項1〜7の何れかに記載の分散体を含有するエネルギー線硬化性樹脂組成物。
【請求項9】
請求項1〜7の何れかに記載の無機粒子(A)と反応性分散剤を含有するスラリーを、円筒形のステータと、ステータの一端に設けられるスラリーの供給口と、ステータの他端に設けられるスラリーの排出口と、ステータ内に充填されるメディアと供給口より供給されたスラリーを攪拌混合するロータと、排出口に連結され、かつロータと一体をなして回転するか、或いはロータとは別個に独立して回転し、遠心力の作用によりメディアとスラリーに分離して、スラリーを排出口より排出させるインペラタイプのセパレータとよりなる湿式攪拌ボールミルにおいて、セパレータを回転駆動するシャフトの軸心を上記排出口と通ずる中空な排出路とした攪拌ボールミルの供給口からメディアが充填されたステータに供給し、該ステータ内でスラリー中のシリカ微粒子の粉砕と分散剤への分散を行った後、該スラリーからメディアを分離することを特徴とする分散体の製造方法。
【請求項10】
前記メディアが粒径15〜100μmのジルコニア微粒子である請求項9に記載の分散体の製造方法。
【請求項11】
請求項9に記載の製造方法で得られた分散体を含有することを特徴とするエネルギー線硬化性樹脂組成物。
【請求項12】
請求項8又は請求項11に記載のエネルギー線硬化性樹脂組成物を硬化させて得られる硬化層をフィルム状基材上に有することを特徴とするフィルム。
【請求項13】
前記フィルム状基材が、ポリエチレンテレフタレート樹脂のフィルム状基材、ポリカーボネート樹脂のフィルム状基材及びアセチル化セルロース樹脂のフィルム状基材からなる群から選ばれる一種以上のフィルム状基材である請求項12に記載のフィルム。
【請求項14】
前記硬化層の膜厚が、フィルム状基材の膜厚に対して3〜100%である請求項12又は13に記載のフィルム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−201938(P2011−201938A)
【公開日】平成23年10月13日(2011.10.13)
【国際特許分類】
【出願番号】特願2010−67855(P2010−67855)
【出願日】平成22年3月24日(2010.3.24)
【出願人】(000002886)DIC株式会社 (2,597)
【Fターム(参考)】