説明

無電解めっき方法

【課題】亜臨界流体又は超臨界流体を使用するとともに短時間で均一な被膜を無電解めっきで得られるようにした無電解めっき方法を提供すること。
【解決手段】金属基体試料22の表面に無電解めっきする際に、無電解めっき液は、二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものを、超臨界状態又は亜臨界状態で無電解めっきを行う。そうすると、誘導共析現象を発生させることなく短時間で均質な厚いめっき層が得られる。本発明の無電解めっき方法では、金属粉末として平均粒径は100μmより大きいものを使用でき、半導体素子内の微細金属配線形成方法であるダマシン法ないしデュアルダマシン法にも適用可能である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属基体の表面に無電解めっきを行う無電解めっき方法に関し、特に亜臨界流体又は超臨界流体の存在下に、誘導共析現象を発生させることなく短時間で均一で均質な被膜を無電解めっきで得られるようにした無電解めっき方法に関する。
【背景技術】
【0002】
従来から、半導体素子内の微細金属配線形成方法としては、スパッタリング法により基板上に例えばアルミニウム薄膜を形成した後、フォトレジストを塗布し、露光・現像処理によりパターニングを行い、エッチングにより所定の配線を形成することが行われていた。しかしながら、半導体回路素子の高度集積化、微細化に伴い、このような方法では配線形成方法が困難となってきたため、予め配線用の溝や孔を形成し、化学気相成長法CVD、スパッタリング、めっき法等によりアルミニウムや銅を溝や孔の中に埋込み、その後に、化学的機械研磨CMP(Chemical Mechanical Polishing)法により表面を研磨することにより配線を形成する方法、いわゆるダマシン法が行われるようになってきた。このダマシン法において、下層の配線への接続孔も溝形成時に孔開けし、この接続孔と溝とに同時にアルミニウムや銅を充填し、配線を形成する方法はデュアルダマシン法と呼ばれている。
【0003】
近年、半導体装置の配線形成工程としては、電気めっき法を適用したダマシン法が主流となっている(下記特許文献1、2参照)。ここで下記特許文献1に従来例として開示されているダマシン法を適用した3次元実装用半導体装置の配線の形成方法について図3及び図4を用いて説明する。この配線の形成方法は、図3Aに示すように、例えばシリコン基板等の基板70の表面にリソグラフィ及びエッチング技術により孔72を形成し、次いで、図3Bに示すように、この基板70の表面に例えばCVDによりSiO2からなる絶縁膜74を形成して孔72の表面を絶縁膜74で覆い、これによって、電気が漏れないようにし、更に、図3Cに示すように、絶縁膜74の上に電気めっきの給電層としてのシード層76を例えばCVDやスパッタリングで形成する。
【0004】
そして、図3Dに示すように、基板70の表面に電気めっきによる銅めっきを施すことで、基板70の孔72の内部に銅を充填させるとともに、絶縁膜74の上に銅めっき膜78を堆積させ、その後、図3Eに示すように、CMP法により、基板70上の銅めっき膜78及び絶縁膜74を除去し、孔72内に充填させた銅めっき膜78の表面を基板70の表面と略同一平面となるようにして埋込み配線している。
【0005】
この下記特許文献1に開示されている埋込み配線は、孔72の径Wが5〜20μm程度であり、深さDが50〜70μm程度のものに適用し得るとされている。そして、下記特許文献1に開示された発明では、図3Dに示した電気めっきによる銅めっき工程においては、図4Aに示すように孔72の入口近傍で銅がオーバーハングして銅配線の内部にボイド(巣)が生じるのを防止するため、図4Bに示すように電気めっき工程の途中でめっき膜の一部をエッチングする工程を追加し、更に図4C及び図4Dに示すように所望の回数電気めっき工程及びめっき膜のエッチング工程を繰り返すことにより、図4Eに示すように溝72内を銅めっき膜78で埋めるようにしている。
【0006】
なお、上述のような特許文献1に開示された発明を適用しても、0.20μm程度ないしはそれ以下というような狭い溝ないし孔内に銅をボイドなく埋め込むことは困難であるため、下記特許文献2に開示された発明では、めっき液の組成を調整して溝ないし孔の底部側と入口側の金属析出速度を調整することで対処するようにしている。
【特許文献1】特開2003− 96596号公報(特許請求の範囲、段落[0003]〜[0010]、[0011]、図4、図6、図8)
【特許文献2】特開2005−259959号公報(特許請求の範囲、段落[0011]、[0013]、[0029]、図1、図2)
【特許文献3】特開平10−245683号公報(特許請求の範囲、段落[0011]〜[0015])
【特許文献4】特開2006− 37188号公報(請求項7〜12、段落[0008]〜[0012]、図1)
【発明の開示】
【発明が解決しようとする課題】
【0007】
上述のような電気めっき法による微細金属配線形成方法は、給電層としてのシード層76を大きく形成できる場合には給電用端子の形成が容易であるために有効な方法であるが、めっき部分のサイズが小さい場合や開口部の大きさに比べて深さが深い溝ないし孔内等をめっきする必要がある場合には、給電用端子の形成が困難であるため、無電解めっき法が採用される。
【0008】
無電解めっき法は、得られるめっき層が緻密で、微細な部分にもめっきでき、しかも絶縁物の表面にもめっきできるため、幅広い分野で採用されているが、めっき層の析出速度が遅いため、厚い金属層の形成が要求される上述のようなダマシン法ないしデュアルダマシン法に対しては直ちには適用困難である。
【0009】
一方、上記特許文献3には、錫と合金を形成しはんだ膜として機能する粉末を含めた錫または錫合金めっき浴を用い、無電解めっき法によって厚い錫合金膜を形成する方法が開示されている。しかしながら、このような無電解めっき法ではめっき膜自体の特性が良好でなく、しかも下地との密着性が良好でないため、上記特許文献3に開示されている方法のようにはんだ膜として加熱処理するような用途の場合には有効であるとしても、汎用的には採用し難い。
【0010】
また、上記特許文献4には、めっき金属と同一の金属を含む金属錯体を溶かした亜臨界流体又は超臨界流体を基材に接触させることにより、前記基材表面を脱脂しかつエッチングするとともに、前記基材表面に前記金属錯体を担持させ、前記基材表面に担持した金属錯体を還元することにより前記金属錯体中の金属を前記基材の表面に析出させて金属核を形成し、表面に金属核の形成された基材を前記めっき金属を含むめっき液に浸漬することにより、前記金属核をそのまま自己触媒として利用して連続的に析出反応を進行させてめっき層を形成する工程とを含む無電解めっき法が開示されている。
【0011】
しかしながら、上記特許文献4に開示されている無電解めっき法も、従来の無電解めっき法の場合と同様に、めっき層の析出速度が遅いため、厚い金属層の形成が要求される上述のようなダマシン法ないしデュアルダマシン法に対しては直ちには適用困難である。
【0012】
発明者等は、めっき層の析出速度が速く、かつ、下地金属基体への密着性が良好な無電解めっき法を得るべく種々実験を重ねた結果、予め無電解めっき液中に二酸化炭素及び不活性ガスの少なくとも一方と、金属基体、無電解めっき処理にて得られる金属被膜の少なくとも一方と同種の金属であって、平均粒径が100μmより大きい金属粉末を多量に添加すると共に、亜臨界状態又は超臨界状態において無電解めっきを行った。このとき、先ず、めっき液より金属イオンが析出してめっき層を形成する。析出して減少した金属イオンは平均粒径が100μmより大きい金属粉末がめっき液中に溶解することによって補充される。
【0013】
このとき、めっき液は亜臨界又は超臨界環境であって摩擦が発生せず粘度もほぼゼロに近いことから、金属粉末は金属粉末の粒径が大きいことと併せてめっき層内に取り込まれにくく誘導共析現象の発生を防止でき、均一で均質な膜厚の薄膜金属層が形成できる。なお、本明細書における誘導共析現象とは、めっき時に金属粉末の一部も同時にめっき被膜中に取り込まれる現象を意味する(図5を参照。)。
【0014】
一方、金属粉末の粒径が小さいと、めっき層に吸着したときにめっき層内に取り込まれ易くなって、誘導共析現象を引き起こして凸部を形成してしまう。このような観点から、亜臨界状態又は超臨界状態においてめっき液中に多量に添加する金属粒子の平均粒径を100μmより大きくすることによって、金属イオンの補充も十分になされ、誘導共析現象を発生させることなく金属粉末粒子による凸部も形成されない均一で均質な膜厚の薄膜金属層が形成できるということを見出し、本発明を完成するに至ったのである。
【0015】
すなわち、本発明は、めっき層の析出速度が速く、かつ、下地金属基体への密着性が良好で、短時間で均一で均質な膜厚のめっき被膜が得られる無電解めっき方法を提供することを目的とする。
【課題を解決するための手段】
【0016】
上記目的を達成するため、本発明の無電解めっき方法においては、無電解めっき液は、二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものであり、超臨界状態又は亜臨界状態で無電解めっきを行うことを特徴とする。
【0017】
また、本発明は、前記無電解めっき方法において、前記金属粉末は、金属基体、無電解めっき処理にて得られる金属被膜の少なくとも一方と同種の金属であることを特徴とする。
【0018】
本発明の無電解めっき方法によれば、金属基体の表面に無電解めっきする際に、無電解めっき液は、二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものであり、超臨界状態又は亜臨界状態で無電解めっきを行うようにしているため、めっき液は亜臨界又は超臨界環境であって摩擦が発生せず粘度もほぼゼロに近いことから、金属粉末は金属粉末の粒径が大きいことと併せてめっき層内に取り込まれにくく誘導共析現象の発生を防止でき、均一で均質な膜厚の薄膜金属層が形成できる。
【0019】
また、本発明の無電解めっき方法によれば、金属基体、無電解めっき処理にて得られる金属被膜の少なくとも一方と同種の金属を金属粉末としてめっき液中に分散しているので、無電解めっきにより析出して減少した金属イオンも平均粒径が100μmより大きい金属粉末がめっき液中に溶解することによって補充されることから、短時間で均一で均質な膜厚のめっき被膜を得ることができる。
【0020】
また、本発明は、特にダマシン法ないしデュアルダマシン法等による高度集積化、微細化された半導体回路素子の微細配線形成用として適用した場合に下記のような優れた効果を奏する。
【0021】
すなわち、半導体回路素子の微細配線を形成するには、図3に示すように半導体基板の基体上に配線となる孔を設け、その上にシード層を形成し、シード層を覆うように金属めっきを施した後、平坦面を研磨することにより、微細配線を露出させるのが一般的な方法である。しかしながら、配線を微細にしようとすると、前記孔は微小な大きさになり、金属粒子により孔が塞がれてしまうことで、微細配線に「す」とよばれる空洞が生じてしまう。(図4C参照。)
【0022】
しかしながら、本発明は、無電解めっき液として二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものを用い、超臨界状態又は亜臨界状態で無電解めっきを行うようにしているため、めっき液は亜臨界又は超臨界環境であって摩擦が発生せず粘度もほぼゼロに近いことから、金属粉末は金属粉末の粒径が大きいことと併せてめっき層内に取り込まれにくく、微細配線を形成するための微細な孔にめっき液が十分浸透してめっきを行うことができ、「す」の無い微細配線を形成することができる。したがって、本発明は、特にダマシン法ないしデュアルダマシン法等による高度集積化、微細化された半導体回路素子の微細配線形成用にも有効に適用することができるようになる。
【発明を実施するための最良の形態】
【0023】
[無電解めっき装置]
無電解めっき装置10としては、図1に示したように、超臨界流体ないし亜臨界流体を用いて無電解めっきを行うことができるようにするため、耐圧無電解めっき槽11を用いた。この耐圧無電解めっき槽11には、必要に応じて二酸化炭素ボンベ12からの二酸化炭素を高圧ポンプユニット13及びバルブ14を経て上部の蓋15に設けられた入口16に供給することができ、また、この二酸化炭素を上部の蓋15に設けられた出口17から圧力調整ユニット18を経て周囲大気中に排出することができるようになっている。
【0024】
そして、耐圧無電解めっき槽11は蓋15を外すことによって所定量の無電解めっき液19を注入することができるとともに、耐圧無電解めっき槽11内には撹拌手段としてのスターラー20が挿入されている。さらに、この耐圧無電解めっき槽11はオーブン21内に載置されて内部に挿入された無電解めっき液19を所定の恒温に維持することができるようになっている。また、大気圧下で測定を行う場合には、二酸化炭素ボンベ12、高圧ポンプユニット13、バルブ14及び圧力調整ユニット18を操作することにより耐圧無電解めっき槽11内を大気圧下に開放できるようになっている。なお、この無電解めっき装置10においては耐圧無電解めっき槽11の上部から金属基体試料22を保持するとともに必要に応じて外部から無電解めっき液19中に浸漬できるようにしてある。
【0025】
[金属基体]
各種実験例で使用する金属基体としては市販の真ちゅうを使用し、この金属基体を酸洗前処理後に上記の触媒としての塩化パラジウム系・アクチベーター水溶液に25℃において3分間浸漬することにより表面が活性化された金属基体試料22を用いた。
【0026】
[実験例1及び2]
実験例1及び2としては、超臨界状態ないしは亜臨界状態で、ニッケル粉末を添加した場合(実験例1)及びニッケル粉末を添加しない場合(実験例2)のそれぞれについて無電解めっきを行った。まず、耐圧無電解めっき槽11内に所定の無電解めっき液19を30mL注入し、金属基体試料22を上記耐圧無電解めっき槽11内の無電解めっき液19の上部に、この無電解めっき液19に触れないように配置した。この状態で、耐圧無電解めっき槽11内の無電解めっき液の温度を80℃に加熱し、スターラー20で無電解めっき液19の撹拌を開始(撹拌速度300rpm一定)するとともに、二酸化炭素ボンベ12、高圧ポンプユニット13、バルブ14及び圧力調整ユニット18を手動で操作することによって耐圧無電解めっき槽11内の圧力が10MPaとなるように加圧した。
【0027】
そうすると、二酸化炭素の臨界温度は31.1℃であり、臨界圧力は7.38MPaであるから、上記の温度及び圧力条件下では耐圧無電解めっき槽11内は実質的に超臨界状態ないし亜臨界状態となっている。そして、無電解めっき液19は実質的に摩擦が発生せず粘度がほぼゼロに近い状態となり、この摩擦が発生せず粘度がほぼゼロに近い環境状態の無電解めっき液19は耐圧無電解めっき槽11内に充満して金属基体試料22と十分に接触する状態となる。
【0028】
そして、耐圧無電解めっき槽11内の圧力が10MPaとなった時から30分後に耐圧無電解めっき槽11の圧力の減圧を開始し、耐圧無電解めっき槽11内の圧力が大気圧に戻ったときに無電解めっき液19の撹拌を停止し、蓋15を外して金属基体試料22を取り出し、水洗及び乾燥後に目視により金属基体試料22の表面のめっき状態を観察した。この実験例1及び2の耐圧無電解めっき槽11のタイミングフローチャートを図2に示し、また、実験例1及び2で得られた測定結果を表1に示す。
【0029】
[実験例3及び4]
実験例3及び4としては、大気圧下でニッケル粉末を添加した場合(実験例3)及びニッケル粉末を添加しない場合(実験例4)のそれぞれについて無電解めっきを行った。まず、大気開放状態の耐圧無電解めっき槽11内に所定の無電解めっき液19を40mL注入し、この状態で、耐圧無電解めっき槽11内の無電解めっき液の温度を80℃に加熱した。次いで、スターラー20で無電解めっき液19の撹拌を開始(撹拌速度300rpm一定)するとともに、金属基体試料22を無電解めっき液19内に浸漬した。この状態を30分間維持した後、金属基体試料22を取り出し、水洗及び乾燥後に目視により金属基体試料22の表面のめっき状態を観察した。この実験例3及び4で得られた測定結果を実験例1及び2の測定結果とまとめて表1に示す。
【表1】

【0030】
表1に示した結果から、以下のことが分かる。すなわち、大気圧下で無電解めっきを行った場合、無電解めっき液中にニッケル粉末を添加しない実験例4の場合では、めっき被膜は薄く、全面にムラが認められた。更に、無電解めっき液中にニッケル粉末を添加した実験例3の場合では、めっき被膜は得られたが、厚さは薄くかつ部分的にムラが認められた。実験例3及び4で使用した無電解めっき液は、従来から普通に使用されている無電解めっき液であって、析出速度が遅いために30分の無電解メッキ時間ではめっき時間が足りず、ムラが見られたものと認められる。加えて、無電解めっき液中にニッケル粉末を添加した実験例3の方がニッケル粉末を添加しない実験例4の場合よりも良好な結果等得られていることから、大気圧下の無電解めっきでもニッケル粉末を添加することによるめっき層の析出速度の向上効果は一応認められる。
【0031】
さらに、超臨界状態ないし亜臨界状態で無電解めっきを行った場合、無電解めっき液中にニッケル粉末を添加しない実験例2の場合では、良好なめっき被膜が得られたが、イオンの補充が十分に行われず厚さは薄かった。これに対し、無電解めっき液中にニッケル粉末を添加した実験例1の場合ではイオンの補充が十分になされ良好な厚いめっき被膜が得られた。この結果から、超臨界状態ないし亜臨界状態での無電解めっきでは、ニッケル粉末を添加しなくてもめっき層の析出速度の向上効果は一応認められるが、30分間という無電解めっき時間ではまだ短すぎるために部分的にムラが認められたものであることが分かる。これに対して、無電解めっき液中にニッケル粉末を添加した実験例1の場合では、めっき層の析出速度が速いために、30分間の無電解めっきでも十分な厚さのめっき層がむらなく形成されている。
【0032】
以上のことから、超臨界状態ないし亜臨界状態で無電解めっきを行う際に、予め無電解めっき液中にめっきされる金属の粉末を添加しておくと、めっき層の析出速度が向上するために、均質で均一な厚さのめっき被膜が得られ、ダマシン法ないしはデュアルダマシン法に対しても適用可能であることが明らかとなった。
【0033】
なお、上記実験例においては、ニッケル粉末として100μmの粒度のものを用いたが、このニッケル粉末により無電解めっき液からめっき層が析出すると同時にめっき液中にニッケルイオンが補充され、無電解めっき時のめっき層の析出速度の向上に繋がり、また、粒径が大きいほどめっき層に取り込まれることなく、誘導共析現象によるめっき層のむらを防止できる。また、狭い場所にも「す」を発生させることなく、緻密で高速にめっきできるようにするためにも、金属粒子の粒径は大きい方がよい。特に100μmより大きい粒子を使用すると、電解液への分散状態が良好であり、めっき層に取り込まれることもなく、1μm未満の精度を持つ基板構造にも容易に無電解めっきすることができるようになる。また、金属粒子の粒径は1mm程度までは良好な分散状態が得られ緻密で均一な膜厚のめっきが得られる。
【0034】
また、上記各実験例においては、金属基体が真ちゅうであり、無電解めっきする金属がニッケルの場合について説明したが、本発明の無電解めっき方法は金属基体と無電解めっきする金属が同種の場合であっても異種の場合であっても同様の効果を奏する。そのため、金属基体及び無電解めっきする金属としては、真ちゅうやニッケルの場合だけでなく、銅、亜鉛、鉄、ニッケル、コバルト等に対しても等しく適用可能である。
【図面の簡単な説明】
【0035】
【図1】各実験例で使用した無電解めっき装置の概略図である。
【図2】超臨界流体ないし亜臨界流体を用いて無電解めっきを行う際の耐圧無電解めっき槽のタイミングフローチャートである。
【図3】図3A〜図3Eは従来例の3次元実装用半導体装置の配線の形成工程を順に説明する図である。
【図4】図3に示した従来で採用されているボイド抑制工程を説明する図である。
【図5】金属粒子がめっき層に取り込まれた誘導共析現象の問題点を説明する図である。
【符号の説明】
【0036】
10 無電解めっき装置
11 耐圧無電解めっき槽
12 二酸化炭素ボンベ
13 高圧ポンプユニット
14 バルブ
15 蓋
16 入口
17 出口
18 圧力調整ユニット
19 無電解めっき液
20 スターラー
21 オーブン
22 金属基体試料

【特許請求の範囲】
【請求項1】
金属基体の表面に無電解めっきする方法において、無電解めっき液は、二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものであり、超臨界状態又は亜臨界状態で無電解めっきを行うことを特徴とする無電解めっき方法。
【請求項2】
前記金属粉末は、金属基体、無電解めっき処理にて得られる金属被膜の少なくとも一方と同種の金属であることを特徴とする請求項1に記載の無電解めっき方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−249652(P2009−249652A)
【公開日】平成21年10月29日(2009.10.29)
【国際特許分類】
【出願番号】特願2008−95562(P2008−95562)
【出願日】平成20年4月1日(2008.4.1)
【出願人】(391060395)エス・イー・エス株式会社 (46)
【出願人】(591004733)
【Fターム(参考)】