説明

絶縁ビアを備えた高効率太陽電池

本発明により高効率の太陽電池のための方法とデバイスが提供される。一実施形態では、前記デバイスは高効率の背部電極の構成を有する太陽電池を備え、該太陽電池は少なくとも一つの透明導電体、一つの光起電性層、少なくとも一つの下部電極、および少なくとも一つの背部電極を備える。前記デバイスは前記太陽電池の透明導電体に取り付けられた複数の電気伝導フィンガーを含むことができる。前記デバイスは前記複数の電気伝導フィンガーに連結された複数の充填されたビアを含むことができ、前記ビアは前記少なくとも一つの透明導電体、一つの光起電性層、少なくとも一つの下部電極を貫通して延伸し、前記ビアは、前記透明導電体から前記背部電極に電荷を伝導する導電性のコアを持ち、前記ビア内の絶縁層は、ビアのエアロゾルによるコーティング等の各種の技術を用いて形成されることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は光電子デバイスに関し、より詳細には太陽電池等の光電子デバイスの生産に関する。
【背景技術】
【0002】
光電子デバイスは放射エネルギーを電気エネルギーに変換したり、その逆を行ったりすることができる。これらのデバイスは通常、2つの電極間に挟まれた活性層を一般に備えている。2つの電極は、しばしば正面電極と背面電極と称される、少なくとも一方の電極は通常透明である。活性層は通常、一つまたは複数の半導体材料を備えている。発光デバイス(例えば発光ダイオード)(LED)では、2つの電極間に印加された電圧により電流が活性層を通って流れる。この電流は活性層に光を放射させる。光起電性装置(例えば太陽電池)では、活性層は光からエネルギーを吸収し、このエネルギーを、2つの電極間の電圧および/または電流の少なくとも一方として示される電気エネルギーに変換する。このような太陽電池の大規模アレイは、化石燃料の燃焼に依存する従来の発電プラントに置き換わる潜在的可能性があるが、太陽電池が従来の発電に対するコスト効率の良い代替手段を供給するには、生成ワット当たりのコストが現在の配電網の率に匹敵しなければならない。現在、この目標に到達するには多くの技術的課題が存在する。
【0003】
従来の大半の太陽電池はシリコンベースの半導体によるものである。一般的なシリコンベースの太陽電池では、P型シリコン層の上にn型シリコン層(エミッタ層とも称される)が配置される。P型層とN型層の間の接合付近で吸収された放射線は、電子と正孔を生成する。電子はN型層に接する電極により集められ、正孔はP型層に接する電極により集められる。光が接合に到達しなければならないため、2つの電極のうちの少なくとも1つは少なくとも部分的に透明でなければならない。多くの現在の太陽電池の設計は、透明電極としてインジウム酸化錫(ITO)等の透明な導電性酸化物(TCO)を使用している。
【0004】
既存の太陽電池制作技術に関連するさらなる問題点は、個々の光電子デバイスが比較的小さな電圧しか生成しないという事実に起因する。したがって、高電圧−低電流動作に関連する効率を利用すべく高電圧を得るためには、いくつかの光電子デバイスを直列に電気接続することがしばしば必要である(例えば比較的高い電圧を用いて回路に送電すると、比較的高い電流を用いて回路に送電する間に起こり得る抵抗損失が低減される)。
【0005】
太陽電池をモジュールへ相互接続する設計がこれまでにいくつか開発されている。例えば、例えば、初期の光起電性モジュールの製造業者は、太陽電池を相互接続するために屋根板が屋根に配置されるのと同様に、一つの電池の底部を次の電池の上部エッジに配置するという「屋根板(shingle)」アプローチの使用を試みた。シリコンウエーハとシリコンウエーハ材料は相性が悪く、シリコンとハンダの熱膨張率が異なることおよびウエハが堅いことにより、熱サイクルによるハンダ接合は早々に失敗した。
【0006】
光電子デバイスの直列的相互接続に関連するさらなる問題点は、透明電極に使用されるTCOに関連する電気抵抗が高いことに起因する。抵抗が高いと、直列に接続される個々の電池のサイズが制限される。1つのセルから次のセルに電流を流すには、透明電極がTCO層上に形成されたバスとフィンガーの導電性グリッドで増強されることが多い。しかしながら、フィンガーとバスはセル全体の効率を減少するシャドウイングを生じさせる。抵抗の有効損失とシャドウイングを小さくするためには、セルを比較的小さくしなければならない。従って、多数の小さなセルを共に接続しなければならず、これには多数の相互
接続と、セル間のより大きなスペースが必要となる。多数の小さなセルのアレイは製造が比較的困難で、コストもかかる。さらに、可撓性の太陽光モジュールでは、多数の屋根板の相互接続が比較的複雑で、時間も労力もかかり、モジュール設置プロセスの間にかかる費用も大きいという点で「屋根板」アプローチは不利である。
【0007】
これを克服するために、透明な「正面」電極から活性層および「背面」電極を通って背面電極の下に位置する電気絶縁電極までを通過する、電気絶縁された導電性接点を備えた光電子デバイスが開発された。米国特許第3,903,427号は、シリコンベースの太陽電池におけるそのような接点の使用例について記載している。この技術は抵抗損失を減少させ、太陽電池デバイスの全体効率を改善することができるが、セルの制作に真空加工技術が使用されると共に厚みのある単結晶シリコンウエーハに費用がかかることから、シリコンベースの太陽電池のコストが依然として高いままである。
【0008】
このため、太陽電池の研究者や製造業者は、従来のシリコンベースの太陽電池よりもより少ない費用で大規模に製作することができる種々のタイプの太陽電池を開発している。そのような太陽電池の例には、シリコン(例えばアモルファスシリコンセル、マイクロ結晶シリコンセル、または多結晶シリコンセル用)を備えたセル;有機オリゴマーまたはポリマー(有機太陽電池用)、二層または相互貫通層もしくは無機および有機材料(有機/無機ハイブリッド太陽電池用)より構成された活性吸収材層を備えたセル、液状またはゲル状電解質に溶解した色素増感チタンナノ粒子(Graetzelセル用)を備えたセル、銅−インジウム―ガリウム−セレン(CIG太陽電池用)を備えたセル、活性層がCdSe、CdTe、および上記の組み合わせから構成され、活性物質がバルク材料、マイクロ粒子、ナノ粒子または量子ドットを含むがこれらに限定されないいくつかの形式のうちのいずれかであるセルが挙げられる。これらのセルのタイプの多くは可撓性基板(例えばステンレス鋼箔)上に製作することができる。これらのタイプの活性層は非真空環境中で製造することが可能であるが、セル内およびセル間の電気接続には通常一つまたは複数の金属導電層の真空蒸着が必要である。
【0009】
例えば、図1Aは、先行技術の太陽電池アレイ1の一部を示している。アレイ1は可撓性絶縁基板2上に製造される。基板2には基板2を貫通する複数の直列の相互接続孔4が形成され、下部電極層6が蒸着されているが、これは例えば基板正面と孔4の側壁に対するスパッタリングによりなされる。その後、電流収集孔8が下部電極6および基板2を貫通するよう選択位置に形成され、次に一つまたは複数の半導体層10が、下部電極6、直列相互接続孔4および電流収集孔8の上に蒸着される。その後、直列相互接続孔4をカバーするシャドウマスクを用いて透明導電体層12が配置される。次に、基板2の裏側に第2金属層14が蒸着される。第2金属層14は、電流収集孔8を介して透明導電体層12と電気接触すると共に、直列相互接続孔4によりセル間に直列相互接続を提供する。正面および背面におけるレーザスクライビング16,18により、モノリシック(一体化された)デバイスが個々のセルに分けられる。
【0010】
図1Bは、アレイ1の変更態様である別の先行技術アレイ20を示している。アレイ20も可撓性絶縁基板22上に製造される。基板22には複数の直列相互接続孔24が形成され、下部電極層26が蒸着されているが、これは例えば基板22の正面および裏面ならびに孔24の側壁に対するスパッタリングによりなされる。その後、電流収集孔28が下部電極および基板を貫通するように選択位置に形成され、次に一つまたは複数の半導体層30ならびに透明導体層32が、正面側の下部電極26の上と、直列相互接続孔24の側壁および電流収集孔28の上に蒸着される。その後、電流収集孔28以外のすべてをカバーするシャドウマスクを用いて第2の金属層34が基板22の裏側に配置され、第2の金属層34は透明導電体層32と電気接触する。正面および背面におけるレーザスクライビング36,38により、モノリシックデバイスが個々のセルに分けられる。
【0011】
図1A−6Bに示されるような太陽電池アレイの製造には2つの重大な欠点がある。第1には、金属層がスパッタリングにより蒸着されるが、これは真空技術である。真空技術は比較的時間がかかる上に、難しく、大規模なロールツーロール(roll to roll)生産環境で実施するには費用がかかる。第2には、製造プロセスによってモノリシックすなわち単一体のアレイが生産されるため、生産用に個々のセルをソートすることができない。これは、ほんの少数の品質の悪いセルがアレイを台無しにし、したがってコストが増大し得ることを意味する。さらに、この製造プロセスは、孔の形態および寸法に非常に対して大きく影響を受ける。正面から裏面への電気伝導は孔の側壁に沿って起こるので、孔を大きく製造されると導電性が十分に増加しない。したがって、狭いプロセスウィンドウが存在することとなるが、これは製造コストを増大させ、使用可能な装置の生産を減少させる可能性がある。さらに、真空蒸着はアモルファスシリコン半導体層には実用的であるが、非常に効率的な太陽電池(例えば銅、インジウム、ガリウム、およびセレンまたはイオウの組み合わせに基づく、CIGSセルと称される太陽電池)には非実用的である。CIGS層を蒸着するには、3つまたは4つの元素を正確に制御された比で蒸着しなければならない。これは真空蒸着プロセスを使用して達成することは非常に難しい。
【0012】
したがって、上記の欠点を克服する光電子デバイス構造およびそのようなセルの対応する製造方法が、当該技術分野において求められている。
【発明の開示】
【発明が解決しようとする課題】
【0013】
本発明の実施形態は上記のいくつかの難点を解決するものである。本発明は改良された構造を使用する光起電性デバイス中に形成されるビア中での絶縁物質の使用を提供し、公知のデバイスの欠点を克服するものである。少なくとも、本明細書に記載されるこれらのいくつかの目的と他の目的は、本発明の各種の実施形態により満たされる。
【課題を解決するための手段】
【0014】
本発明の一実施例に係るデバイスは高効率の背面電極の構成を備え、該太陽電池は、少なくとも一つの透明導電体、一つの光起電層、少なくとも一つの下部電極および少なくとも一つの背面電極を備える。該デバイスは該太陽電池の透明導電体に搭載された複数の電気伝導フィンガーを含むことができる。該デバイスは、該電気伝導フィンガーと連結した複数の充填された(filled)ビアを含むことができ、該ビアは、少なくとも一つの該透明導電体、該光起電層、および少なくとも一つの下部電極を貫通して延伸しており、また該ビアは該透明導電体から背面電極に電荷を伝達する導電性コアを有する。ビアの絶縁層は該下部電極から各ビアのコアを分離することができ、該絶縁層は該ビアのアエロゾルによるコーティングにより形成される。
【0015】
当然ながら、該背部導電体は、該下部電極からは電気的に絶縁されることができ、上部電極に対する導電性要件が軽減されるよう、またエリアを覆い隠すバスバー使用の必要性を除去するために、十分に近い間隔で設置された充填されたビアによってお互いに結合される。任意的に、該絶縁層は、該ビアのアエロゾルによるコーティングで形成することができる。該絶縁層の厚さは、約20から約100ミクロンであることができる。制限しない例として、該絶縁層は以下の物質のうちの少なくとも一つにより成ることができる:エチルビニルアセテート (EVA)、ポリビニルアルコール(PVOH)、ポリビニルアセテート(PVA)、ポリビニルピロリドン (PVP)、および/またはガラス転移温度が約150℃未満の熱可塑性ポリマー。任意的に、他の電気的な絶縁物質を使用してもよい。光起電性層は、P−N接合を形成する少なくとも二つの別個の層を備えてよく、そのうち少なくとも一つの層はCISをベースとする物質を含むことができる。実質的に、前記各充填されたビアは各々約1mm以下の直径を有する。該絶縁層は、該ビアの側壁お
よび該各ビア周辺部分の透明導電体を覆うことができ、該周辺部分は、該ビアの縁から該ビアの直径の約2倍の範囲内である。
【0016】
本発明の別の実施形態では、高効率の背部電極構成を有する太陽電池の形成を含む方法が提供され、該太陽電池は、少なくとも一つの透明導電体、一つの光起電性象層、および少なくとも一つの下部電極を備える。複数のビアを、該透明導電体、該一つの光起電性象層、および該下部電極を貫通して形成することができる。該各ビアの孔の内部側壁に沿い絶縁層を被覆して形成することができる。該形成方法は、該各ビアの孔を透明導電体と電気的に連結された導電性のコアで充填し、該各ビアの孔内の絶縁層によって下部電極とは電気的に絶縁することを含むことができる。背部電極を形成し、実質的に該各ビアの孔の内部のコアと連結してもよい。
【0017】
当然ながら、コーティングの工程は、透明導電体を絶縁物質で実質的に被覆することを避けるために、該太陽電池の下部から絶縁物質をスプレーする源を使用することを含むことができる。また、コーティングは、透明導電体に対してマスクを使用することなく、透明導電体に付着する絶縁物質量を最小化するために、該太陽電池の下部より絶縁物質をスプレーすることを含むことができる。コーティングは、透明導電体に付着する絶縁物質量を最小化するために透明導電体に対してマスクを使用して、該太陽電池の上部より絶縁物質をスプレーすることを含むことができる。任意的に、コーティングの工程は、該ビアを絶縁物質で完全に充填することなく、該ビアの孔の内壁を十分な量の絶縁物質でスプレーして被覆することから成ることができる。コーティングは該ビアの孔の内壁を十分な量の絶縁物質でスプレーして被覆して、さらに下部電極の下側を被覆して下部絶縁層を形成することより成ることもできる。コーティングは該ビアの孔にエアロゾルを塗布して絶縁層を形成することにより成ることもできる。
【0018】
本発明の別の実施形態では、コーティングは、純粋に誘電性の元素と接着成分を含む絶縁性エアロゾルの塗布により絶縁層を形成することから成る。コーティングは、太陽電池の一つの側面に施された実質的に均一なコーティングに対して気体の衝突を使用することにより、絶縁物質を該各ビアの孔内に導くことで成ることができる。コーティングは、スプレー後に絶縁物質で塞がれたいずれかの該ビアの孔から絶縁物質を取り除くために気体の衝突を使用することから成ることもできる。コーティングは、絶縁物質の実質的に均一なコーティングを太陽電池の一つの側面に印刷により施した後に気体の衝突を使用することにより、絶縁物質を該各ビアの孔内に導き絶縁層を形成し、該均一なコーティングに該各ビアに対応する開口部を生成することにより成ることができる。該方法は、また複数のビアを穴あけ用のデバイスの使用により該少なくとも一つの透明導電体、一つの光起電性層および少なくとも一つの下部電極を貫通することにより形成することを含むことができる。さらに該方法は、該太陽電池の透明導電体上に複数の導電性フィンガーを形成することを含むことができる。コーティングは、さらに絶縁物質の実質的に均一なコーティングを太陽電池の一つの側面に印刷により施した後に、該均一な絶縁物質のコーティングを、太陽電池の他の側面側から吸引により絶縁物質を該各ビアに引き込んだ後に、該均一なコーティングに該各ビアに対応する開口部を生成することにより成ることができる。
【0019】
本発明の教示は、以下の詳細な説明を添付図面と共に考慮すれば容易に理解される。
【発明を実施するための最良の形態】
【0020】
当然ながら、上記の一般的記載と下記の詳細な記載単に例示的かつ説明的なものであり、主張されているように発明を制限するものではない。以下の明細書と添付の特許請求の範囲において、不定冠詞「1つの(AまたはAn)」、および定冠詞「該(the)」は、別途明示的に指定されていない限り、該冠詞に続くものについて複数のものを含む。このように、例えば、「a material」の記述は、複数の物質の混合物を含むこと
ができ、「a compound」の記述は複数の化合物を含むことができる等である。本明細書における参考文献は、参照されることにより、本明細書において記載される明確な教示に対立しない範囲において、本明細書にその全体が含まれる。本明細書と請求項では、言及される一連の定義される用語は以下の意味を有する:
【0021】
「任意の」“optional”または「任意(的)に」 “optionally”は、引き続き述べられる状況が起きる場合の例と、起きない場合の例を含むために、引き続き述べられる状況が起きても起きなくてもよいことを意味する。例えば、もし「装置は任意的に障壁薄膜の性質を含む」(if a device optionally contains a feature for a barrier film)の記載の場合、これは前記障壁薄膜の性質があっても無くてもよいことを意味し、従って前記記載は、装置が前記障壁薄膜の性質を有する構造と、前記障壁薄膜の性質を有さない構造の両者を含む。
【0022】
図2A−IBは、本発明の1実施形態による光電子デバイスアレイ100を示す。いくつかの実施形態では、これは光電子デバイスアレイ100中の直列相互接続とみなされることもできる。アレイ100は第1デバイスモジュール101および第2デバイスモジュール111を備えている。デバイスモジュール101,111は太陽電池のような光起電性装置であってもよいし、または発光ダイオードのような発光装置であってもよい。好ましい実施形態では、デバイスモジュール101,111は太陽電池である。第1および第2デバイスモジュール101,111は絶縁性のキャリア基板103に取り付けられる。キャリア基板103は、例えば厚さ約50μmの、ポリエチレンテレフタレート(PET)等のプラスチック材料より形成される。次にキャリア基板103は、より厚みのある構造膜105に取り付けられる。構造膜105は、屋根等の戸外の場所でのアレイ100の設置を容易にするために、熱可塑性ポリオレフィン(TPO)またはエチレンプロピレンジエンモノマー(EPDM)等のポリマールーフィング膜材料により形成される。
【0023】
デバイスモジュール101,111は、例えば長さ約4インチ(約10.16cm)および幅約12インチ(約30.48cm)であるが、互いに積層された、いくつかの層を含むもっと長いシートから切断されてもよい。各デバイスモジュール101,111は通常、下部電極104,114に接触するデバイス層102,112と、下部電極104,114と導電性バックプレーン108,118の間の絶縁層106,116とを備えている。本発明のいくつかの実施形態では、バックプレーン108,118は背面上部電極108,118と称される場合がある。下部電極104,114、絶縁層106,116、およびバックプレーン108,118は、デバイス層102,112を保持する基板S1,S2を構成する。
【0024】
絶縁基板に薄い金属層を蒸着することにより基板が形成される先行技術のセルとは対照的に、本発明の実施形態は箔のような可撓性バルク導電性材料に基づく基板S1,S2を使用する。箔のようなバルク材料は先行技術の真空蒸着金属層よりも厚みがあるが、より安価で、より容易に入手でき、加工が容易である。好ましくは、少なくとも下部電極104,114は、アルミニウム箔等の金属箔より形成される。代わりに、銅、ステンレス鋼、チタン、モリブデンまたは他の適切な金属箔が使用されてもよい。例として、下部電極104,114およびバックプレーン108,118は、アルミニウム箔で、厚さ約1μmから約200μm、好ましくは厚さ約25μmから約100μmに形成され、絶縁層106,116は、ポリエチレンテレフタレート(PET)等のプラスチック箔材料で、厚さ約1μmから約200μm、好ましくは厚さ約10μmから約50μmに形成される。任意的に、バックプレーン108,118はステンレス鋼、銅、チタン、モリブデン、鋼、アルミニウム、前記物質のいずれかの、銅めっきまたは銅で被覆されたもの、前記物質のいずれかの、金めっきまたは金で被覆されたもの、または前記物質の組み合わせにより
形成されることができる。一実施形態では、特に、下部電極104,114、絶縁層106,116、およびバックプレーン108,118は、スタート基板S1,S2を形成するために共に積層される。箔は下部電極104,114およびバックプレーン108,118の両方に使用されてもよいが、バックプレーンとして絶縁層106,116の背後にメッシュグリッドを使用することも可能である。そのようなグリッドは導電性塗料またはインクを使用して絶縁層106,116の背面に印刷され得る。適当な導電性塗料またはインクの例に、アメリカ合衆国ミシガン州ミッドランド市所在のダウコーニング社(Dow Corning Corporation)から入手可能なDow Corning(登録商標) PI−2000 Highly Conductive Silver Inkがある。さらに、絶縁層106,116は、下部電極104,114またはバックプレーン108,118もしくはその両方に使用される箔の表面を陽極酸化することにより、または当該技術分野で周知のスプレー、コーティング、印刷技術で絶縁コーティングを塗布することにより、形成され得る。
【0025】
デバイス層102,112は通常、透明導体層109と下部電極104の間に配置された活性層107を備えている。例えば、デバイス層102,112は厚さ約2μmである。少なくとも第1装置101は透明導体層109とバックプレーン108の間に一つまたは複数の電気接点120を備えている。電気接点120は、透明導体層109、活性層107、下部電極104および絶縁層106により形成される。電気接点120は透明導体層109とバックプレーン108の間の導電性通路を提供する。電気接点120は活性層107、下部電極104および絶縁層106から電気的に絶縁される。
【0026】
接点120は、各々、活性層107、透明導体層109、下部電極104および絶縁層106を貫通するよう形成されたビアを備え得る。各ビアは、直径約0.1ミリメートルから約1.5ミリメートル、好ましくは直径約0.5ミリメートルから約1ミリメートルである。ビアは穿孔により、またはドリリングにより(例えば機械的穿孔、レーザ穿孔または電子ビーム穿孔)、もしくはこれらの技術の組み合わせにより形成される。絶縁材122はビアの側壁をコートし、その結果絶縁材122の中を通ってバックプレーン108へ至る通路が形成される。絶縁材122の厚みは、約1μmと約200μmの間、好ましくは約10μmと約200μmの間である。
【0027】
絶縁材122の厚みは、その背後の露出した導電性表面の完全なカバーを保証するために、好ましくは少なくとも10μmの厚みとする。絶縁材122は、例えばインクジェット印刷や環状ノズルによるディスペンスを始めとする種々の印刷技術により形成可能である。導電性材料製のプラグ124は、通路を少なくとも部分的に充填し、透明導体層109とバックプレーン108の間の電気接触を形成する、すなわち透明導体層109とバックプレーン108の間に電流が流れるようにする。この導電性材料も同様に印刷可能である。適切な材料および方法は、例えば、テキサス州プレーノ市所在のマイクロファブ社(Microfab, Inc.)(この目的に役立つ装置を販売している)「solderjet」と称されるハンダのインクジェット印刷である。存在する可能性のある溶媒の除去および硬化のための時間が引き続き許容される条件下では、電子回路パッケージングの技術分野で周知の導電性接着材料の印刷も使用可能である。プラグ124は、約5μmと約500μmの間、好ましくは約25と約100μmの間の直径を有し得る。
【0028】
非限定的な例では、別の実施形態では、デバイス層102,112は厚さ約2μmであり、下部電極104,114は厚さ約100μmのアルミニウム箔より形成され、絶縁層106,116は、厚さ約25μmのポリエチレンテレフタレート(PET)等のプラスチック材料より形成され、背面上部電極108,118は厚さ約25μmのアルミニウム箔より形成される。デバイス層102,112は、透明導体層109と下部電極104の間に配置された活性層107を備え得る。そのような実施形態では、少なくとも第1装置
101は、透明導体層109と背面上部電極108との間に一つまたは複数の電気接点120を備える。電気接点120は、透明導体層109、活性層107、下部電極104および絶縁層106を貫通するように形成される。電気接点120は透明導体層109と背面上部電極108との間の導電性通路を提供する。電気接点120は、活性層107、下部電極104および絶縁層106から電気的に絶縁される。
【0029】
導電プラグ124と基板108の間の良好な接点の形成は、超音波溶接等の他の接点形成技術の使用により支援され得る。有用な技術の例は、金のスタッドバンプ(stud−bump)の形成であり、これは例えば参照により本明細書に包含されるウイマー(J.
Jay Wimer)「3−D Chip Scale with Lead−Free Processes」 Semiconductor International, 2003年10月1日発行、に記載されている。通常のハンダもしくは導電性インクまたは接着剤がスタッドバンプの上に印刷され得る。
【0030】
ビアを形成する際に、上部電極109と下部電極104の短絡接続を回避することは重要である。したがって、ドリリングまたは穿孔のような機械的切断技術は、ビアのリップ付近の少量のレーザアブレーション幅数μm)をレーザアブレーション除去することにより補足され得る。代わりに、ビアよりもわずかに大きな直径にわたって透明導体層を除去するために、化学エッチングプロセスが使用されてもよい。エッチングは、例えば、インクジェット印刷またはステンシル印刷を使用して適切な場所にエッチ液の滴を印刷することにより、局所的に行うことが可能である。
【0031】
短絡を回避するさらなる方法は、透明導体層109の配置の前に、活性層107の上に絶縁材の薄層を配置することである。この絶縁層は好ましくは厚さ数μmで、1〜100μmの範囲であり得る。この絶縁層はビアが形成される予定の領域(およびわずかにビアの境界線を超える)にのみ配置されるため、その存在が光電子デバイスの動作に干渉することはない。本発明のいくつかの実施形態では、層は参照により本明細書に包含されるピシュラー(Karl Pichler)の2004年3月25日出願の米国特許出願第10/810,072号明細書に記載されている構造と類似のものであってもよい。そのような構造を通って孔がドリリングまたは穿孔される場合、透明導体層109と、下部電極104の間には絶縁体層が存在するが、機械的切断の正確性のために、この絶縁体の層は層109,104よりも比較的厚みが厚く、短絡を生じさせないようになっている。
【0032】
この層の材料は、任意の便利な絶縁体であってよく、好ましくはデジタルで(例えばインクジェット)印刷できるものである。ナイロンPA6(融点223℃)、アセタール(融点165℃)、PBT(PETと構造上似ているがブチル基がエチル基と置き換わっている)(融点217℃)およびポリプロピレン(融点165℃)のような熱可塑性ポリマーは、有用な材料のリストを全て網羅するわけではない例である。そのような材料は絶縁層122にも使用可能である。インクジェット印刷は絶縁体アイランドを形成する望ましい方法であるが、他の印刷方法または付着方法(従来のフォトリソグラフィを含む)も本発明の範囲内にある。
【0033】
ビアを形成する際に、第1は絶縁層106、下部電極104、およびその上の層102から構成されたもの、第2はバックプレーン108で構成されたものの、少なくとも2つの最初には分離されている要素に光電子デバイスを製作することは有用である。これらの2つの要素は、ビアが106/104/102の複合構造を貫通して形成された後であってビアが充填される前に、共に積層される。この積層およびビア形成後に、複合体にバックプレーン108が積層され、上述したようにビアが充填される。
ジェット印刷ハンダまたは導電性接着剤には、導電性ビアプラグ124を形成するための有用な材料が含まれるが、機械的手段によってプラグを形成することも可能である。し
たがって、金のスタッドバンプの形成と同様な方法で、例えば適切な直径のワイヤがビアの中に配置され、それがバックプレーン108と接触するようにされ、そしてプラグ124を形成するよう所望の高さで切断されてもよい。代わりに、そのようなサイズを有する予め形成しておいたピンをロボットアームで孔の中に配置することも可能である。そのようなピンまたはワイヤは定位置に配置され、基板に対するそれらの電気接続は、ピンの配置に先立って導電性接着剤の非常に薄い層を印刷することにより支援または確保され得る。したがって、導電性接着剤からなる厚みのあるプラグの乾燥時間が長いという問題がなくなる。ピンは、接触をさらに支援するために、バックプレーン108にわずかに打ち込まれる先端または鋸歯状部分を備え得る。そのようなピンは絶縁ワイヤまたはコートされたワイヤ(例えば蒸着または酸化により)の場合と同様に、既に存在する絶縁材に設けられる。ピンは、絶縁材を適用する前にビアの中に配置され、これにより絶縁材の導入が容易となる。
【0034】
ピンが適切な硬い金属から形成され、わずかにテーパ状になった先端を有する場合、ピンは穿孔工程の間にビアを形成するために使用されてもよい。パンチまたはドリルを使用する代わりに、ピンは先端がちょうど底を貫通する深さまで複合体106/104/102に挿入され、その後、基板108がこの複合体に積層されると、先端はわずかに基板108に進入し、良好な接触を形成する。これらのピンは、例えばピンがちょうど中にはめ込まれるチューブを介して向けられた機械的圧力または空気圧により、パンチされていない基板の中に貫入され得る。
【0035】
透明導体層109の上には、導電性材料124と電気接触した状態で、一つまたは複数の導電トレース126が配置され得る。導電トレース126は例えば、Al、NiまたはAgより形成される。図2Bに示されるように、トレース126は全体のシート抵抗を減少するために多数の接点120を相互接続してもよい。例えば、接点120は、トレース126が各接点をそれと最も近い隣接する接点と接続し、場合によってはその接点を包囲する透明導体層と接続する状態で、互いに約1cm離間され得る。好ましくは、トレース126の数、幅および間隔は、接点120およびトレース126がデバイスモジュール101の表面の約1%未満を占めるように選択される。トレース126は約1μmと約200μmの間、好ましくは約5μmと約50μmの間の幅を有し得る。トレース126は、約0.1ミリメートルと約10ミリメートルの間、好ましくは約0.5ミリメートルと約2ミリメートルの間の中心−中心距離だけ好ましくは離れている。過度なシャドウイング損失を回避するために、ラインの幅を広くするにはより大きく離間させることが必要となる。ラインが互いにほぼ等距離にある限り(例えば2倍以内)、トレース126に対して種々のパターンまたは配向が使用され得る。トレース126が接点120から扇型に広がる代替パタ−ンが図2Cに示されている。図2Dに示される別の代替パタ−ンでは、トレース126は「分水界(watershed)」パタ−ンを形成し、接点120から放射状に延びるより太いトレース126からより細いトレース126が分岐している。図2Eに示される別の代替パタ−ンでは、トレース126が接点120から出て長方形のパタ−ンを形成している。各接点に接続されるトレース126の数は、図2Eに示された数より多くても少なくてもよい。いくつかの実施形態は、1つ多く、2つ多く、3つ多くのトレース126の数を有するといった具合である。図2B、図2C、図2D、2Eに示された例に描かれているトレースパターンは例示を目的とするものであって、本発明の実施形態に使用可能なトレースパタ−ンを制限するわけではない。導電性バックプレーン108,118は1つのデバイスモジュールから次のデバイスモジュールに電流を伝えるため、導電トレース126は太い「バス」を避けて「フィンガー」を備えることが可能である。これにより、バスによるシャドウイング量が減少すると共に、装置アレイ100に見た目により美しい外観が提供される。
【0036】
比較的厚く導電性が高い可撓性バルク導電体の下部電極104,114およびバックプ
レーン108より形成された基板S1,S2にデバイスモジュール101,111を製作し、透明導体層109、活性層130、下部電極104,114、および絶縁層106,116を貫通するように絶縁された電気接点120を形成すると、デバイスモジュール101,111が比較的大きくなる。従って、アレイ100は、先行技術のアレイと比較して、より少数の直列相互接続を必要とする、より少数のデバイスモジュールより形成され得る。例えば、デバイスモジュール101,111は長さが約1cmと約30cmの間で、幅が約1cmと約30cmの間である。より小さなセル(例えば長さが1cm未満および/または幅が1cm未満)も希望に応じて形成可能である。
【0037】
バックプレーン108,118が1つのデバイスモジュールからの次のデバイスモジュールに電流を伝えるため、トレース126のパタ−ンは、この目的で先行技術に使用されるような太いバスを備える必要はない。代わりに、トレース126のパタ−ンは、電流を接点120へ伝えるのに十分に導電性のある「フィンガー」を提供すればよい。バスがないので、活性層102,112のより大きな部分が露出され、これにより効率が上昇する。さらに、バスのないトレース126のパタ−ンは見た目にも美しい。
【0038】
第1デバイスモジュール101のバックプレーン108と第2デバイスモジュール111の下部電極114との間の電気接触は、第2デバイスモジュールのバックプレーン118および絶縁層116を切除して下部電極114の一部を露出させることにより実行され得る。図2Bはとりわけバックプレーン118および絶縁層116を切除する1つの方法の例を示している。特に、絶縁層116のエッジには切欠117が形成されうる。複数の切欠117は同様に整列しているが、バックプレーン118の切欠119はわずかに大きくなっている。切欠117,119の配列は第2デバイスモジュール111の下部電極114の一部を露出させる。
【0039】
電気接触は、第1デバイスモジュール101のバックプレーン108と、第2デバイスモジュール111の下部電極114の露出部分との間で、多くの異なる方法で形成され得る。例えば、図2Aに示されるように、切欠117,119と整列するパターンで、薄い導電層128がキャリア基板103の一部の上に配置される。
【0040】
薄い導電層128は、例えば導電性(充填)ポリマーまたは銀のインクである。導電層は非常に薄く、例えば厚さ約1μmである。薄い導電層128の最小厚さを決定する一般的基準は、この層で放散される部分出力p=(J/V)ρ(Lo2/d)が約10−4以下であることである。式中、Jは電流密度、Vは電圧、Loは薄い導電層128の長さ(ほぼ第1デバイスモジュールと第2デバイスモジュールの間のギャップの幅に相当)であり、ρとdはそれぞれ導電層128の抵抗および厚さである。この場合には、このソースからの電力の損失は全産生電力の1%よりはるかに少なく、無視できるものである。多くの用途の数値の例では、(J/V)は約)0.06のA/Vcmであり、Lo=400μm=0.04cmの場合、pは約10−4(ρ/d)に等しい。したがって、抵抗ρが約10−5Ωcm(これは良好なバルク導電体よりも約10倍少ない)であっても、この基準はdが厚さ約1μm(10−4cm)未満であることにより満たされる。したがって、ほとんどの妥当な印刷可能な厚さの比較的抵抗の高いポリマー導電体でも機能する。
【0041】
薄い導電層128の一部を露出させたまま、バックプレーン108が薄い導電層128と電気接触するように、第1デバイスモジュール101はキャリア基板103に取り付けられる。その後、薄い導電層128の露出部分と、第2デバイスモジュール111の下部電極114の露出部分との間で電気接触が形成される。例えば、導電材料129のバンプ(例えばより導電率の高い接着剤)が、下部電極114の露出部分と整列した薄い導電層128上の位置に配置される。第2デバイスモジュール111がキャリア基板に取り付けられる際、導電材料129のバンプは下部電極114の露出部分と接触する程度に十分に
高い。薄い導電層128が第2デバイスモジュール111のバックプレーン118と望ましくない接触を行なう可能性が実質的にないように、切欠117,119の寸法が選択され得る。例えば、下部電極114のエッジは、約400μmのカットバックCBの量だけ絶縁層116に対して切除され得る。バックプレーン118は、CBより有意に大きい量CBだけ絶縁層116に対して切除され得る。
【0042】
デバイス層102,112は、好ましくは大規模で(例えばロールツーロール処理システムシステムで)製造可能なタイプである。デバイス層102,112で使用可能なデバイス構造には多数の異なるタイプのものが存在する。例えば、一般性を失わないものとして、図1Aの挿入図はデバイス層102におけるCIGS活性層107およびその付随層の構造を示す。例えば、該活性層107は、IB群、IIIA群およびVIA群の元素を含む材料に基づく吸収材層130を備え得る。好ましくは、該吸収材層130は、IB群として銅(Cu)と、IIA群元素としてガリウム(Ga)および/またはインジウム(In)および/またはアルミニウム、ならびにVIA群としてセレン(Se)および/またはイオウ(S)を含んでいる。そのような材料(CIGS材料と称される場合もある)の例が、いずれも参照により本明細書に包含されるエバースパチャー(Eberspacher)らの2001年7月31日発行の米国特許第6,268,014号およびベーソル(Bulent Basol)の2004年11月4日公開の米国特許出願公開第2004−0219730号明細書に記載されている。ウィンドウ層132は前記吸収材層130と前記透明導体層109の間の結合パートナーとして通常使用される。例えば該ウィンドウ層132は、硫化カドミウム(CdS)、硫化亜鉛(ZnS)またはセレン亜鉛(ZnSe)、またはこれらの2つ以上の組み合わせを含む。これらの材料の層は、例えば化学浴蒸着または化学表面蒸着により、約50nmから約100nmの厚さに蒸着される。下部電極104から金属の拡散を阻止するために、下部電極と異なる金属の層134が、該下部電極104と前記吸収材層130の間に配置され得る。例えば、該下部電極104がアルミニウムにより形成されている場合、前記層134はモリブデン層であり得る。このことにより、電荷の運搬と特定の保護的な性質が支援される。さらに、層13と同様の物質で構成される別の層135を、さらに層134とアルミニウム層104の間に塗布することができる。該物質は層13と同一であっても、層13について列挙されている物質のセットから選択される別の物質であってもよい。任意的に、別の層137は層104の他の側に塗布されることもできる。該物質は層135と同一であっても、層13について列挙されている物質のセットから選択される別の物質であってもよい。本明細書のどの実施形態においても、限定はされないが、図5および6に示されるような、層135および/または137と同様の保護層を箔の周辺に塗布することができる
【0043】
CIGS太陽電池を例として説明しているが、当業者には直列相互接続技術の実施形態がほとんどすべてのタイプの太陽電池構造に適用可能であることが理解されるであろう。そのような太陽電池の例には、アモルファスシリコンセル、Graetzelセル構造(サイズが数ナノメートルの二酸化チタン粒子から構成された透光性フィルムが、該フィルムの光収集に対する感受性を高めるために電荷移動染料によりコーティングされている)、有機材料により充填された孔を備えた無機多孔性鋳型を有するナノ構造化層(例えば参照により本明細書に包含される米国出願公開第2005−0121068号参照)、ポリマー/混合セル構造、有機染料および/またはC60分子および/または他の小分子、マイクロ結晶シリコンセル構造、ランダムに配置されたナノロッドおよび/または有機マトリックス中に分散された無機材料のテトラポッド、量子ドットセル、またはそれらの組み合わせが含まれるが、それらに限定されるわけではない。さらに、本明細書で説明する直列相互接続技術の実施形態は、太陽電池以外の光電子デバイスと共に使用することができる。
【0044】
代わりに、光電子デバイス101,111は有機発光ダイオード(OLED)のような
発光デバイスであってもよい。OLEDの例には発光ポリマー(LEP)デバイスが含まれる。そのような場合、活性層107は、ポリ(3,4)エチレンジオキシチオフェン:スルホン酸ポリスチレン(PEDOT:PSS)の層を含み、これはウェブコーティングや同様な方法により下部電極104,114上に通常50〜200nmの厚さで付着され、その後水を除去するためにベークされる。PEDOT:PSSはドイツ国レーバークーゼン所在のバイエル社(Bayer)から入手可能である。PEDOT:PSS層の上には、例えばウェブコーティングにより、ポリフルオレン系LEPが約60−70nmの厚さで付着され得る。適切なポリフルオレン系LEPはダウケミカルズ社(Dow Chemicals Company)から入手可能である。
【0045】
透明導体層109は、例えば、酸化亜鉛(ZnO)またはアルミニウム添加酸化亜鉛(ZnO:Al)等の透明導電性酸化物(TCO)であってよく、これはスパッタリング、蒸発、CBD、電気めっき、CVD、PVD、ALDおよびその他同種のものを含むがこれらに限定されない任意の種々の手段を使用して配置することができる、代わりに、透明導体層109は透明の導電性ポリマー層、例えばドープPEDOT(ポリ−3,4−エチレンジオキシチオフェン)の透明層を含んでもよく、これはスピンコーティング、ディップコーティング、またはスプレーコーティング、および同種のものを使用して配置することができる。PSS:PEDOTはジエーテルにより架橋された複素環チオフェンに基づくドープされた導電性ポリマーである。ポリ(スルホン酸スチレン)(PSS)でドープされたPEDOTの水分散液はBaytron(登録商標)Pの商品名でアメリカ合衆国マサチューセッツ州ニュートン市のH. C. Starck社から入手可能である。Baytron(登録商標)はドイツ国レーバークーゼンのバイエル社(Bayer Aktiengesellshaft)の登録商標である。その導電性に加えて、PSS:PEDOTは平坦化層として使用することができ、これはデバイス性能を改善できる。PEDOTの使用における潜在的な欠点は通常のコーティングでは酸性の性質を有することであり、PEDOTが太陽電池中の他の材料を化学的に攻撃したり、反応したり、他の態様で品質を劣化させる源として機能する場合がある。PEDOT中の酸性成分の除去は陰イオン交換法により行なわれ得る。非酸性PEDOTは市場で購入することができる。代わりに、同様の材料を、コロラド州ウィートリッジ市のTDA社の材料、例えばOligotron(登録商標)およびAedotron(登録商標)から購入することができる。
【0046】
第1デバイスモジュール101と第2デバイスモジュール111の間のギャップは、硬化可能なポリマーエポキシ樹脂(例えばシリコーン)により充填され得る。環境への抵抗、例えば水や空気への露出に対する保護を与えるために、任意選択の封止材料層(図示しない)がアレイ100をカバーしてよい。封止材料は、その下にある層を保護するために、UV光をさらに吸収してもよい。適切な封止材料の例には、THV(例えばDyneonのTHV220フッ素化ターポリマー、テトラフロオルエチレンのフッ素系熱可塑性ポリマー、ヘキサフルオロプロピレン、およびフッ化ビニリデン)などのフルオロポリマー、Tefzer(登録商標)(DuPont社)、Tefdel、エチレン酢酸ビニル、熱可塑性樹脂、ポリイミド、ポリアミド、プラスチックとガラスのナノ積層複合物(例えば参照により本明細書に包含される同一出願人による同時係属のサガー(Brian Sager)およびロセイゼン(Martin Roscheisen)の発明の名称が「INORGANIC/ORGANIC HYBRID NANOLAMINATE BARRIER FILM」と題された米国特許出願公開第2005−0095422号明細書に記載されているようなバリアフィルム)、およびこれらの組み合わせからなる一つまたは複数の層を含む。
【0047】
本発明の実施形態による相互接続デバイスを製作する、多くの異なる方法がある。例えば、図3はそのような方法の1つを例証する。この方法では、例えば図2A−2Bに関して上述したように、デバイスは下部電極と透明導体層の間に活性層を備えた連続的なデバ
イスシート202の上で製作される。デバイスシート202には、図2Aに示された接点120のような接点203でパターンが形成される。接点203は、上述したように導電トレース(図示しない)により電気接続されてもよい。絶縁層204およびバックプレーン206も、連続シートとして製作される。図3に示された例では、絶縁層204は例えば、バックプレーン層206の同様な切欠207と整列する切欠205を形成するよう切除される。バックプレーン層206の切欠207は絶縁層204の切欠205よりも大きい。デバイスシート202、絶縁層204およびバックプレーン層206は一つに積層されて、デバイスシート202とバックプレーン206の間に絶縁層204を備えた積層体208を形成する。その後、積層体208は、切欠205,207と交差する点線に沿って2つ以上のデバイスモジュールA,Bに切断される。その後、導電性接着剤210(例えば導電性ポリマーまたは銀のインク)のパタ−ンがキャリア基板211に配置され、キャリア基板211にモジュールが接着される。導電性接着剤210のより大きな領域212がモジュールAのバックプレーン206と電気接触する。導電性接着剤210のフィンガー214が、より大きな領域212から突出している。フィンガー214はモジュールBの切欠205,207と整列する。フィンガー214の上に追加の導電性接着剤が配置され、切欠205,207を通じたモジュールBの下部電極との電気接触を促進する。好ましくは、フィンガー214は、導電性接着剤210がモジュールBのバックプレーン206と望ましくない電気接触を形成しないように、バックプレーン206の切欠207よりも狭い。
【0048】
図3に示された実施形態では、デバイスシート、絶縁層およびバックプレーンは、個々のモジュールに切断される前に一つに積層された。別の実施形態では、これらの層がまず切断されてから、次に(例えば積層により)モジュールに組み立てられてもよい。例えば、図4に示されるように、第1および第2デバイスモジュールA’,B’は予め切断されたデバイス層302A,302B、絶縁層304A,304Bおよびバックプレーン306A,306Bからそれぞれ積層されてもよい。各デバイス層302A,302Bは、透明導体層と下部電極の間に活性層を備えている。少なくとも1つのデバイス層302Aは、上述したタイプの電気接点303A(および任意選択の導電トレース)を有する。
【0049】
この例では、モジュールBのバックプレーン層306Bは、絶縁層304Bがバックプレーン層306Bのエッジの上に突出するように、絶縁層304Bよりも短く切除される。同様に、絶縁層304Bは、デバイス層302Bよりも短く切除されるか、あるいはより詳しくはデバイス層302Bの下部電極よりも短く切除される。予め切除した層が一つに積層されてモジュールA’,B’を形成した後、モジュールがキャリア基板308に取り付けられ、モジュールA’のバックプレーン306AとモジュールB’のデバイス層302Bの下部電極との間に電気接続が形成される。図4に示された例では、高くした部分312を備えた導電性接着剤310により接続が形成され、高くした部分312は下部電極との接触を形成すると同時に、モジュールB’のバックプレーン306Bとの望ましくない接触を回避する。
【0050】
図5A−5Bは、導電性接着剤の使用を減らした図4に示した方法の変更態様を示す。第1および第2デバイスモジュールA”,B”が、予め切断されたデバイス層402A,402B、絶縁層404A,404Bおよびバックプレーン層406A,406Bから組み立てられ、キャリア基板408に取り付けられる。図5Bに示されるように、デバイス層402A、下部電極405Aおよび絶縁層404Aを貫通して電気接点403Aが形成される。絶縁層404Bの前方エッジおよびモジュールB”のバックプレーン406Bが図4に関して上述したようにデバイス層402Bに対して切除される。しかしながら、通電を容易にするため、モジュールA”のバックプレーン406Aの後方エッジはデバイス層402Aおよび絶縁層404Aの後方エッジを越えて延びる。その結果、モジュールB”のデバイス層402BはモジュールA”のバックプレーン406Aとオーバラップする
。バックプレーン406Aの露出部分407Aの導電性接着剤412の隆起部分は、図5Bに示されるように、デバイス層402Bの下部電極405Bの露出部分と電気接触を形成する。
【0051】
上述した方法の好ましい実施形態では、個々のモジュールが例えば上述したように製作され、次に収率を高めるためにソートされ得る。例えば、光電子効率、開回路電圧、短絡回路電流、充填比のような一つまたは複数の性能特性に関して2つ以上のデバイスモジュールを試験することが可能である。性能特性の合格規準を満たすかまたは超えるデバイスモジュールは、アレイで使用され得るが、合格規準を満たさないデバイスモジュールは廃棄され得る。合格基準の例には、光電子効率または開回路電圧に対する閾値や許容範囲が含まれる。デバイスモジュールを個別にソートし、それらをアレイに形成することにより、デバイスのアレイをモノリシックに構成するよりも高い収率が得られる。
【0052】
透明導体層とバックプレーンの間の電気接点120の議論では、バイアが形成され、絶縁材で覆われ、導電性材料で充填された。別の実施形態では、透明導体層とバックプレーンの接続は電気接触の一部として下部電極の一部を使用して達成されてもよい。図6A−6Hは、それがどのように実現可能であるかの例を示している。詳細には、透明導体層502(例えばAl:ZnO、i:ZnO)、活性層504(例えばCIGS)、下部電極506(例えば100μm Al)、絶縁層508(例えば50μm PET)およびバックプレーン510(例えば25μm Al)を備えた構造500(図6Aに図示)から開始される。好ましくは、バックプレーン510は絶縁層508として絶縁性接着剤を使用して下部電極506に積層された薄いアルミニウムテープの形をしている。これは製造を非常に容易にし、材料コストを低減させる。
【0053】
電気接続512は、図6Bに示されるような一つまたは複数の位置で下部電極506とバックプレーンの510の間で形成され得る。例えば、レーザ溶接を例えば使用して、スポット溶接部が絶縁層508を貫通するように形成され得る。そのようなプロセスは一つのステップで電気接続を形成できるため魅力的である。代わりに、電気接続512は、バックプレーン510および絶縁層508を通って下部電極までブラインド孔をドリルで形成し、そのブラインド孔をハンダまたは導電性接着剤のような導電性材料で充填するプロセスにより形成することも可能である。
【0054】
その後、図6Cに示されるように、電気接続512の周囲に閉ループ(例えば円形)にトレンチ514が形成される。閉ループトレンチ514は、透明導体層502、活性層504および下部電極506を通ってバックプレーン510まで切り抜いている。トレンチ514は、下部電極506、活性層504および透明導体層502の一部を、構造500の残りの部分から分離する。レーザマシニング等の技術がトレンチ514を形成するために使用されてもよい。レーザ溶接がある1つのレーザ光線との電気接続512を形成し、第2レーザ光線がトレンチ514を形成する場合、2つのレーザ光線は互いに構造500の反対側から予め整列され得る。2つのレーザが予め整列されていると、電気接続512およびトレンチ514が一回の工程で形成可能であり、そのため全体の処理速度が向上する。
【0055】
分離トレンチを形成するプロセスにより、透明導体層502と下部電極506の間には電気短絡回路511,517が生じ得る。トレンチ514の外側壁513に形成された望ましくない短絡回路511を電気絶縁するために、図6Dに示されるように、透明導体層および活性層を貫通して下部電極506まで分離トレンチ516が形成される。分離トレンチ516は閉ループトレンチ514を包囲し、トレンチの外側壁513の短絡回路511を構造500の残りの部分から電気絶縁する。レーザスクライビングプロセスにより分離トレンチ516が形成され得る。材料をより薄い厚みでスクライブすると、分離トレン
チ516の形成に起因する望ましくない短絡回路が生じる可能性が低下する。
【0056】
透明導体層502と下部電極506の間のすべての短絡回路が望ましくないとは限らない。トレンチ514の内側壁515に沿った電気的短絡517は、電気接続512に所望の電気的通路の一部を提供し得る。十分な量の望ましい短絡が存在する場合、電気接触は図6Eおよび6Fに示すように完了され得る。最初に、例えば図6Eに示されたような真ん中に孔がある「ドーナツ」のパターンで、閉ループトレンチ514および分離トレンチ516の中に絶縁材518が配置される。次に、図6Fに示されたように、トレンチ514により包囲された分離部分と、分離部分とを含む構造500の一部の上に、電気導電性フィンガー520が配置される。絶縁材518は、導電性フィンガー520を形成するのに適する程度に十分に平面な表面を提供するように配置され得る。その後、フィンガー520、分離部分内の透明導体層、トレンチ514の内壁の電気的短絡517、トレンチ514の内部の下部電極506の部分および電気接続512を介して、トレンチ514の外側の非分離部分の透明導体層502とバックプレーン510との間で電気接触が形成される。
【0057】
代わりに、もし短絡517が十分な電気接点を提供しない場合には、ドリリングおよび充填プロセスがフィンガー520と下部電極506の分離部分との間の電気接点を提供してもよい。図6G−6Iに示された代替実施形態では、絶縁材料518’が図6Gに示されるように配置される場合、絶縁材518’が分離部分をカバーすることが可能である。分離部分をカバーする絶縁材518’は、図6Hに示されるように開口部519を介して下部電極506を露出させるように、透明導体層502および活性層504の対応部分と共に、レーザマシニングもしくはドリリングまたは穿孔のような機械的プロセスにより除去されてもよい。導電性材料520’は上述したように導電性フィンガーを形成する。図6Iに示されるように、導電性材料は開口部519を介して露出された下部電極506と接点を形成し、所望の電気接触を完成させる。
【0058】
図6A−6Iに関して上述された技術にはいくつかの変更態様があることに注意すべきである。例えば、いくつかの実施形態では、閉ループトレンチが形成されて絶縁材料が充填された後で、電気接続512を形成することが望ましい。電気接触を形成する上述のプロセスにはいくつかの利点がある。プロセスの工程が単純化される。バックプレーンを完全に覆うことを心配せずに、絶縁層を容易に配置することが簡単である。このプロセスは、フィンガー520,520’を配置するための平坦な表面を可能にする。レーザ溶接により信頼性の高い電気接触を下部電極506とバックプレーン510の間に形成することができる。さらに、100%の収率を損なうことなく電気短絡を分離することができる。
【0059】
次に図7を参照し、本発明の別の態様について説明する。この本発明の実施形態は、入射する太陽光に面する導電体での低いシャドウイングと低い抵抗損失を生み出し、直列の相互接続を促進する、光起電性電池の低価格の構造と物質の提供に関連する。
【0060】
伝統的に透明性導電体(TC)層、特に溶液被覆型のものは、光起電性デバイス中で望ましくない電気的損失を引き起こす水準の抵抗率を有する。この抵抗性の問題の一つの公知の解決法は、TCに薄い導電性トレース(配線)を塗布することである。該トレースは例えば、約1〜50×10−6Ωキcmに近い値の抵抗を有する極めて導電性の物質で形成することができる。従来のトレースを用いる公知のデバイスでは、その最適化された構造でのエリア(シャドウイング)損失は約11%であり、表面抵抗率が40Ωパー・スクエアのTCシートでの合計損失は約19%である。不幸なことに、印刷されたトレース、フィンガー、またはグリッドでも二つの理由から効率損失が生じる。第一に、フィンガーは不透明であり、そのためフィンガーの下部にある光起電性物質に影を与えてしまう。第二に、フィンガーは有限抵抗を持つために、ある程度のワット損を招いてしまう。これら
の要素には最適値があり、というのは、シャドウイングを最小化するにはより幅の狭いフィンガーであることが必要であり、一方抵抗を最小化するにはより広いフィンガーが必要であるためである。さらに、非常に小さいフィンガーを作成するためには高価な技術が必要であるため、実用的ではない。最も電導性の高いトレースは金属の真空蒸着により得られるため、該方法にはパターニングと同様に高価な蒸着システムが必要となる。
【0061】
次に図1から図7を参照する。本発明に係る構造によりTCについての電導性の要件は大幅に軽減されるとはいえ、従来使用されているものより幅の狭い(従って光の妨害のより少ない)フィンガーの提供により、より大きな軽減を行うことは有益である。そのような適切なサイズと形状による構成を有するフィンガー、トレース、またはグリッドにより、従来の構造のものの約10倍大きい、約200Ωパー・スクエアの大きさの抵抗率を有するTCでも、約10%以下の小さなオーダーの損失を実現することができる。別の実施形態では、フィンガーによるシャドウイングと電気抵抗による合計の損失は約5%以下である。ZnOまたはTCの厚みを約50〜250nmに削減することができる。
【0062】
図7を参照するが、総計のシート抵抗を軽減するために、トレース626は前記EWT構造の複数のビア620と相互接続することができる。当然ながら、図7および前記図2Bから2Dに示されるように、各種の幾何学的配置のパターンのトレース626を使用することができる。制限しない例として、前記各トレース626と結合した前記各ビア620は、お互いに最も近い隣接するビアに対して約1cm離間して配置されることができ、または場合によっては、前記各ビアは前記各ビアを包囲する前記透明導電体に対して約1cm離間して配置されることができる。前記トレース626は、約1μmから約200μmの間の幅を持ってよく、好ましくは約5μmから約50μmの間の幅を持つことができる。より幅の広いラインでは過剰のシャドウイングによる損失を避けるためにより大きな間隔を置くことを意味する。
【0063】
限定はされないが、典型的な市販品として入手できる、1〜10×10−5Ωキcmの範囲の抵抗率を有する導電性エポキシのようなトレースの材料での計算により、線幅が決定的因子であり約25μmの線幅が望ましいことが示され、この値では各線を1mm離間させた場合のシャドウイング損失は約2.5%となる。線の垂直厚みは高さとして約1〜20μmであってよい。本発明の一実施形態では、ラインの分離間隔は理想的には約1〜2mmの近傍であり、長さとしては約0.5mmである。該トレースのシート抵抗は、約150mΩパー・スクエア未満であることができ、理想的には約50mΩパー・スクエア未満である。トレースの上記値周辺の、幅、分離間隔、長さ、厚さおよび抵抗率の各種の組み合わせを、比較的小さな合計損失を達成するために使用できる。制限しない例として、より大きな線幅を有する他の実施形態では、約10%以下の合計損失を実現できるような、フィンガー、トレース、またはグリッドの断面積であることができる。合計断面積は、線幅の増加によるシャドウイングの増加に関連した損失を補うのに十分であるため、電気損失を軽減できる。一実施形態では、トレースの断面積はフィンガーのシート抵抗が約150〜50mΩパー・スクエアになるように調整される。実質的に全ての場合に、そのようなトレースの印刷による利点は、厚さおよび/または透明導電体から要求される伝導性の大幅な軽減であり、このことにより、材料と製造装置費用の重要な削減と、透明導電体からの光透過率損失の軽減がもたらされる。
【0064】
本発明の別の実施形態では、適性に形成された基板上に25μmの線幅を得るために、限定はされないが、グラビア印刷等の各種の技術を使用して所望の線幅を提供できる。スクリーン印刷の使用により約5〜25μm以上の線高のものを提供でき、電導性を維持しながら線幅の三次元的な可変性を生じさせることができる。一実施形態では、線高は、非スクリーン印刷によるトレースの範囲で、約1〜約10μmであることができる。別の実施形態では、線高は、非スクリーン印刷によるトレースの範囲で、約2〜約6μmである
ことができる。さらに別の実施形態では、線高は、非スクリーン印刷によるトレースの範囲で、約3〜約5μmであることができる。スクリーン印刷では通常高粘度の物質を使用するために、他の技術よりも厚い付着をすることができ、適切に適用される場合には、50μm未満の線幅を提供できる。
【0065】
図8および9は他の可能なトレースの構成を示す。例えば、図8はビア620に収束する多重交差トレース626を示している。六角形のトレース630を、ビア620より発散して延伸する多重トレース626に交差させて使用できる。該線幅は上記の議論で望ましい範囲のものであることができる。制限しない例として、線は公称約60μmの幅の線に設定できるが、約150〜200μmの幅であることができる。シート抵抗は約1Ωパー・スクエアであってよい。該パターンはさらにトレース626の特定の場所よりも線幅の広いバンプ632を含んでよい。任意的に、あるトレースのパターンでは該バンプ632無しでもよい。図9は複数のトレース626がビア620から放射されるパターンを示す。当然ながら、これらのパターンを使用する本発明の実施形態では、約5〜約50μmの範囲の線幅を有することができる。別の実施形態では、線幅は約70〜約110μm、シート抵抗は約50mΩパー・スクエアであってよい。ある実施形態では、約10%以下の損失にするために線幅が約20〜約30μmであることができる。
【0066】
図10を参照して本発明のさらに別の実施形態について述べる。当然ながら、経済的に実行可能な前記EWT太陽電池の構成を製作するためには、基板に多数の小さなビアを迅速に製造する方法が必要とされる。実用的な生産ラインには、一分あたり数平方メートルの効率が要求される。シリコンウエーハを使用してこの効率を実現することはまったく実用的ではない。本発明のこの実施形態では、多数のビアを同時に穿孔できる機械的な穿孔装置またはレーザアブレーションを用いることで、1インチの数千分の一の厚さを有する金属箔に、有利にこの速度でビアを製作することができる。図10は、本発明で用いられる穿孔装置650の一実施例を示す。これには、同時に複数のビアを形成できる複数の貫通用部材652を含むことのできる穿孔装置650を含む。他の実施形態では、任意的にレーザ装置654(図中点線部分)を基板656に複数のビア孔をくりぬくために使用できる。さらに他の実施形態では、穿孔機、レーザ、または、同時にではなくバッチ工程により個別にビア孔を形成する他の孔の形成装置を含むことができる。
【0067】
薄膜太陽電池の上部導電体はしばしばドープされたZnOにより構成され、このドープされたZnOは比較的脆い物質であり、穿孔機による穿孔時に変形するよりも、すっぱりと破壊されてしまう。もしドープされたZnOまたは他のいずれかのTCが使用されている場合、変形によりTCと背部電極(垂直距離として1〜2ミクロンしか離れていない)との間に電気的接触が形成される大きな可能性があるので、穿孔の前にTCを外しておく事が望まれる。このことはZnOの場合には、短時間弱酸、例えば酢酸(他の酸も使用可能であるが)に晒すことにより達成される。ポリマー・スクリーンを一時的にデバイスの箔の上に重ね、酸が洗い流されるまで張力により保持しておき、ポリマー・スクリーンの孔から液滴ディスペンサーより滴下される酸を焼付けることができる。この除去工程はビアがレーザアブレーションにより形成される場合に特に有用である。なぜならばレーザ加熱により、同時にZnOとその周囲の物質が融解して電気的な短絡を起こす可能性があるからである。
【0068】
以下に制限はされないが、選択のできるいくつかのパラメーター値の範囲がある場合には、ビアの直径が1mmを越えないことが望ましく、より小さいことが好ましい。例えば、ビアの直径が1mmで、その間隔が10mmの場合、ビアのエリアによる部分的損失は0.8%であり、直径が0.5mmの場合には0.2%となるが、1.5mmの直径の場合には損失は1.8%に達する。
【0069】
次に図11Aから11Dを参照し、本発明のさらに他の態様について説明する。図11Aは透明導電体700、光起電性層702、下部電極704、絶縁層706、およびライナー708の断面図を示す。図示の容易さのために、光起電性層702は単一の層として示されているが、限定はされないが図2Aに示されるように、デバイスは複数の層を備えることができることを理解されたい。図11Aに示されるデバイスはビア孔710が絶縁されていない中間体のデバイスである。図11Aから11Dはビア孔710を絶縁する本発明に係る一方法を示している。図11Aに示されるように、矢印712は絶縁物質がスプレーされる方向を示している。このスプレーには、限定はされないが、エアロゾル技術を含む各種の技術を適用できる。該矢印712は実際には太陽電池の中間体デバイスの“下方”からスプレーが来ることを示している。この実施形態では、デバイス全体はスプレー工程を容易にするために上下さかさま(すなわち、透明導電体700は積層の底にある)に配置されている。当然ながら、他の実施形態では、スプレーは他の方向または両方向から、順次または組み合わせの形で吹き付けることができる。絶縁物質のスプレーは、11Aに示されているような積層全体の上下をさかさまにすることなく塗布することができる。絶縁物質はEVA,PVOH,PVA,PVPおよび/または金属箔704および718に対して良好な付着性を有するいずれかの熱可塑性プラスチックであることができる。EVAは好ましくは40〜65重量%水溶液として供される。ガラス転移点Tgが150℃未満の場合は、塗布後に60〜90℃で90秒間乾燥することが望ましい。
ついで図11Bを参照し、矢印712で示される絶縁物質のスプレーはビア孔710の少なくとも側壁を覆う絶縁層714を形成する。絶縁層714は任意的に、ビア孔710の側壁を完全に覆うことを確実にするために、過剰にスプレーされて透明導電体700の一部分を覆うように形成されてよい。過剰にスプレーされた部分716はさらに絶縁層714の積層への付着を増強できる。
【0070】
図11Cは、ライナー708が、絶縁層714の底部層を除去するために除去できることを示している。任意的に、当然ながら、層708は実際には限定は去らないが、ライナー層、接着層およびライナー層などのように複数の別個の層を備えることができる。このことにより、ライナーの取り外しおよび/または接触している物質との接着がより良好になることができる。ライナー物質は、他の物質とよりも、ライナー物質同士でよりよく相互作用できる。このことにより、ライナーの所望の性質を最適化できる。またさらに、前記層708は、ライナー層、接着層、PETまたは電気的な絶縁層、接着層、ライナー層の構成による複数の個別の層を有することができ、PETまたは電気的な絶縁層の保有によりにより電気的な絶縁が保証される。
図11Dは、前記ライナー708が除去され、背部電極718が前記積層の最下部に配置される状態を示す。前記積層は前記背部電極の前記絶縁層への良好な接着をもたらすために硬化される。EVAを使用する場合、この硬化は約150℃で、約20分間行われる。当然ながら、本発明の複数の実施形態では、背部電極718は背面全体を覆うことのできる箔であることができる。ビア孔710は導電性物質720で充填され、フィンガー720は導電性物質720に連結される。
【0071】
次いで図12Aから12Cを参照して、さらに本発明の別の実施形態を説明する。図12Aに示されている場合では、絶縁物質によりスプレーされる積層は、図11Aに示されているようなライナー708を含まない。この実施形態では、絶縁物質が接着性をも備えている。したがって、絶縁層740が形成されたときに、その下部から除去する必要はなく、またライナー708が必要ないばかりでなく、絶縁層706も必要ない。矢印712は該絶縁物質が、限定はされないがエアロゾル技術のような一つまたは複数の技術の使用によりスプレーされ、ビア孔710と層706の裏面を覆うことを示している。
【0072】
図12Bは、絶縁層740がビア孔710の側壁を覆い、さらに層706の実質的に全ての裏面に沿って覆う層を形成することを示している。この場合にはライナー除去または
事前の絶縁層の塗布工程が必要ないため、工程数が簡略化される。背部電極層718(図12C)は、層740に直接塗布することができる。
【0073】
図12Cは、いったん前記背部電極718が塗布され、前記トレース722を介して前記背部電極718と透明導体層700との間に電気的接続を形成するために電導性物質720が付加されると、前記背部電極718は、下部電極704とは絶縁層740によって絶縁されながら透明導体層700と連結されることを示している。
【0074】
次いで図13Aおよび13Bを参照し、本発明のさらに別の実施形態について説明する。本発明のこの実施形態では、ビア孔の側壁に沿って絶縁層を形成する別の方法が説明される。図13Aに示されるように、絶縁物質の実質的に均一な層750が層704の裏面に沿って形成される。任意的に、この層750は背部電極層770の取り付けを容易にするために接着的性質を備えることができる。この層750は、ビアに流れ込み、下部電極704の厚みと同程度の厚みで側壁を覆う。側壁のコーティングの正確な厚さは、ある程度ビアのアスペクト比(ビアの直径の箔の厚みに対する比)に依存し、同時にコーティング物質の粘度にも依存する。一実施形態では、約20〜100μmの厚さの層をビア孔710の側壁に沿って形成するのに十分な物質が使用される。当然ながら、層750からのいくらかの物質がビア孔710の一部または全部を充填することができる。図示の簡便さのために、層750はビア孔を越えて伸展するように示されている。矢印752で示される気体源を層750からの物質をビア孔に導きいれるか、または流し込むために使用できる。任意的に、該気体源として気体、不活性気体、空気を使用することができる。さらに、当然ながら気体を吹きつける代わりに真空源754(図中、点線で示される)を代替的または気体源と組み合わせて使用できる。
【0075】
ビア孔に流れ込み、その側壁を薄すぎずかつビア孔を完全に埋めることのない程度に十分な物質量によって、十分な厚さの前記層750を形成することができる。一実施形態では、デバイスは約50〜100約μmの範囲の厚さの層を有することができる。別の実施形態では、デバイスは約50〜100μmの範囲の厚さの層を有することができる。別の態様では前記層750中に、ビア孔の側壁を約20〜約100μmの厚さの絶縁物質で覆うのに十分な量の物質が含まれる。
【0076】
図13Bに示されるように、前記ビア孔710は、その側壁に前記物質が引き込まれて、絶縁層750が形成される間は開口している。前記ビア孔710は、導電性物質720が前記ビア孔710に充填される間は、開口している。この均一な層を印刷する方法によると、前記ビア孔の側壁により厚い絶縁層750の形成が可能になる。
【0077】
図13Cは、背面電極層770を前記層750と連結できることを示している。前記ビア孔710は導電性物質720で充填され、フィンガー722と連結されており、該フィンガー722は、前記透明導電体700と背面電極700を電気的に連結している。
【0078】
もちろん当然ながら、前記のスプレーを使用する方法および気体の衝突を使用する方法(陽圧および/または陰圧の使用)は、単一または複数の工程で組み合わせることができる。制限しない例として、絶縁物質のスプレーの塗布後に次いで気体の衝突処理(陽圧および/または陰圧の使用)を行い、スプレーされてビア孔を塞いでいる物質を確実に該ビア孔の側壁に導いてその側壁をコーティングして、側壁のコーティングを確実にすることができる。任意的に、別の制限しない例では、前記絶縁層の厚さが所望の厚さに達していない場合には、均一コーティングと気体衝突技術により塗布された絶縁物質を、少なくとも前記ビア孔の側壁に絶縁物質をスプレーすることにより補完することができる。さらに別の制限しない例では、まず前記ビア孔の側壁に絶縁物質の一次層をスプレーし、次いで均一コーティングと気体衝突技術により前記絶縁層をさらに厚くすることができる。また
さらに別の実施形態では、層の厚みを形成するために2回のスプレー塗布を行うことができる。別の実施形態では、層の厚みを形成するために2回のコーティング工程(各塗布後に空気衝突を行う)を使用できる。
次いで図14Aおよび14Bを参照し、本発明のさらに別の実施形態について説明する。図14Aは、前記層704上への絶縁物質760の塗布を示している。この実施形態では、前記絶縁物質760により実質的に全てのビア孔が完全に埋められるか、または全てのビア孔の一部塞がれるように、前記絶縁物質760が塗布される。他の実施形態では一部のビア孔が埋められる。制限しない例として、層760の物質は、EVA, PVOH、PVA、PVP、UV硬化性絶縁インク、ガラス硬化点(Tg)が約150℃未満の熱可塑性プラスチック、または前記の組み合わせであることができる。物質の厚みは図12と図13で列挙されたものと実質的に同じ範囲であることができる。限定はされないが、ウエットコーティング、スプレーコーティング、スピンコーティング、ドクターブレードコーティング、コンタクト印刷、トップフィードリバース印刷、ボトムフィードリバース印刷、ノズルフィードリバース印刷、グラビア印刷、マイクログラビア印刷、リバースマイクログラビア印刷、コンマダイレクト印刷、ローラーコーティング、スロットダイコーティング、マイヤーバーコーティング、リップダイレクトコーティング、デュアルダイレクトコーティング、キャピラリーコーティング、インクジェット印刷、ジェット付着、スプレー付着等の方法と上記の組み合わせおよび/または関連技術の各種の溶液ベースのコーティング技術により、物質760を付着することができる。
【0079】
任意的に、例えば、超音波ノズルスプレー装置、空気原子化ノズルスプレー装置、および原子化スプレー装置を含む薄膜を付着させることのできるスプレー装置を使用することができる。超音波スプレー装置では、ディスク型のセラミック圧電変換器は電気的エネルギーを機械的エネルギーに変換する。変換器は、発信器および増幅器の組み合わせとして作用する電源から高周波数の信号の形態での電気的入力を受け取る。空気原子化スプレー装置では、ノズルにより空気と液体流を混合し、完全に原子化されたスプレーを生成する。原子化スプレー装置では、ノズルが加圧された液体からのエネルギーを使用して液体を原子化してスプレーを生成する。
【0080】
図14Aに示されるように、前記ビア孔710は物質760で少なくとも部分的に埋められることができる。本実施形態では、前記ビアの部分的閉塞は前記ビア中に過剰な物質をもたらし、前記ビア710の側壁を覆うのに十分な量の前記物質760の存在を確実にする。気体および/または蒸気が強制的に前記ビア710を貫通して前記ビアの閉塞を「除去」するが、一定量の前記物質760が前記ビア710の側壁に残存する。気体源752は、気体、不活性気体または空気を吹き付け埋められたビアを貫通する開口を形成する。本発明のいくつかの実施形態では、空気ナイフ、継続的空気ジェット、パルス化空気、非パルス化空気、および/または他の気体衝突技術を前記閉塞されたビア710の開口に用いることができる。上記全てにおいて、不活性気体のような他の気体を空気の代わりに使用できる。任意的に、前記気体源752は、標的表面の上部または下部に配置できる。任意的に、複数の気体源を使用できる。制限しない例として、気体源752および753を、標的表面の上下両側に配置して、順次、同時、または他の時間的なパターンに従って稼動することができる。前記気体源752および753は、同種または異種の気体を使用できる。任意的に、前記気体源752および/または753の幾何学的配向を変化させることができる。単一の気体源を使用する実施形態では、前記気体源は標的に直角または一定の角度を持つように吹き付けられるように配向される。再び、前記単一の気体源は標的の上側または下側に配置できる。複数の気体源を使用するいくつかの実施形態では、標的に直角に吹き付ける気体源、一定の角度で吹き付ける気体源、または直角および非直角に吹き付ける気体源を使用できる。
【0081】
図14Bは、開口した前記ビア710において、前記物質760が前記ビア710中に
延伸して、その側壁の少なくとも一部を覆う状態を示している。任意的に、前記物質760は、前記ビア710の実質的に全ての側壁を覆うことができる。図に示されるように、前記ビア710の貫通後も前記ビアの上下に物質760が残存する。図に示されるように、前記ビア710の貫通により、物質760の一部分762が前記ビア710の周囲を覆う。これにより、望ましくない電気的短絡を防止する付加的な物質が提供される。
【0082】
図14Cは、本発明の本実施形態を完結させるための追加的物質層を示す。前記ビア孔710は、導電性物質720により充填され、導電性のフィンガー722が該導電性物質720と連結される。背面電極層770は前記層760と連結することができる。導電性物質720は、前記背面電極770と透明導電体700を電気的に連結するフィンガー722と連結される。当然ながら、前記背面電極770は、以下の一つまたは複数のものを備えることができる:ステンレス鋼、銅、チタン、モリブデン、鋼、アルミニウム、銅めっきまたは銅で被覆されたいずれかの前記物質、銀めっきまたは銀で被覆されたいずれかの前記物質、金めっきまたは金で被覆されたいずれかの前記物質、または前記の組み合わせ。
【0083】
次いで図15Aから15Cを参照して、本発明のさらに別の実施形態を説明する。本実施形態は、絶縁層780を電極層704に塗布することができることを示している。図15Aは、図14Aに示されているものと同様の前記絶縁層780を塗布する各種の方法を示す。図15Bは、絶縁物質(点線で示される)の付加的な層784が、任意的に絶縁層780上に塗布できることを示している。一実施形態では、前記付加的な層784は前記層780に用いられているものと同じ物質から成ることができる。代替的に、他の実施形態では、前記層784は別の物質から成ることができる。任意的に前記層784は、エチルビニルアセテート(EVA)、ポリビニルアルコール(PVOH)、ポリビニルアセテート(PVA)、ポリビニルピロリドン (PVP)、UV硬化性絶縁インク、および/またはガラス転移温度が約150oC未満の熱可塑性ポリマーから成ることができる。図
15Cは、塗布することのできる他の層を示す。一実施例では、UVインクは、制限はされないが、マスター ボンド社(Master Bond Inc)製造のMaster
Bond UV15X−5 等のようなUV硬化性ウレタン・エラストマーであることができる。前記ビア孔710は導電性物質720で充填され、導電性のフィンガー722が前記導電性物質720に連結される。背面電極層770は前記層780に連結されうる。
【0084】
次いで図16Aおよび16Bを参照し、さらに代替的な実施形態を説明する。図16Aは、閉塞されたビアを開口する機械的方法を示している。この実施形態は、機械的なプローブ、針、ランセット、ロッドまたは他の突起物を、閉塞されたビアを通じて低下、または通過させることを含むことができる。図16Aは、閉塞を突き通す複数のプローブ789を備えた回転式のデバイス788を示している。この種の機械的技術は、図13から図15を含む本明細書に示される全ての閉塞されたビアの開口に適用可能である。図16Aは、さらに絶縁性物質790を、実質的にビア周辺の表面を覆うことなく、ビアを充填するように塗布できることを示している。この実施形態ではより正確な原料の使用が可能となる。制限しない例として、前記ビア710内への前記物質790の付着は、インクジェット技術、ニードル付着、スクイージー(ゴム製の拭き道具)、ドクターブレーディング、ドロッパー技術または前記の組み合わせにより行うことができる。
【0085】
図16Bは、本実施形態で閉塞の除去により前記ビア710の側壁に沿って、物質790の層が残されることを示している。いくつかの実施形態では、このことにより十分な電気的絶縁がもたらされる。任意的に、他の実施形態では、付加的な絶縁物質を塗布できる。制限しない例として、付加的な絶縁物質は、図13,14,15に示されるような方法により、前記物質790上に溶液付着される。この層は前記物質790を覆い、各種の導
電性層間の十分な電圧抵抗を確実にする。この第二の物質は前記物質790を構成する物質と同じでよい。代替的に、それらは異なる物質であり、好ましくは両方とも電気的絶縁体である。代替的に、最初に下記のいずれかを塗布することができる:エチルビニルアセテート(EVA)、ポリビニルアルコール(PVOH)、ポリビニルアセテート(PVA)、ポリビニルピロリドン (PVP)、UV硬化性絶縁インク、および/またはガラス転移温度が約150oC未満の熱可塑性ポリマー。その後、上記リストから選ばれる異な
る物質(または全く他の電気的絶縁体)を前記層790上に塗布することができる。
【0086】
本発明をいくつかの特定の実施形態の参照により、説明、図示してきたが、当業者であれば、本発明の精神と範囲を逸脱することなく、手段と手順の各種の適応、変更、修正、置換、削除、または追加が可能であることを十分に理解するであろう。例えば、上記のいずれの実施形態においても、絶縁物質のスプレーの使用はさらに各種の物質層を太陽電池に塗布するために他の印刷技術と組み合わせることができる。一実施形態では、絶縁物質はスプレー技術により提供され、ビア充填は印刷により行われことができ、またはその逆も可能である。当然ながら、本発明の方法とデバイスは、デバイスの一つまたは複数の層を貫通するビアを備えた他のデバイスに対しても適用可能である。図示の簡便さのために、本明細書ではビアは円形として示されているが、ビアは正方形、長方形、多角形、楕円形、三角形、その他の形または前記の組み合わせでありうる。さらに当然ながら、本明細書のスプレー、気体衝突、またはコーティングの技術はロールツーロール型の基板または箔の取り扱いシステムでの使用できるように構成することができる。
【0087】
さらに本明細書では、濃度、量、および他の数的データは範囲の形式で示すことができる。当然ながら、そのような範囲の形式は単に便宜と簡潔さのために用いられ、その数値は単に範囲の限界の明示的な列挙を含むのみではなく、さらに全ての個別の数値または前記範囲に包含される部分的範囲を含み、あたかも各数値が明示的に列挙されているかのように柔軟に解釈されるべきである。例えば「約1nmから約200nmのサイズ範囲」という表現は、単に約1nmと約200nmという限界のみが明示的に示されるとのみ解釈するべきではなく、さらに個別のサイズである、2nm、3nm、4nm等および部分範囲である10nmから50nm、20nmから100nm、等々も含まれると解釈すべきである。
【0088】
本明細書で議論し引用した刊行物はもっぱら本願の出願日前の開示のために与えられたものである。本願発明が、先の発明によってそのような刊行物よりも前に予期できたものではないことを認めるものとして解釈されるべきではない。さらに、与えられた刊行物の日付は、それぞれに確認される必要がある実際の公表日とは異なっている場合がある。刊行物が引用されているものに関連する構造および/方法について開示および記載するために、本明細書で言及した刊行物はすべて参照により本明細書に包含される。例えば2005年1月20日出願の米国特許出願番号第11/039,053号明細書および2005年8月16日出願の米国特許出願番号第11/207,157号明細書は全体が参照により本明細書に包含される。「HIGH−EFFICIENCY SOLAR CELL WITH INSULATED VIAS」と題された2006年3月10日出願の、米国暫定特許出願(U.S. Provisional Patent Application )第60/781,165号明細書および2006年4月4日出願の米国特許出願番号第11/278,645号明細書は参照により全ての目的でその全体が本明細書に包含される。
【0089】
上記のものは本発明の好ましい実施形態を十分に説明するものであるが、様々な代替物、改良物および等価物を使用することが可能である。したがって、本発明の範囲は上記の説明に関して決定されるべきではなく、添付の特許請求の範囲とその等価物の十分な範囲を加えて決定されるべきである。好むと好まざるとに関わらず、いかなる特徴も他のいか
なる特徴とも組み合わせることができる。特許請求の範囲において、不定冠詞「1つの(AまたはAn)」は、別途明示的に指定されていない限り、該不定冠詞に続くものについて1以上の量を意味する。特許請求の範囲は、「〜のための手段」という語句を使用してある請求項において明示的に制限が与えられていない限り、手段+機能の制限を含んでいると解釈されるものではない。
【図面の簡単な説明】
【0090】
【図1A】本発明の一実施形態による光電子デバイスのアレイの一部分の略断面図。
【図1B】従来技術による光電子デバイスのアレイの一部分の略断面図。
【図2A】本発明の一実施形態による光電子デバイスのアレイの一部分の垂直略断面図。
【図2B】図1Aのアレイの略平面図。
【図2C】図2A−2Bに示されたタイプの光電子デバイスに対する別のトレースパターンを示す略平面図。
【図2D】図2A−2Bに示されたタイプの光電子デバイスに対する別のトレースパターンを示す略平面図。
【図2E】図2A−2Bに示されたタイプの光電子デバイスに対する別のトレースパターンを示す略平面図。
【図3】本発明の一実施形態による光電子デバイスのアレイの製造順序を示す略図。
【図4】本発明の一実施形態による光電子デバイスのアレイの製造順序を示す略分解組立略図。
【図5A】本発明の別の実施形態による光電子デバイスのアレイの製造順序を示す略分解組立略図。
【図5B】図5Aに示された光電子デバイスのアレイの一部分の略断面図。
【図6A】本発明の一実施形態による電気的接点の形成を示す略断面図。
【図6B】本発明の一実施形態による電気的接点の形成を示す略断面図。
【図6C】本発明の一実施形態による電気的接点の形成を示す略断面図。
【図6D】本発明の一実施形態による電気的接点の形成を示す略断面図。
【図6E】本発明の一実施形態による電気的接点の形成を示す略断面図。
【図6F】本発明の一実施形態による電気的接点の形成を示す略断面図。
【図6G】本発明の一実施形態による電気的接点の形成を示す略断面図。
【図6H】本発明の一実施形態による電気的接点の形成を示す略断面図。
【図6I】本発明の一実施形態による電気的接点の形成を示す略断面図。
【図7】本発明の一実施形態による各種のトレースのパターンを示す図。
【図8】本発明の一実施形態による各種のトレースのパターンを示す図。
【図9】本発明の一実施形態による各種のトレースのパターンを示す図。
【図10】本発明の一実施形態による孔の形成デバイスを示す図。
【図11A】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図11B】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図11C】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図11D】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図12A】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図12B】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図12C】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図13A】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図13B】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図13C】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図14A】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図14B】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図14C】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図15A】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図15B】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図15C】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図16A】本発明の一実施形態による絶縁層の形成を示す略断面図。
【図16B】本発明の一実施形態による絶縁層の形成を示す略断面図。

【特許請求の範囲】
【請求項1】
少なくとも一つの透明導電体、一つの光起電性層、および複数のビアを有する太陽電池を備えたデバイス。
【請求項2】
少なくとも一つの透明導電体、一つの光起電性層、少なくとも一つの下部電極、および少なくとも一つの背部電極により構成される高効率の背部電極の構成を有する太陽電池と、
前記太陽電池の前記透明導電体に取り付けられた複数の導電性フィンガーと、
前記複数の導電性フィンガーと連結された複数の充填されたビアと、
前記充填された各ビアは、前記透明導電体から前記背部電極に電荷を伝導する導電性のコアを有することと、ビア絶縁層により前記各ビア中の導電性コアが下部電極から隔てられていることとを備えたデバイス。
【請求項3】
前記絶縁層が前記ビアのエアロゾルによるコーティングで形成される請求項2記載のデバイス。
【請求項4】
前記絶縁層が接着性の物質により形成される請求項2に記載のデバイス。
【請求項5】
前記背部導電体が下部電極から電気的に絶縁され、十分近くにお互いに配置された前記充填されたビアにより、上部電極の導電性要件を軽減し、光を遮るバスバーの使用が除去されるように連結される請求項2に記載のデバイス。
【請求項6】
前記絶縁層の厚さが約20〜100μmである請求項2記載のデバイス。
【請求項7】
前記絶縁層が以下の物質の少なくとも一つより成る請求項2に記載のデバイス:EVA,PVOH,PVA,PVPまたはガラス転移点(Tg)が150℃未満である熱可塑性プラスチック。
【請求項8】
前記光起電性層が少なくとも二つの別個のP−N接合を形成する層を備え、少なくともそのうちの一つの層がCISを主成分とする物質より成る請求項2に記載のデバイス。
【請求項9】
前記充填されたビアが約1mm以下の直径を有する請求項2に記載のデバイス。
【請求項10】
前記充填されたビアが650μm以下の直径を有する請求項2に記載のデバイス。
【請求項11】
前記絶縁層が前記ビアの側壁および前記各ビア周辺の前記透明導電体の一部を覆い、該一部が前記ビアの縁から前記ビアの直径の2倍以内にある請求項2に記載のデバイス。
【請求項12】
少なくとも一つの透明導電体、一つの光起電性層、および少なくとも一つの下部電極を有する太陽電池を形成する工程と、
前記少なくとも一つの透明導電体、一つの光起電性層、および少なくとも一つの下部電極を貫通するビア孔を形成する工程と、
前記ビア孔の各孔の側壁に沿って絶縁層を形成する工程とを備える方法。
【請求項13】
前記コーティングが前記側壁に付着して前記絶縁層を形成する物質のエアロゾルのスプレーであることを備える請求項12に記載の方法。
【請求項14】
高効率の背部電極構成を有する請求項12記載の方法。
【請求項15】
前記各ビア孔に前記透明導電体と電気的に連結され、前記ビア孔中の絶縁層によって前記背部電極とは電気的に絶縁された導電性のコアを充填する工程と、
実質的に各ビア孔内で、前記導電性コアと連結された背部電極を形成する工程とをさらに備える請求項12に記載の方法。
【請求項16】
コーティングが、実質的に前記透明導電体の絶縁物質での被覆を避けるために、前記太陽電池の下側から絶縁物質をスプレーする供給源を使用することを備える請求項12に記載の方法。
【請求項17】
コーティングが、マスクを前記透明導電体に対して使用することなく、前記透明導電体上への絶縁物質の付着を最少化するために、前記太陽電池の下側から絶縁物質をスプレーする供給源を使用することを備える請求項12に記載の方法。
【請求項18】
コーティングが、前記透明導電体上への絶縁物質の付着を最少化するために、マスクを前記透明導電体に対して使用して、前記太陽電池の上側から絶縁物質をスプレーする供給源を使用することを備える請求項12に記載の方法。
【請求項19】
コーティングが、十分な量の絶縁物質をスプレーして、前記ビア孔を完全に埋めることなく前記側壁を被覆することを備える請求項12に記載の方法。
【請求項20】
コーティングが、十分な量の絶縁物質をスプレーして、前記側壁と下部電極の下側を被覆して、下部絶縁層を形成することを備える請求項12に記載の方法。
【請求項21】
前記絶縁物質層が接着性の物質により形成される請求項12に記載の方法。
【請求項22】
コーティングが前記ビア孔へのエアロゾルの塗布により絶縁層を形成することを備える請求項12に記載の方法。
【請求項23】
純粋に誘電性の元素および接着性の成分を有する絶縁性エアロゾルの塗布により絶縁層を形成することを備える請求項12に記載の方法。
【請求項24】
コーティングが前記ビア孔への絶縁性物質の塗布およびスプレー後に気体の衝突により絶縁性物質により閉塞されたビア孔の閉塞を除去することを備える請求項12に記載の方法。
【請求項25】
コーティングが、太陽電池の片側に施された実質的に均一なコーティングに気体の衝突を使用し、絶縁物質を前記各ビア孔内に誘導することを備える請求項12に記載の方法。
【請求項26】
コーティングが、太陽電池の片側に実質的に均一な絶縁物質のコーティングを印刷して前記各ビア孔内に絶縁層を形成し、空気の衝突を使用して前記絶縁物質を前記各ビア孔内に誘導し、さらに前記均一なコーティングに、前記各ビア孔に相当する開口を生成することを備える請求項12に記載の方法。
【請求項27】
さらに複数の電気伝導フィンガーを前記太陽電池の前記透明導電体上に形成する請求項12に記載の方法。
【請求項28】
コーティングが、太陽電池の片側に実質的に均一な絶縁物質のコーティングを印刷して前記各ビア孔内に絶縁層を形成し、該片側の反対側から吸引を使用して前記均一なコーティングの絶縁物質を前記各ビア孔内に引き込み、さらに前記均一なコーティングに、前記各ビア孔に相当する開口を生成することを備える請求項12に記載の方法。
【請求項29】
少なくとも一つの透明導電体、一つの光起電性層、および複数のビアを備える太陽電池を形成する工程と、
前記各ビア孔をコーティングして前記各ビア孔内の側壁に沿い絶縁層を形成する工程とを備える方法。
【請求項30】
前記絶縁層が、少なくとも以下の一つの物質より成る請求項29に記載の方法:EVA,PVOH,PVA,PVP,UV硬化性絶縁インク、またはガラス転移点(Tg)が150℃未満である熱可塑性プラスチック。
【請求項31】
絶縁層の上に、該絶縁層を形成する物質とは異なる物質より成る二番目の絶縁層を形成する請求項30に記載の方法。
【請求項32】
絶縁層の上に、該絶縁層を形成する物質とは異なる以下の物質より選択される物質より成る二番目の絶縁層を形成する請求項30に記載の方法:EVA,PVOH,PVA,PVP,UV硬化性絶縁インク、またはガラス転移点(Tg)が150℃未満である熱可塑性プラスチック。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate

【図2E】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図6D】
image rotate

【図6E】
image rotate

【図6F】
image rotate

【図6G】
image rotate

【図6H】
image rotate

【図6I】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図11C】
image rotate

【図11D】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図12C】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図13C】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図14C】
image rotate

【図15A】
image rotate

【図15B】
image rotate

【図15C】
image rotate

【図16A】
image rotate

【図16B】
image rotate


【公表番号】特表2009−529805(P2009−529805A)
【公表日】平成21年8月20日(2009.8.20)
【国際特許分類】
【出願番号】特願2009−500568(P2009−500568)
【出願日】平成19年3月10日(2007.3.10)
【国際出願番号】PCT/US2007/063744
【国際公開番号】WO2007/106756
【国際公開日】平成19年9月20日(2007.9.20)
【出願人】(506150021)ナノソーラー インコーポレイテッド (6)
【氏名又は名称原語表記】NANOSOLAR,INC.
【Fターム(参考)】