説明

脱水ケーキの臭気発生防止方法

【解決課題】亜硝酸塩を添加して消臭する際に、亜硝酸塩の必要以上の添加による残留やコスト的不満を解消し、即時脱水処理に適用可能な脱水ケーキの臭気発生防止方法及び装置を提供する。
【解決手段】汚泥スラリー1に亜硝酸塩を添加した後、高分子凝集剤7を添加混合し、次いで機械脱水して脱水ケーキ11を得る方法において、亜硝酸塩の添加量を亜硝酸イオン換算で下記式(1):
【数1】


の範囲内とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、下水、し尿、排水などの有機性汚水、又はこれらから生じる汚泥の処理場における臭気除去を目的とした汚水(汚泥スラリーを含む)や脱水ケーキの臭気発生防止方法及び装置に関する。本発明は、特に、汚泥スラリーの微生物に基づく硫化水素の発生を防止し、脱水ケーキの臭気の発生を防止する方法及び装置に関する。
【背景技術】
【0002】
微量の硫化物を含有する汚泥スラリー中などでは、微生物、特に硫酸還元菌は、嫌気性条件下で硫黄化合物を還元して硫化水素を発生する。硫化水素は毒性が強く、臭気を放ち環境汚染をもたらすばかりでなく金属を腐食する作用がある。従来、硫酸還元菌による硫化水素の発生を防止する方法としては、殺菌剤や酸化剤を添加したり、加熱殺菌したり、pH調整を行う方法などが知られている。しかし、殺菌剤は高価であり、安価な塩素は毒性及び腐食作用を有するため好ましくない。
【0003】
このような事情に鑑み、微生物の生息環境に亜硝酸イオンを添加することにより硫化水素の発生を防止する方法が提案されている。これは被処理水中の脱窒菌が活動できる環境として、硫酸還元菌の活動を抑制するものであるが、被処理水の環境要因が脱窒菌の脱窒活動の発現に適していれば、亜硝酸イオンの消費が速く、硫化水素の発生を防止する効果が持続せず、亜硝酸塩の添加量を多くする必要があった。上記のような問題を解決するために、脱窒菌の最適pH範囲外である6.5以下に調整することにより、硫酸還元菌と共生する脱窒菌の活動を抑制し、亜硝酸イオンの消費を抑え、硫化水素の発生を長期間にわたって抑制するする方法が提案されている。
【0004】
また、下水、し尿、排水などの汚水及びこれらから生じる汚泥には、硫化水素やメチルメルカプタンなどに起因する臭気が発生する。これら汚水や汚泥の処理工程の近くでは、臭気により労働環境が悪化し、ひどい場合には中毒になることがある。また、汚泥やその脱水ケーキを運送する場合には、一般道路で臭気が問題となり、一般市民に迷惑がかかるという問題がある。
【0005】
これら汚水や汚泥及びその脱水ケーキの臭気発生を防止する目的で、様々な消臭剤や臭気除去方法が工夫されている。代表的な例としては、塩化第二鉄や塩化亜鉛の溶液を汚水や汚泥に添加する方法がある。しかしながら、これら汚泥から得られる脱水ケーキには、鉄や亜鉛などの金属が残留しているため、コンポスト原料としての再利用には適さない場合が多い。
【0006】
また、次亜塩素酸塩等の酸化剤を単独で汚水や汚泥に添加して、臭気物質を酸化分解する方法も知られている。この場合は、汚泥から得られた脱水ケーキには、消臭剤に由来する重金属類は含まれていないので、コンポスト等への再利用が可能である。しかしながら、次亜塩素酸塩を用いた場合には、脱臭効果が持続せず、抑臭のためには添加量を多くする必要があり、汚泥性状の性状変化により脱水が困難になる場合がある。
【0007】
さらに、汚水や汚泥に亜硝酸塩を添加して硫化水素やメチルメルカプタンなどの悪臭物質に由来する臭気を防止する方法(特許文献1)が提案されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2001−340895号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、亜硝酸塩を用いた臭気発生防止方法では、効果が発現するまでに長時間要するため、臭気の発生防止の効果を早く生じさせたい関係から、予め亜硝酸塩を必要量以上添加する場合があり、その場合無駄に使用される亜硝酸塩が残り、コスト面では満足できるものではない。
【0010】
そしてまた、上記(特許文献1)に記載の方法では、亜硝酸塩を添加してから消臭効果が発現するまでに数時間要し、汚泥を即時脱水処理する様な場合には適用が困難であった。また、汚泥によっては多量の添加が必要になる場合もあった。
【0011】
本発明は、臭気の発生防止のために亜硝酸塩を添加する際に、目的を達成するのに適正な量が添加するようにして、必要量以上の亜硝酸塩が添加されることのない方法を提供することを目的とするものである。
【0012】
また、本発明は、有機性廃水や汚泥スラリーなどの臭気を除去して消臭するために、亜硝酸塩と酸化剤などを添加する際に、最も適正な量の薬剤を添加し、かつ最も効率的な時期に添加できる方法を提供することを目的とするものである。
【課題を解決するための手段】
【0013】
そこで、本発明者等は、上記の亜硝酸塩を用いた臭気発生防止方法の問題点を解決するべく鋭意検討した結果、汚泥スラリー中の硫化物量に対する亜硝酸イオンの添加量を一定の範囲とすることで、亜硝酸塩の添加量を適正にし、かつ硫化水素の発生を長期間防止することができることを見いだした。
【0014】
すなわち、本発明によれば、汚泥スラリーに亜硝酸塩を添加した後、高分子凝集剤を添加混合し、次いで機械脱水する方法において、亜硝酸塩の添加量を亜硝酸イオン換算で下記式(1):
【0015】
【数1】

の範囲内とすることを特徴とする脱水ケーキの臭気発生防止方法が提供される。
【0016】
また、汚泥スラリーに亜硝酸塩(A)、及びチアゾール系化合物又はイソチアゾール系化合物から選ばれる少なくとも1種の化合物(D)を添加することにより、硫化水素の発生を長期間防止することができることを見出した。
【0017】
すなわち、本発明は、汚泥スラリーに亜硝酸塩(A)、及びチアゾール系化合物又はイソチアゾール系化合物から選ばれる少なくとも1種の化合物(D)を添加することを特徴とする臭気発生防止方法も提供する。
【0018】
さらに、本発明者等は、上記の亜硝酸塩を用いた臭気発生防止方法の問題点を解決すべく、汚泥スラリーを脱水する際に生じる脱水ろ液中に含まれる残留亜硝酸イオン量と、脱水ケーキの消臭効果の関係について調査した結果、脱水ろ液中の残留亜硝酸イオン量を一定の範囲とすることで、脱水ケーキからの硫化水素の発生を長期間防止することができることを見出し、本発明を完成するに至った。
【0019】
すなわち、本発明は汚泥スラリーに亜硝酸塩を添加した後高分子凝集剤を添加混合し、次いで機械脱水する方法において、脱水ろ液中の残留亜硝酸イオン濃度を1〜20mg/リットルの範囲に調整することを特徴とする脱水ケーキの臭気発生防止方法を要旨とするものである。
【0020】
さらに、本発明は、有機性廃水や汚泥スラリーなどの臭気を除去して消臭するために、亜硝酸塩と酸化剤及び/又は有機系殺菌剤を添加するに際して、最も適正な量の薬剤を添加し、かつ最も効率的な時期に添加できる方法を提供するものである。
【0021】
即ち、本発明は、汚泥スラリーに亜硝酸塩を添加して臭気の発生を防止する方法であって、亜硝酸塩の添加量を下記式(1):
【0022】
【数1】

の範囲内とすることを特徴とする臭気発生防止方法を要旨とするものである。
【0023】
また、本発明者等は、上記の亜硝酸塩を用いた消臭方法の問題点を解決すべく鋭意検討した結果、亜硝酸塩と特定の化合物、すなわち酸化剤及び/又は有機系殺菌剤を併用することで問題点を解決できることを見出した。
【0024】
すなわち、本発明は、汚泥スラリーに亜硝酸塩(A)を添加し、次いで酸化剤(B)及び/又は有機系殺菌剤(C)を添加する臭気発生防止方法において、酸化剤(B)及び/又は有機系殺菌剤(C)の添加時期を、亜硝酸塩(A)添加後の汚泥スラリー中の残留亜硝酸イオン濃度が1〜50mg/リットルである時点とし、かつ添加量を下記式(2)の範囲内とすることを特徴とする臭気発生防止方法、及び汚泥スラリーに亜硝酸塩(A)を添加し、次いで酸化剤(B)及び/又は有機系殺菌剤(C)を添加した後、汚泥スラリーを脱水する方法において、酸化剤(B)及び/又は有機系殺菌剤(C)の添加時期を、亜硝酸塩(A)添加後の汚泥スラリー中の残留亜硝酸イオン濃度が1〜50mg/リットルである時点とし、かつ添加量を下記式(2):
【0025】
【数2】

の範囲内とすることを特徴とする脱水ケーキの臭気発生防止方法を要旨とするものである。
【発明の効果】
【0026】
以上説明したように、本発明によれば、下記の優れた効果が得られる。
汚泥スラリーの中の硫化物量に対して特定割合の亜硝酸塩を添加させることで、硫化水素等の臭気発生を汚泥処理全プロセスにわたって効果的に防止することができる。
【0027】
汚泥スラリーに亜硝酸塩を添加させ、汚泥スラリーの中の残留亜硝酸イオン濃度が一定量存在する時点に、酸化剤及び/又は有機系殺菌剤を、残留亜硝酸イオン濃度に対し特定量添加することで、硫化水素等の臭気発生を汚泥処理全プロセスにわたって効果的に防止することができる。
【0028】
汚泥スラリーに亜硝酸塩及びチアゾール系化合物またはイソチアゾール系化合物から選ばれる少なくとも1種の化合物を添加させることで、硫化水素等の臭気発生を汚泥処理全プロセスにわたって効果的に防止することができる。
【0029】
脱水ろ液の残留亜硝酸イオン濃度を特定の範囲にすることで、脱水ケーキの硫化水素等の臭気発生を、汚泥処理全プロセスにわたって効果的に防止することができる。
【図面の簡単な説明】
【0030】
【図1】本発明を適用するベルトプレス型脱水機を使用する下水処理場のフローを示す概略構成図である。
【図2】本発明を適用するろ過部を有する造粒濃縮槽を備えたベルトプレス型脱水機を使用する下水処理場のフローを示す概略構成図である。
【実施形態】
【0031】
以下、本発明の実施の形態について説明する。
先ず、本発明の実施例において使用する下水処理場のフローを図1及び図2について説明する。
【0032】
図1は、脱水機としてベルトプレス脱水機を使用する一実施態様を説明する概略構成図であり、図2は、ろ過部を有する造粒濃縮槽を備えたベルトプレス型脱水機を使用する一実施態様を説明する概略構成図である。
【0033】
なお、図1及び図2において、同一機能を有する構成要素は同一符号を用いて示す。
図1において、汚泥スラリー1は汚泥濃縮槽2で濃縮されて濃縮汚泥3として汚泥貯留槽4を経て、凝集槽5で凝集剤溶解槽6からの高分子凝集剤7により凝集され、凝集された汚泥は脱水機流入部9と脱水ケーキ排出部10を有するベルトプレス脱水機8で十分脱水され、ベルトコンベア13でケーキホッパー14中に運ばれる。なお、12は脱水機8から出るろ液であり、11は脱水ケーキである。
【0034】
図2においては、汚泥貯留槽4からの濃縮汚泥3は、助剤貯留槽16からの助剤17と反応槽15中で混合撹拌され、次いでろ過部19を有する造粒濃縮槽18中で高分子凝集剤7と混合撹拌され、余剰の水分をろ液20として除去されてから造粒濃縮物21がベルトプレス脱水機8へ供給される。
【0035】
本発明において使用される亜硝酸塩(A)(ただし、亜硝酸塩を(B)や(C)と併用しないときには(A)を付記しない)は、特に制限はなく、亜硝酸アンモニウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸ルビジウム、亜硝酸セシウム、亜硝酸カルシウム、亜硝酸ストロンチウム、亜硝酸マグネシウム、亜硝酸バリウム、亜硝酸ニッケル、亜硝酸銅、亜硝酸銀、亜硝酸亜鉛、亜硝酸タリウムなどを挙げることができる。これらの亜硝酸塩は1種を単独で用いることができ、また2種以上を混合して用いることもできる。これらの亜硝酸塩の中では、亜硝酸ナトリウム、亜硝酸カリウムが効果やコストの面で好ましい。
【0036】
亜硝酸塩の汚泥スラリーに対する添加量は、汚泥スラリー中の硫化物量に対して亜硝酸イオンとして0.1<{亜硝酸イオン添加量(mg/リットル)/汚泥スラリー中の硫化物量(mg/リットル)}<10の範囲とすることが重要である。
【0037】
亜硝酸塩の添加量が、硫化物量に対する亜硝酸イオンの比が0.1未満では消臭効果が十分発揮できず、一方、10を超える場合は経済的でないばかりでなく、汚泥スラリーを濃縮した際の処理水や脱水後のろ液中の亜硝酸イオンが増加し、水処理工程に返送されたろ液中の亜硝酸イオンの殺菌効果により生物処理工程に影響を与える可能性があり好ましくない。
【0038】
本発明において使用されるチアゾール系化合物またはイソチアゾール系化合物から選ばれる少なくとも1種の化合物(D)は、下記式(I)又は(II)の基本構造を有するものである。具体的には化合物1〜13であるが、これらに限定されるものではない。これらの化合物は1種を単独で用いることができ、また2種以上を混合して用いることもできる。
【0039】
【化1】

【0040】
【化2】

【0041】
【化3】

また、酸化剤(B)及び/又は有機系殺菌剤(C)を添加する場合は、亜硝酸塩(A)の汚泥スラリーに対する添加量は、処理する汚泥の性状にもより異なるので一概には言えないが、亜硝酸イオンとして1〜1000mg/リットル、好ましくは10〜500mg/リットルである。亜硝酸塩の添加量が1mg/リットル未満では消臭効果が十分発揮できず、一方、1000mg/リットルを超える場合は経済的でないばかりでなく、脱水後のろ液中の亜硝酸イオンが増加し、水処理工程に返送されたろ液中の亜硝酸イオンの殺菌効果により、生物処理工程に悪影響を与える可能性があり好ましくない。
【0042】
さらに、チアゾール系またはイソチアゾール系化合物(D)を添加する場合は、亜硝酸塩(A)の汚泥スラリーに対する添加量は、処理する汚泥の性状にもより異なるので一概に言えないが、1〜1000mg/リットル、好ましくは10〜500mg/リットルである。亜硝酸塩(A)の添加量が1mg/リットル未満では消臭効果が十分発揮できず、一方、1000mg/リットルを超える場合はそれ以上の効果が得られず経済的でない。
【0043】
上記薬剤(A)及び(D)の汚泥スラリーへの添加は、汚泥スラリーが機械脱水される以前の工程、脱水工程或いは脱水後いずれでも良いが、亜硝酸塩(A)は機械脱水されるまでに1時間以上経過させることで、より効果的かつ持続的に臭気発生を防止することができる。従って、亜硝酸塩(A)は汚泥濃縮機2または汚泥貯留槽4に添加し、汚泥スラリーが脱水機8において脱水されるまでに1時間以上経過させることが好ましい。
【0044】
脱水ケーキの臭気発生防止方法においては、亜硝酸塩の汚泥スラリーに対する添加量は、脱水ろ液中の残留亜硝酸イオン濃度を1〜20mg/リットルの範囲とすることが重要である。
【0045】
本発明における脱水ろ液とは、汚泥スラリーに高分子凝集剤を添加混合して機械脱水した際に発生するろ液を意味する。汚泥スラリーの脱水方法は特に制限はなく、遠心脱水機、ベルトプレス脱水機、スクリュープレス脱水機、フィルタープレス脱水機、真空脱水機などを用いることができる。また、ろ過部を有する造粒濃縮槽を備えたベルトブレス型脱水機を使用する場合には、造粒濃縮槽で生じた液もその対象とする。
【0046】
脱水ケーキの臭気発生防止方法においては、脱水ろ液中の残留亜硝酸イオン量が1mg/リットル未満では消臭効果が十分発揮できず、一方、20mg/リットルを超える場合は経済的でないばかりでなく、水処理工程に返送されたろ液中の亜硝酸イオンの殺菌効果により、生物処理工程に悪影響を与える可能性があり好ましくない。
【0047】
本発明においては、亜硝酸塩以外の酸化剤や金属塩或いは殺菌剤を使用することができる。
酸化剤(B)としては、公知の酸化剤を使用することができ、例えば過酸化水素、過酢酸、過硫酸塩、過炭酸塩、過ホウ酸塩、過酸化カルシウムなどの過酸化物、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、臭素酸ナトリウム、臭素酸カリウム、亜臭素酸ナトリウム、次亜臭素酸ナトリウム、ヨウ素酸ナトリウム、ヨウ素酸カリウム等のハロゲン系酸化剤、或いは過マンガン酸塩などが挙げられる。これらの中でも、ハロゲン系酸化剤が好ましく、特に亜塩素酸ナトリウムが本発明の目的を達成するために好ましい。
【0048】
本発明においては、必要に応じて、亜硝酸塩以外の金属塩としても公知のものを使用することができ、例えば硝酸塩、リン酸塩、塩化物、硫酸塩、硫化物、酸化物、亜硫酸塩、亜硫酸水素塩、酢酸塩、水酸化物、炭酸塩、クエン酸塩、ケイ酸塩、ホウ酸塩、ヨウ化物などを挙げることができる。
【0049】
有機系殺菌剤あるいは有機系殺菌剤(C)としては、ピリチオン塩、サリチル酸、キノリン、チウラム、イソチアン酸塩などが使用できる。
また、本発明においては、亜硝酸塩(A)以外の酸化剤(B)及び/又は有機系殺菌剤(C)を使用する。
【0050】
酸化剤(B)及び/又は有機系殺菌剤(C)の添加は、亜硝酸塩(A)添加後の汚泥スラリー中の残留亜硝酸イオン濃度が1〜50mg/リットルである時点であり、かつ添加量を下記式(2):
【0051】
【数3】

の範囲内とすることが必要である。
【0052】
酸化剤(B)及び/又は有機系殺菌剤(C)の添加時点が、残留亜硝酸イオン濃度が1mg/リットル未満の場合では長期的な消臭効果が望めず、また50mg/リットルを超える場合は窒素分が増加するので好ましくない。
【0053】
酸化剤(B)及び/又は有機系殺菌剤(C)添加量は、式(2)においてその比が1以下では消臭効果が不十分で、一方、100を超えると消臭効果はそれ以上向上せず、経済上好ましくない。
【0054】
さらに、本発明においては、亜硝酸塩(A)や化合物(D)以外に前記の酸化剤や金属塩或いは殺菌剤を使用することができる。
本発明の方法では、上記薬剤(A)及び(D)を高分子凝集剤添加後の脱水機8への流入部9、脱水機8中、或いはケーキ排出部10のいずれかに添加することができる。具体的にはベルトプレス脱水機8の場合にはベルトプレスのろ布上、ケーキスクレバー部、ケーキ排出部(ケーキを排出するベルトコンベア上やスクリュウーコンベア内或いはケーキホッパー14を含む)である。
【0055】
また、防菌剤として公知のN−(2−ヒドロキシプロピル)−アミノメタノール、2−(ヒドロキシメチルアミノ)−エタノール、2−ブロモ−2−ニトロ−1,3−プロパンジオール、ジブロモ−ニトロ−エタノール等のアルコール類、クレゾール、4−クロロ−3,5−ジメチルフェノール等のフェノール類、グルタルアルデヒド、α−ブロモシンナムアルデヒド等のアルデヒド類、1,3,5−トリス(2−ヒドロキシエチル)−S−ヘキサヒドロトリアジン、2−メトキシカルボニルアミノベンツイミダゾール、チアベンダゾール、グルコン酸クロルヘキシジン、塩酸クロルヘキシジン、塩酸ポリヘキサメチレンビグアニジン、塩化ベンサルコニウム、塩化セタルコニウム、2,2−ジブロモ−3−ニトロプロピオアミド、ビス(1−オキシ−2ピリジル)ジスルフィド、ヒノキチオールなども使用できる。
【0056】
さらに、特開平5−23698号公報に記載の下記の一般式(1)〜(9)に示す有機化合物も使用できる。
【0057】
【化4】

(式中、R、Rは、H、アルキル、ジチオカルバミン酸N−アルキレン、RはH、第4級アンモニウム、ヒドラジン、アルキルアミノ、金属、nは1〜3を表す。)
【0058】
【化5】

(式中、R、Rは、H、アルキル、アルキレン、nは1又は2を表す。)
【0059】
【化6】

(式中、Rは、アルキル、アルケニル、ハロゲンアルキル、フェニル、メチルチオベンゾチアゾール、nは1又は2を表す。)
【0060】
【化7】

(式中、Rは、アルキル、アルケニルを表す。)
【0061】
【化8】

(式中、RはH、Na、Zn、Cu、nは1又は2を表す。)
【0062】
【化9】

(式中、RはH、Cu、XはH、ハロゲンを表わす。)
【0063】
【化10】

(式中、R、R、Rはアルキル、ハロゲン、アミノ基、水酸基、アルコキシを表わす。)
【0064】
【化11】

(式中、R、R、RはH、Na、K、ハロゲン、ハロゲンアルキルを表わす。)
【0065】
【化12】

(式中、Rはハロゲンアルキル、Rは水酸基、ハロゲン、アルコキシ、フェニル、nは1又は3を表わす。)
まず一般式(1)のジチオ炭酸アミドの誘導体としては、N−メチルジチオカルバミン酸塩(NH、Na、K、Zn等)、ジチオカルバミン酸ヒドラジン、N,N’−ジメチルジチオカルバミン酸塩(NH、Na、K、Cu、Zn、Mn、Fe、Ni、Pb等)、N,N’−ジエチルジチオカルバミン酸亜鉛、N,N’−ジブチルジチオカルバミン酸亜鉛、エチレンビスチオカルバミン酸塩(NH、Na、Zn、Mn等)、ビス(ジメチルジチオカルバモイル)、エチレンビス(ジチオカルバミン酸)亜鉛等を例示できる。一般式(2)のチウラムスルフィドの誘導体としては、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムモノスルフィド、テトラエチルチウラムジスルフィド、エチレンチウラムモノサルファイド等を例示できる。
【0066】
一般式(3)のチオシアン誘導体としては、メチレンビスチオシアネート、クロロメチルチオシアネート、エチレンビスチオシアネート、クロロエチレンビスチオシアネート、ビニレンビスチオシアネート、フェニルチオシアネート、2−チオシアノメチルチオベンゾチアゾール等があり、また一般式(4)のイソチオシアンの誘導体としては、メチルイソチオシアネート、アリルイソチオシアネート等を挙げることができる。一般式(5)のピリジンの誘導体としては、2−メルカプトピリジン−N−オキサイド、(2−ピリジルチオ−1−オキシド)ナトリウム、ビス(2−ピリジルチオ−1−オキシド)亜鉛等があり、また、一般式(6)のキノリンの誘導体としては、8−ハイドロオキシキノリン、8−ハイドロオキシキノリン硫酸塩、8−ハイドロオキシキノリン銅、5−クロロキノリノール等を挙げることができる。
【0067】
一般式(7)のトリアジンの誘導体としては、2,4−ジクロロ−6−イソシアノ−1,3,5−トリアジン、2,4−ジクロロ−6−ヒドロキシ−1,3,5−トリアジンNa塩、2,4−ジクロロ−6−メトキシ−1,3,5−トリアジン、2,4−ジクロロ−6−(o−クロロアニリン)−1,3,5−トリアジン、モノクロロメラミン、ジクロロメラミン、トリクロロメラミン、ヘキサクロロメラミン、トリクロロシアヌール酸等を挙げることができ、また、一般式(8)のイソシアヌール酸の誘導体としては、イソシアヌール酸、トリクロロイソシアヌール酸、ジクロロイソシアヌール酸、ジクロロイソシアヌール酸Na等を挙げることができる。一般式(9)のハロゲンカルボニル化合物の誘導体としては、ブロム酢酸ブロマイド、トリクロロ酢酸、ビスブロモアセトキシエタン、ビス(1,4−ブロモアセトキシ)−2−ブテン、1,2,3−トリス(ブロモアセトキシ)プロパン、2−ブロモ−4’−ハイドロオキシアセトフェノン等を挙げることができる。
【0068】
汚泥のpHを5.5以下に調整することにより、硫酸還元菌と共生する脱窒菌の活動を抑制し、亜硝酸イオンの消費を抑え、硫化水素の発生を長期間にわたって抑制することができる。汚泥のpH調整は塩化第二鉄、硫酸第二鉄、ポリ硫酸第二鉄、硝酸第二鉄などの第二鉄塩を好適に用いることができる。また、酸を併用することもできる。
【0069】
前述のpH調整剤により汚泥のpHを低下させた場合、一般に高分子凝集剤として使用されるカチオン系高分子凝集剤では凝集不良を生じる。これは、カチオン基の反応相手であるカルボキシル基のような汚泥のアニオンが、pH低下に応じて非解離となるためであると考えられる。このような条件下では、分子内に架橋構造が一定以上導入されたエマルジョン系の高分子凝集剤が特異的に有効である。このような高分子凝集剤は、具体的にはカチオン高分子凝集剤が特開平10−137798号公報等に、両性高分子凝集剤が特開2000−218297号公報や特開2000−218299号公報に記載されている。このようなエマルジョン系高分子凝集剤を使用した場合には、pH調整剤の有無に関わらず汚泥の脱水性が向上するという効果も得られる。
【0070】
また、特にpH調整剤として塩化第二鉄を用いた場合には、分子内にカチオン基及びアニオン基が導入された両性高分子凝集剤が、良好な凝集性を示すので好ましい。両性高分子凝集剤は前記エマルジョン系高分子凝集剤の他、粉末状の高分子凝集剤も使用可能である。
【0071】
亜硝酸塩(A)の汚泥スラリーへの添加は、機械脱水されるまでに1時間以上経過させることで、より効果的かつ持続的に消臭することができる。
亜硝酸塩(A)の添加場所は、下水をポンプ場から下水圧送管路を経て着水井に圧送する場合には下水圧送管路に、また、下水処理汚泥をポンプ場から下水圧送管路を経て汚泥集中処理施設に圧送する際には、ポンプ場或いは下水圧送管路の途中にすることが好ましい。また、脱水ケーキの臭気発生防止を対象とする場合には、汚泥濃縮槽2又は汚泥貯留槽4とすることが好ましい。
【0072】
また、脱水ケーキの臭気発生防止方法においては、前述の酸化剤、金属塩或いは有機系殺菌剤は、汚泥スラリーへの添加から機械脱水されるまで1時間以内とさせることで、より効果的かつ持続的に消臭することができる。
【0073】
本発明の全ての臭気発生防止方法において、汚泥スラリーの脱水方法は特に制限はなく、遠心脱水機、ベルトプレス脱水機、スクリュープレス脱水機、フィルタープレス脱水機、真空脱水機などを用いることができる。
【実施例】
【0074】
以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、実施例中の汚泥スラリーの臭気測定は、以下の方法に従って行った。
(1)汚泥スラリー100mlを用意し、消臭剤を添加後ミキサーで撹拌する(500rpm×10sec)。
(2)臭気測定用袋(容量:700ml)に上記汚泥スラリーを入れ、ゴム栓で密栓する。
(3)シリンジで600mlの無臭空気を注入する。
(4)30℃の恒温槽に保管し、消臭剤添加後から所定時間毎に北川式検知管で硫化水素、メチルメルカプタンを測定する。
【0075】
また、亜硝酸塩のみを添加する場合には、脱水ケーキの臭気測定は以下の方法に従って行った。
(1)汚泥スラリー100mlを用意し、消臭剤を添加後ミキサーで撹拌する(500rpm×10sec)。
(2)高分子凝集剤:エバグロースC−104G(商品名:(株)荏原製作所製品)を添加し、撹拌凝集させろ過し、脱水ケーキを得る。
(3)臭気測定用袋(容量:700ml)に上記脱水ケーキを入れ、ゴム栓で密栓する。
(4)シリンジで600mlの無臭空気を注入する。
(5)30℃の恒温槽に保管し、消臭剤添加後から所定時間毎に北川式検知管で硫化水素、
メチルメルカプタンを測定する。
【0076】
さらに、薬剤(A)、(B)及び/又は(C)を添加する場合、薬剤(A)及び(D)を添加する場合、及び脱水ろ液の残留亜硝酸イオン濃度を調整する場合は、脱水ケーキの臭気測定は以下の方法に従って行った。
(1)脱水ケーキを一定量採取し、臭気測定用袋(容量:700ml)に上記脱水ケーキを入れ、ゴム栓で密栓する。
(2)シリンジで600mlの無臭空気を注入する。
(3)30℃の恒温槽に保管し、消臭剤添加後から所定時間毎に北川式検知管で硫化水素、メチルメルカプタンを測定する。
【0077】
実施例1
下水処理場から発生する混合生汚泥スラリー(pH5.48、SS:21600mg/リットル、VSS:80.7%)に、亜硝酸塩(A)として亜硝酸ナトリウムを200mg/リットル添加・混合し、引き続き化合物(D)として1,2−ベンゾイソチアゾリン−3−オンを50mg/リットル添加し、臭気測定試験を行った。結果を第1表に示す。
【0078】
実施例2〜5
亜硝酸塩(A)の添加量、化合物(D)の種類及び添加量を第1表に示すように変更したこと以外は、実施例1と同様に試験を行った。結果を第1表に併記する。
【0079】
比較例1〜3
亜硝酸塩(A)または/及び化合物(D)を添加しなかったこと以外は、実施例1と同様に実験を行った。結果を第1表に示す。
【0080】
【表1】

実施例6〜9
実施例1において、亜硝酸ナトリウム添加後、第2表に示す時間経過後に化合物(D)を添加したこと以外は、実施例1と同様に試験を行った。結果を第2表に併記する。
【0081】
【表2】

実施例10
下水処理場から発生する混合生汚泥スラリー(pH5.32、SS:24300mg/リットル、VSS:82.0%)に、亜硝酸塩(A)として亜硝酸ナトリウムを100mg/リットル添加した。亜硝酸ナトリウムの添加後1時間経過した後、汚泥スラリーを図1に示すベルトプレス脱水機を設置した脱水施設に供給した。この際、汚泥貯留槽から脱水機に至る送泥管に、化合物(D)として2−メルカプトベンゾチアゾールナトリウムを100mg/リットル添加した。得られた脱水ケーキの臭気発生防止試験結果を第3表に示す。
【0082】
実施例11〜16
化合物(D)の添加場所、種類、或いは添加量を第3表に示すように変更したこと以外は、実施例10と同様に実験を行った。結果を第3表に示す。
【0083】
比較例4〜6
化合物(A)または化合物(D)を使用しなかったこと以外は、実施例10と同様に実験を行った。結果を第3表に示す。
【0084】
【表3】

【0085】
【表4】

実施例17
下水処理場から発生する第4表に示す性状の汚泥スラリーに、亜硝酸塩として亜硝酸ナトリウムを、亜硝酸イオン換算で100mg/リットル(汚泥スラリー中の硫化物量との比で3.0)添加し、汚泥スラリーの臭気測定試験を行った。試験結果を第5表に示す。
【0086】
【表5】

実施例18〜20
亜硝酸ナトリウムの添加量を第5表に示すように変更したこと以外は、実施例1と同様に試験を行った。結果を第5表に併記する。
【0087】
実施例21〜23
汚泥スラリーに亜硝酸ナトリウムを添加するに先立って、第5表に示すpH調整剤を用いてpH調整を行ったこと以外は、実施例17と同様に試験を行った。結果を第5表に併記する。
【0088】
比較例7
亜硝酸ナトリウムの添加量を、亜硝酸イオン換算で2mg/リットル(汚泥スラリー中の硫化物量との比で0.06)としたこと以外は、実施例17と同様に実験を行った。結果を第5表に示す。
【0089】
比較例8
亜硝酸ナトリウムを添加しなかったこと以外は、実施例17と同様に実験を行った。結果を第5表に示す。
【0090】
比較例9
亜硝酸ナトリウムを添加しなかったこと以外は、実施例22と同様に実験を行った。結果を第5表に示す。
【0091】
【表6】

実施例24及び比較例10
下水処理場から発生する第6表に示す性状の汚泥スラリーに、亜硝酸塩として亜硝酸ナトリウムを、亜硝酸イオン換算で100mg/リットル(汚泥スラリー中の硫化物量との比で7.0)添加し、亜硝酸ナトリウムの添加後1時間経過した後汚泥スラリーを脱水し、脱水ケーキの臭気測定試験を行った。結果を第7表に示す。また、汚泥スラリーに亜硝酸ナトリウムを添加せずに脱水を行った結果(比較例10)も併記する。
【0092】
【表7】

実施例25〜26
亜硝酸ナトリウムの添加から脱水までの時間を第7表のように変更したこと以外は、実施例24と同様に実験を行った。結果を第7表に併記する。
【0093】
実施例27
汚泥スラリーに亜硝酸ナトリウムを添加するに先立って、ポリ鉄をpH調整剤として用いてpHを5.1に調整し、実施例24と同様に試験を行った。結果を第7表に併記する。
【0094】
実施例28〜29
亜硝酸ナトリウムの添加から脱水までの時間を、第7表のように変更したこと以外は、実施例27と同様に実験を行った。結果を第7表に併記する。
【0095】
【表8】

実施例30〜36
第6表に示す性状の汚泥スラリーに、亜硝酸塩として汚泥スラリーを、亜硝酸イオン換算で50mg/リットル(汚泥スラリー中の硫化物量との比で3.5)添加した。亜硝酸ナトリウムの添加後1時間経過した後に、第8表に示す酸化剤、金属塩或いは有機系殺菌剤を添加・混合した後、汚泥スラリーを脱水し、脱水ケーキの臭気測定試験を行った。結果を第8表に併記する。
【0096】
【表9】

実施例37
下水処理場から発生する混合生汚泥の汚泥スラリー(pH5.50、SS:20200mg/リットル、VSS:82.2%)に、亜硝酸塩(A)として亜硝酸ナトリウムを200mg/リットル添加した。亜硝酸ナトリウムの添加から1時間後、汚泥スラリー中の残留亜硝酸イオンが32mg/リットルになった時点で、酸化剤(B)として亜塩素酸ナトリウム100mg/リットルを添加し、汚泥スラリーの臭気測定試験を行った。結果を第9表に示す。
【0097】
【表10】

【0098】
【表11】

実施例38〜45、比較例11〜16
汚泥スラリー中の残留亜硝酸イオン濃度を第9表に示すように調整し、また、酸化剤(B)や有機系殺菌剤(C)の種類や添加量を変更したこと以外は、実施例37と同様に試験を行った。結果を第9表に併記する。残留亜硝酸イオン濃度の調整は、亜硝酸塩添加から酸化剤(B)や有機系殺菌剤(C)の添加までの時間を変えることで実施した。
【0099】
実施例46
下水処理場から発生する余剰汚泥(pH6.66、SS:10500mg/リットル、VSS:78.5%)を入れた汚泥貯留槽に、亜硝酸塩(A)として亜硝酸ナトリウムを200mg/リットル添加した。亜硝酸ナトリウムの添加から1時間後、汚泥スラリー中の残留亜硝酸イオン濃度が42mg/リットルになった時点で、汚泥スラリーを図1に示すベルトプレス脱水機を設置した脱水施設に供給した。この際、汚泥貯留槽から脱水機に到る送泥管途中に、酸化剤(B)として亜塩素酸ナトリウム100mg/リットルを添加した。得られた脱水ケーキの臭気測定試験結果を第10表に記載する。
【0100】
実施例47〜53、比較例17〜23
汚泥スラリー中の残留亜硝酸イオン濃度を第10表に示すように調整し、また、酸化剤(B)や有機系殺菌剤(C)の種類や添加量を変更したこと以外は、実施例46と同様に試験を行った。結果を第10表に併記する。残留亜硝酸イオン濃度の調整は、亜硝酸塩添加から酸化剤(B)や有機系殺菌剤(C)の添加までの時間を変えることで実施した。
【0101】
【表12】

【0102】
【表13】

実施例54
下水処理場から発生する混合生汚泥(pH5.46、SS:19.1g/リットル、VSS:83.5%)の汚泥貯留槽に、亜硝酸塩として亜硝酸ナトリウムを、亜硝酸イオン換算で100mg/リットルとなるように添加した。その後、汚泥スラリーを図1に示すベルトプレス脱水機を設置した脱水施設に供給し、第11表に示す条件で脱水処理を行い、得られた脱水ケーキについて臭気測定を行った。結果を第11表に示す。
【0103】
なお、脱水に供した高分子凝集剤は、(株)荏原製作所製:エバグロースC−104Gである。
実施例55〜56
実施例54において、亜硝酸ナトリウムの添加量と、亜硝酸ナトリウムの汚泥スラリーへの添加から脱水までの時間を、第11表に示すように調整したこと以外は、実施例54と同様に試験を行った。結果を第11表に併記する。
【0104】
実施例57
汚泥スラリーに亜硝酸ナトリウムを添加するに先立って、ポリ硫酸鉄を用いてpHを4.8に調整を行ったこと以外は、実施例54と同様に試験を行った。結果を第11表に併記する。
【0105】
比較例24〜25
脱水ろ液中の残留亜硝酸イオン濃度を、0.3mg/リットルとなるように調整したこと以外は、実施例54と同様に実験を行った(比較例24)。また、亜硝酸ナトリウムを添加しないで脱水を行った(比較例25)。結果を第11表に示す。
【0106】
【表14】

実施例58
図1の脱水施設において、汚泥貯留槽と脱水機との間の送泥管中に、第12表に示す薬剤を注入して、実施例54と同様の試験を行った。結果を第12表に併記する。
【0107】
実施例59〜63
送泥管中に注入する薬剤の種類と添加量を、第12表に示すように変更したこと以外は、実施例58と同様に試験を行った。結果を第12表に併記する。
【0108】
【表15】

【0109】
【表16】

実施例64
下水処理場から発生する余剰汚泥(pH6.34、SS:9.9g/リットル、VSS:78.5%)の汚泥貯留槽に、亜硝酸塩として亜硝酸ナトリウムを、亜硝酸イオン換算で100mg/リットルとなるように添加した。その後、汚泥スラリーを図2に示すろ過部を有する造粒濃縮槽を備えたベルトプレス脱水機を設置した脱水施設に供給し、第13表の条件で脱水処理を行い、得られた脱水ケーキについて臭気測定を行った。脱水に際しては、高分子凝集剤添加前にポリ硫酸鉄を添加しpHを4.8に調整した。結果を第13表に示す。
【0110】
なお、脱水に供した高分子凝集剤は、(株)荏原製作所製:エバグロースB−094である。
実施例65〜66
実施例64において、亜硝酸ナトリウムの添加量と、亜硝酸ナトリウムの汚泥スラリーへの添加から脱水までの時間を、第13表に示すように調整したこと以外は、実施例64と同様に試験を行った。結果を第13表に示す。
【0111】
実施例67
汚泥スラリーに亜硝酸ナトリウムを添加するに先立って、ポリ硫酸鉄を用いてpHを5.3に調整を行ったこと以外は、実施例64と同様に試験を行った。結果を第13表に併記する。
【0112】
比較例26
脱水ろ液の残留亜硝酸イオン濃度を、0.2mg/リットルとなるように調整したこと以外は、実施例64と同様に実験を行った。結果を第13表に示す。
【0113】
【表17】

【符号の説明】
【0114】
1 汚泥スラリー
2 汚泥濃縮槽
3 濃縮汚泥
4 汚泥貯留槽
5 凝集槽
6 凝集剤溶解槽
7 高分子凝集剤
8 ベルトプレス脱水機
9 脱水機流入部
10 脱水ケーキ排出部
11 脱水ケーキ
12 ろ液
13 ベルトコンベア
14 ケーキホッパー
15 反応槽
16 助剤貯留槽
17 助剤
18 造粒濃縮槽
19 ろ過部
20 ろ液
21 造粒濃縮物

【特許請求の範囲】
【請求項1】
汚泥スラリーに亜硝酸塩を添加した後、高分子凝集剤を添加混合し、次いで機械脱水する方法において、亜硝酸塩の添加量を亜硝酸イオン換算で下記式(1):
【数1】

の範囲内とすることを特徴とする脱水ケーキの臭気発生防止方法。
【請求項2】
前記亜硝酸塩は、亜硝酸ナトリウムであることを特徴とする請求項1記載の脱水ケーキの臭気発生防止方法。
【請求項3】
前記汚泥スラリーのpHを5.5以下に調整することを特徴とする請求項1又は2記載の脱水ケーキの臭気発生防止方法。
【請求項4】
亜硝酸塩を亜硝酸イオン濃度換算で100mg/L添加した場合の脱水ろ液中の残留亜硝酸イオン濃度を1〜20mg/リットルの範囲に調整することを特徴とする請求項1〜3のいずれかに記載の脱水ケーキの臭気発生防止方法。
【請求項5】
酸化剤、亜硝酸塩を除く金属塩、有機系殺菌剤がさらに添加されることを特徴とする請求項1〜4のいずれか1項記載の臭気発生防止方法。
【請求項6】
汚泥スラリーに亜硝酸塩(A)を添加し、次いで酸化剤(B)及び/又は有機系殺菌剤(C)を添加した後、汚泥スラリーを脱水する方法において、酸化剤(B)及び/又は有機系殺菌剤(C)の添加時期を、亜硝酸塩(A)添加後の汚泥スラリー中の残留亜硝酸イオン濃度が1〜50mg/リットルである時点とし、かつ添加量を下記式(2):
【数2】

の範囲内とすることを特徴とする脱水ケーキの臭気発生防止方法。
【請求項7】
酸化剤が亜塩素酸塩であることを特徴とする請求項5又は請求項6に記載の脱水ケーキの臭気発生防止方法。
【請求項8】
汚泥スラリーへの亜硝酸塩の添加後、脱水までの経過時間が1時間以上であることを特徴とする請求項1〜6のいずれか1項に記載の脱水ケーキの臭気発生防止方法。
【請求項9】
汚泥スラリーに亜硝酸塩(A)、及びチアゾール系化合物又はイソチアゾール系化合物から選ばれる少なくとも1種の化合物(D)を添加した後、該汚泥スラリーに高分子凝集剤を添加混合し、機械脱水することを特徴とする脱水ケーキの臭気発生防止方法。
【請求項10】
汚泥スラリーに亜硝酸塩(A)を添加した後、該汚泥スラリーに高分子凝集剤を添加混合し、次いで機械脱水する方法において、脱水機流入部、脱水機中又はケーキ排出部のいずれかに、チアゾール系化合物又はイソチアゾール系化合物から選ばれる少なくとも1種の化合物(D)を添加することを特徴とする脱水ケーキの臭気発生防止方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−157862(P2012−157862A)
【公開日】平成24年8月23日(2012.8.23)
【国際特許分類】
【出願番号】特願2012−85503(P2012−85503)
【出願日】平成24年4月4日(2012.4.4)
【分割の表示】特願2003−22141(P2003−22141)の分割
【原出願日】平成15年1月30日(2003.1.30)
【出願人】(591030651)水ing株式会社 (94)
【Fターム(参考)】