説明

腫瘍性疾患を治療するための組成物及び方法

【課題】ボルテゾミブ耐性を克服するための療法を提供することを課題とする。
【解決手段】腫瘍性疾患患者における腫瘍性疾患を治療するための医薬であって、式(I):(式中、Xはフッ素、塩素、臭素又はヨウ素から成る群から選択される)の化合物又はその薬学的に許容可能な塩を含み、該腫瘍性疾患が少なくとも1つの他の化学療法剤に耐性である、医薬を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、化学及び医学の分野に関する。さらに具体的には、本発明は、腫瘍性疾患、例えば癌の治療に関する。
【背景技術】
【0002】
癌は、米国における死亡の主因である。癌を治療するための新規のアプローチを見出すための著しい努力にもかかわらず、主要な治療選択肢は依然として、外科手術、化学療法及び放射線療法の単独又は組合せである。しかしながら外科手術及び放射線療法は一般的に、かなり限定された型の癌にのみ有用であり、そして播種性疾患を有する患者を治療するための用途は限定されている。化学療法は、転移性癌又は散在性癌、例えば白血病を有する患者を治療するのに一般的に有用な方法である。化学療法は治療的有用性を提供し得るが、それはしばしば、化学療法剤に耐性となる患者の癌細胞のために、この疾患を治癒することができない。
【0003】
したがって、癌を治療するための付加的化学療法に対する必要性が存在する。新規の潜在的に有用な化学療法剤及び抗菌薬を同定するために個々の研究者、大学及び会社により、継続的努力が為されている。
【0004】
再発性/難治性多発性骨髄腫(MM)の治療のためのボルテゾミブ(Bortezomib)/PS−341療法の開発の成功によって、有効な治療的戦略としてプロテアソーム抑制が確立された。ジペプチドボロン酸類似体ボルテゾミブは、26Sプロテアソーム複合体を標的化し、その機能を抑制する強力で高度に選択的及び可逆的なプロテアソーム阻害薬である。26Sプロテアソームは、細胞内タンパク質分解を媒介するアデノシン三リン酸(ATP)依存性多触媒性(multicatalystic)プロテアーゼである。ミスフォールド又は損傷した
タンパク質のプロテアソーム分解は、26Sプロテアーゼの19S制御サブユニットによるポリユビキチン化タンパク質の認識、及びその後の低ポリペプチドへの加水分解により進行する。ボルテゾミブは、トリプシン活性又はカスパーゼ様プロテアソーム活性を変更することなく、主にキモトリプシン活性を抑制する。NF−kBの抑制に加えて、ボルテゾミブは、1)細胞周期制御タンパク質;2)形質細胞分化因子X−ボックス結合タンパク質−1(XBP−1)の転写活性を調節することによるUPR経路;3)p53媒介性アポトーシス/MDM2;4)DNA修復メカニズム;5)内因性(カスパーゼ−9媒介性)及び外因性(カスパーゼ−8媒介性)細胞死カスケードの両方による古典的ストレス−応答経路を標的化することによりMM生物学に対して多面発現的作用を有する。具体的には、ボルテゾミブはJNKを活性化し、これがミトコンドリア・アポトーシスシグナル伝達:ミトコンドリアからサイトゾルへのチトクローム−c(cyto−c)及びカスパーゼの二次ミトコンドリア活性剤(Smac)の放出と、その後のカスパーゼ−9及びカスパーゼ−3の活性化を誘発する。しかしながら内因性の耐性及び後天性耐性は共にすでに観察されており、現在、ボルテゾミブ耐性を克服するための療法は存在しない。
【発明の概要】
【課題を解決するための手段】
【0005】
本発明の一態様は、式(I):
【0006】
【化1】

【0007】
(式中、Xはフッ素、塩素、臭素又はヨウ素から成る群から選択される)
の化合物又はその薬学的に許容可能な塩若しくはプロドラッグを腫瘍性疾患患者に投与することを包含する、腫瘍性疾患の治療方法であり、腫瘍性疾患が少なくとも1つの他の化学療法剤に対する耐性になりやすい。
【0008】
本発明の別の態様は、式(I)の化合物又はその薬学的に許容可能な塩若しくはプロドラッグ(式中、Xはフッ素、塩素、臭素又はヨウ素から成る群から選択される)を、少なくとも1つの付加的化学療法剤と組合せて、腫瘍性疾患患者に投与することを包含する、腫瘍性疾患の治療方法である。
【0009】
本発明の別の態様は、式(I)の化合物又はその薬学的に許容可能な塩若しくはプロドラッグ(式中、Xはフッ素、塩素、臭素又はヨウ素から成る群から選択される)、及び少なくとも1つの付加的化学療法剤を含む、薬学的組成物である。
【0010】
本発明の別の態様は、少なくとも2つのプロテアソーム阻害薬の相乗的組合せを腫瘍性疾患患者に投与することを包含する、腫瘍性疾患の治療方法である。
【図面の簡単な説明】
【0011】
【図1】NPI−0052によるヒト赤血球由来の20Sプロテアソームにおけるキモトリプシン様、カスパーゼ様及びトリプシン様プロテアソーム活性の阻害を示す図である。
【図2】マウスにおけるNPI−0052のin vivoキモトリプシン様活性を示す図である。
【図3】MM.1S多発性骨髄腫(MM)細胞をNPI−0052(7nM)で処理し、37℃でAdaY(125I)Ahx3L3VSと共にタンパク質抽出物をインキュベートした後に得られたオートラジオグラフィーを示す図である。
【図4】MM.1S細胞をNPI−0052で処理し、次にダンシル−Ahx3L3VSと共にインキュベートした後に得られた免疫ブロット法を示す図である。
【図5A】指示用量のNPI−0052で24時間処理した種々の多発性骨髄腫細胞様の細胞生存度を示す図である。
【図5B】患者から得られたMM細胞のNPI−0052で処理後のアポトーシスのDNA断片化検定を示す図である。
【図6】患者から得られた骨髄間質細胞のNPI−0052で処理後のアポトーシスのDNA断片化検定を示す図である。
【図7】IL−6又はIGF−Iの存在下又は非存在下でのNPI−0052又はDexによる処理後のMM.1S細胞生存度のMTT検定を示す図である。
【図8】MM.1S細胞のVEGF誘導性移動に及ぼすNPI−0052の作用を示す図である。
【図9】Bcl2過剰発現MM.1Sの細胞生存度に及ぼすNPI−0052の作用を示す図である。
【図10A】マウスに経口投与した場合の腫瘍増殖に及ぼすNPI−0052の作用を示す図である。
【図10B】マウスに経口投与した場合の腫瘍増殖に及ぼすNPI−0052の作用を示す図である。
【図10C】マウスに経口投与した場合の生存に及ぼすNPI−0052の作用を示す図である。
【図10D】マウスに経口投与した場合の体重に及ぼすNPI−0052の作用を示す図である。
【図10E】NPI−0052処理マウス及び対照処理マウスからの接種部位の組織切片を示す図である。
【図10F】マウスに静脈内投与した場合の腫瘍増殖に及ぼすNPI−0052及びボルテゾミブの作用を比較する図である。
【図10G】マウスに静脈内投与した場合の生存に及ぼすNPI−0052及びボルテゾミブの作用を比較する図である。
【図11A】CMXRosと共にインキュベートしたMM.1S細胞におけるミトコンドリア膜電位に及ぼすNPI−0052の作用を示す図である。
【図11B】膜透過性染料ジヒドロエチジウム(HE)で染色したMM.1S細胞におけるスーパーオキシド生成に及ぼすNPI−0052の作用を示す図である。
【図11C】NPI−0052で処理したMM.1S細胞から得られたミトコンドリアタンパク質画分及びサイトゾルタンパク質画分の免疫ブロット法を示す図である。
【図11D】NPI−0052で処理し、抗カスパーゼ−9抗体で分析したMM.1S細胞から得られたサイトゾルタンパク質の免疫ブロット法を示す図である。
【図11E】NPI−0052で処理し、抗カスパーゼ−8抗体で分析したMM.1S細胞から得られたサイトゾルタンパク質の免疫ブロット法を示す図である。
【図11F】NPI−0052で処理し、そしてPARP及びカスパーゼ−3切断検定の両方によりアポトーシスに関して評価したMM.1S又はMM.1R MM細胞の免疫ブロットを示す図である。
【図12A】カスパーゼ−3、カスパーゼ−8又はカスパーゼ−9阻害薬の存在下又は非存在下でNPI−0052又はボルテゾミブで処理後のMM.1S細胞生存度を示す図である。
【図12B】NPI−0052又はボルテゾミブで処理後のベクター単独、DN−カスパーゼ−8及びDN−カスパーゼ−9でトランスフェクトされた細胞に関するMM.1S細胞生存度を示す図である。
【図12C】デキサメタゾン又は抗FasMoAbで処理したDN−カスパーゼ−8及びDN−カスパーゼ−9トランスフェクト化MM.1S細胞からのサイトゾル抽出物の免疫ブロット法を示す図である。
【図12D】NPI−0052又はボルテゾミブで処理後のベクター又はDN−FADDトランスフェクト化細胞に関するMM.1S細胞生存度を示す図である。
【図12E】指示濃度のNPI−0052又はボルテゾミブで処理し、抗Bax又は抗Hsp60抗体で分析したMM.1S MM細胞からのミトコンドリアタンパク質抽出物の免疫ブロット法を示す図である。
【図12F】指示濃度のNPI−0052又はボルテゾミブで処理した野生型又は欠失Bax(ノックアウト)を有するマウス胚線維芽細胞(MEF)の細胞生存度を示す図である。
【図13】指示濃度のNPI−0052又はボルテゾミブで処理した5つの健常ドナー由来の正常リンパ球の生存度を示す図である。
【図14A】NPI−0052又はボルテゾミブでの処理後のベクター単独又はBcl−2でトランスフェクトした細胞に関するMM.1S細胞生存度を示す図である。
【図14B】NPI−0052又はボルテゾミブで処理したベクタートランスフェクト化MM.1S細胞又はBcl−2トランスフェクト化MM.1S細胞由来のサイトゾル抽出物の免疫ブロット法を示す図である。
【図15】指示濃度のNPI−0052、ボルテゾミブ又はNPI−0052+ボルテゾミブで処理したMM.1S及びMM.1R MM細胞の細胞生存度を示す図である。
【発明を実施するための形態】
【0012】
一実施形態において、式(I):
【0013】
【化2】

【0014】
(式中、Xはフッ素、塩素、臭素又はヨウ素であり得る)の化合物は、本明細書中に記載されているような使用のために提供される。一実施形態では、Xは塩素である。一実施形態では、式(I)の化合物は、式(II):
【0015】
【化3】

【0016】
による立体化学を有する。式(II)の化合物(式中、X=Cl)は、本明細書中ではNPI−0052とも呼ばれる。式(I)又は式(II)の化合物は、海洋性グラム陽性放線菌であるサリノスポラ(Salinospora)の発酵に由来し得る。
【0017】
いくつかの実施形態では、本明細書中に開示される化合物のプロドラッグ、代謝産物、立体異性体及び薬学的に許容可能な塩が、本明細書中に記載されるような使用のために提供される。
【0018】
「プロドラッグ」とは、in vivoで親薬剤に転換される薬剤を指す。いくつかの場
合には、プロドラッグが親薬剤より投与するのが容易であり得るため、プロドラッグはしばしば有用である。例えばプロドラッグは経口投与により生物学的利用可能であるが、一方、親薬剤はそうではない。プロドラッグは、親薬剤を上回る薬学的組成物中での改善された溶解度を有し得る。プロドラッグの一例は、水溶性が移動度にとって有害である細胞膜を通る透過を促進するためにエステル(「プロドラッグ」)として投与されるが、次に、水溶性が有益である細胞内に一旦入ると、活性実体(active entity:アクティブエンティティ)であるカルボン酸に代謝的に加水分解される化合物であるが、これに限定されな
い。プロドラッグのさらなる例は酸基に結合される短いペプチド(ポリアミノ酸)であり得るが、このペプチドは代謝されて、活性部分を示す。適切なプロドラッグ誘導体の選択及び調製のための従来の手法は、例えば「Design of Prodrugs」(H. Bundgaard編, Elsevier, 1985)(これは、その全体において参照により本明細書中で援用される)に記載されている。
【0019】
「プロドラッグエステル」という用語は、生理学的条件下で加水分解される任意のいくつかのエステル形成基の付加により形成される本明細書中に開示された化合物の誘導体を指す。プロドラッグエステル基の例としては、ピボイルオキシメチル、アセトキシメチル、フタリジル、インダニル及びメトキシメチル、並びに当該技術分野で既知の他のこのような基、例えば(5−R−2−オキソ−1,3−ジオキソレン−4−イル)メチル基が挙げられる。プロドラッグエステル基の他の例は、例えばT. Higuchi及びV. Stella著「Pro-drugs as Novel Delivery Systems」, Vol. 14, A.C.S. Symposium Series, American Chemical Society (1975)、及び「Bioreversible Carriers in Drug Design: Theory and Application」, E.B. Roche編, Pergamon Press: New York, 14-21 (1987)(カルボキシル
基を含有する化合物のためのプロドラッグとして有用なエステルの例を提示)に見出され得る(上記の参考文献は各々、その全体において参照により本明細書中で援用される)。
【0020】
本明細書中に開示される化合物の代謝産物としては、生物学的環境中への化合物の導入時に生成される活性種が挙げられる。
【0021】
本明細書中に開示される化合物が少なくとも1つのキラル中心を有する場合、それらはラセミ化合物として、又はエナンチオマーとして存在し得る。このような異性体及びその混合物はすべて、本発明の範囲内に含まれる、ということに留意すべきである。さらに本明細書中に開示される化合物の結晶形態のいくつかは、多形体として存在し得る。このような多形体は、本発明の一実施形態に含まれる。さらに、本発明の化合物のいくつかは、水(即ち水和物)又は一般的な有機溶媒と溶媒和物を形成し得る。このような溶媒和物は、本発明の一実施形態に含まれる。
【0022】
「薬学的に許容可能な塩」という用語は、それが投与される生物体に対して有意の刺激を生じないし、その化合物の生物学的活性及び特性を阻害しない化合物の塩を指す。いくつかの実施形態では、この塩は化合物の酸付加塩である。薬学的な塩は、化合物を無機酸、例えばハロゲン化水素酸(例えば塩酸又は臭化水素酸)、硫酸、硝酸、リン酸等と反応させることにより得ることができる。薬学的な塩は、化合物を有機酸、例えば脂肪族又は芳香族のカルボン酸又はスルホン酸(例えば酢酸、コハク酸、乳酸、リンゴ酸、酒石酸、クエン酸、アスコルビン酸、ニコチン酸、メタンスルホン酸、エタンスルホン酸、p−トルエンスルホン酸、サリチル酸又はナフタレンスルホン酸)と反応させることによっても得ることができる。薬学的な塩は、化合物を塩基と反応させて、アンモニウム塩、アルカリ金属塩、例えばナトリウム塩又はカリウム塩、アルカリ土類金属塩、例えばカルシウム塩又はマグネシウム塩、有機塩基の塩、例えばジクロロヘキシルアミン、N−メチル−D−グルカミン、トリス(ヒドロキシメチル)メチルアミン、C1〜C7アルキルアミン、シクロヘキシルアミン、トリエタノールアミン、エチレンジアミンの塩、並びにアミノ酸、例えばアルギニン、リジン等との塩等の塩を形成することによっても得ることができる。
【0023】
薬学的処方物の製造が薬学的賦形剤と塩の形態での活性成分とを密接に混合することを包含する場合には、非塩基性、即ち酸性又は中性の賦形剤である薬学的賦形剤を用いるのが望ましい。
【0024】
種々の実施形態において、本明細書中に開示される化合物は、単独で、本明細書中に開示される他の化合物と組合せて、或いは本明細書中に記載される治療領域における1つ又は
複数の他の薬剤と組合せて用いられ得る。
【0025】
「ハロゲン原子」という用語は、本明細書中で用いる場合、元素の周期表の第7列の放射性安定原子のうちのいずれか1つ、例えばフッ素、塩素、臭素又はヨウ素を意味し、フッ素及び塩素が好ましい。
【0026】
「エステル」という用語は、式−(R)n−COOR’(式中、R及びR’は、独立して
、アルキル、シクロアルキル、アリール、ヘテロアリール(炭素環を介して結合される)及びヘテロ脂環式(炭素環を介して結合される)から成る群から独立して選択され、nは0又は1である)を有する化学的部分を指す。
【0027】
「アミド」とは、式−(R)n−C(O)NHR’又は−(R)n−NHC(O)R’(式中、R及びR’は、独立して、アルキル、シクロアルキル、アリール、ヘテロアリール(炭素環を介して結合される)及びヘテロ脂環式(炭素環を介して結合される)から成る群から選択され、nは0又は1である)を有する化学的部分である。アミドは、本発明の分子と結合し、それによりプロドラッグを形成するアミノ酸又はペプチド分子であり得る。
【0028】
本発明の化合物上の任意のアミン、ヒドロキシ又はカルボキシル側鎖は、エステル化又はアミド化され得る。この目的を達成するために用いられるべき手法及び具体的な基は当業者に既知であり、Greene及びWuts著「Protective Groups in Organic Synthesis」,第3
版, John Wiley & Sons, New York, NY, 1999(これは参照にその全体においてより本明
細書中で援用される)のような参考文献出典に容易に見出され得る。
【0029】
「精製された」、「実質的に精製された」及び「単離された」という用語は、本明細書中で用いる場合、本発明の化合物が所定試料の質量の少なくとも0.5重量%、1重量%、5重量%、10重量%又は20重量%、最も好ましくは少なくとも50重量%又は75重量%を含有するように、本発明の化合物が通常、それらの天然状態で会合される他の異なる化合物を含有していない、本明細書中に開示される化合物を指す。
【0030】
使用方法
本明細書中に示される実施例により実証されるように、式(I)の化合物は、キモトリプシン様、トリプシン様及びカスパーゼ様プロテアソーム活性を阻害する。これに対してボルテゾミブは、キモトリプシン様プロテアソーム活性のみを阻害することが示されている(Goldberg, A.L. & Rock, K. (2002) Nat Med 8, 338-40及びAdams, J. (2004) Nat Rev
Cancer 4, 349-60を参照されたい)(これらは共に、全体において参照により本明細書
中で援用される)。式(I)の化合物は、ボルテゾミブとは異なる作用メカニズムを有することがさらに実証される。さらに、式(I)の化合物は、種々の多発性骨髄腫細胞株、例えばデキサメタゾン感受性MM.1S、デキサメタゾン耐性MM.1R、RPMI−8226、OPM2、U266及びドキソルビシン耐性Dox−40(これらに限定されない)においてアポトーシスを誘導する。式Iの化合物は、デキサメタゾン、ボルテゾミブ及びサリドマイドを用いた複数の従来の療法後に再発したヒト多発性骨髄腫から得られる細胞株におけるアポトーシスも誘導した。したがって式(I)の化合物は、他の化学療法剤、例えばデキサメタゾン、ドキソルビシン、ボルテゾミブ/PS−341及びサリドマイドに耐性であるMM細胞に対して有効である。
【0031】
したがって、一実施形態では、少なくとも1つの化学療法剤に対する耐性になりやすい腫瘍性疾患の治療方法が提供され、これは、式(I)の化合物又はその薬学的に許容可能な塩若しくはプロドラッグエステルを患者、例えばヒトに投与することを包含する。「少なくとも1つの化学療法剤に対する耐性」とは、患者への化学療法剤の投与が腫瘍性疾患の症候の有意な改善を生じないことを意味する。腫瘍性疾患が腫瘍により特性化されるいくつかの実施形態では、「少なくとも1つの化学療法剤に対する耐性」とは、化学療法剤の投与が腫瘍の増殖の明らかな抑制又は腫瘍のサイズの低減を生じないことを意味する。「少なくとも1つの化学療法剤に対する耐性」は、薬剤が耐性腫瘍細胞に曝露される場合、明らかなアポトーシスが誘導されないことも意味し得る。少なくとも1つの化学療法剤に対する耐性に「なりやすい」とは、腫瘍性疾患が一般的に少なくとも1つの化学療法剤に対して耐性であるか、又は化学療法剤の反復投与時に耐性を発現することを意味する。
【0032】
本明細書中の実施例は、式(I)の化合物が、ボルテゾミブと組合されると、MM細胞における相乗的アポトーシスを誘発することも実証する。したがって式(I)の化合物は、薬剤が別々に投与された場合よりも低用量の各薬剤を用いてアポトーシスを達成するためにボルテゾミブ/PS−341と組合せて投与され、それにより薬剤の毒性を低減し得る。驚くべきことに、これらの結果は、2つの異なるプロテアソーム阻害薬を投与することにより相乗的結果が得られることを実証する。「相乗的」とは、2つ以上の薬剤の組合せが1.0未満の組合せ指数(CI)を生じることを意味する。式(I)の化合物と非プロテアソーム阻害薬との組合せは相加的作用を与えることも実証された。「相加的」とは、2つ以上の薬剤の組合せが約1のCIを生じることを意味する。CIは、例えば以下の方程式:CI=(D)1/(Dx)1+(D)2/(Dx)2+(D)1(D)2/(Dx
)1(Dx)2(式中、(D)1及び(D)2は、組合せて用いられる場合にx作用を有する薬剤1及び薬剤2の用量であり;(Dx)1及び(Dx)2は単独で用いられる場合、同じx作用を有する薬剤1及び薬剤2の用量である)に従ってチョウ・タラレイ(Chou-Talalay)法により、確定され得る。
【0033】
したがって、一実施形態では、腫瘍性疾患を治療するための方法が提供され、これは2つ以上のプロテアソーム阻害薬を相乗的組合せで投与することを包含する。組合せられるプロテアソーム阻害薬の種類の非限定的な例としては、ペプチドボロネートプロテアソーム阻害薬、ペプチドアルデヒドプロテアソーム阻害薬及び非ペプチドプロテアソーム阻害薬が挙げられる。ペプチドボロネートプロテアソーム阻害薬の非限定的な例は、ボルテゾミブである。ペプチドアルデヒドプロテアソーム阻害薬の非限定的な例は、MG−132である。非ペプチドプロテアソーム阻害薬の非限定的な例としては、オムラリド及び式(I)の化合物が挙げられる。一実施形態では、プロテアソーム阻害薬の少なくとも1つは式(I)の化合物又はボルテゾミブである。「組合せ」投与とは、それらが実際に投与された時間又は方法に関係なく、2つ以上の薬剤が同時に患者の血流中に見出され得ることを意味する。一実施形態では、これらの薬剤を同時に投与する。このような一実施形態では、組合せ投与は、単一剤形で薬剤を組合せることにより成し遂げられる。別の実施形態では、薬剤は逐次的に投与される。一実施形態では、薬剤は、同一経路により、例えば経口的に投与される。別の実施形態では、薬剤は、異なる経路により投与され、例えば1つは経口的に、もう1つは静脈内に投与される。有益な一実施形態では、2つ以上の薬剤の薬物動態は実質的に同じである。
【0034】
一実施形態では、腫瘍性疾患の治療方法が提供され、これは式(I)の化合物を別の化学療法剤と組合せて投与することを包含する。一実施形態では、他の化学療法剤はデキサメタゾン、ドキソルビシン又はサリドマイドである。一実施形態では、他の化学療法剤は、別のプロテアソーム阻害薬、例えばボルテゾミブである。一実施形態では、式(I)の化合物を付加的化学療法剤と組合わせた薬学的組成物が提供される。
【0035】
いくつかの実施形態では、上記の方法のいずれかにより治療される腫瘍性疾患は、乳癌、肉腫、白血病、卵巣癌、子宮癌、膀胱癌、前立腺癌、結腸癌、直腸癌、胃癌、肺癌、リンパ腫、多発性骨髄腫、膵臓癌、肝臓癌、腎臓癌、内分泌癌、皮膚癌、黒色腫、血管腫、及び脳又は中枢神経系(CNS)癌から選択される癌であり得る。一実施形態では、腫瘍性疾患は多発性骨髄腫である。
【0036】
薬学的組成物
別の態様では、本発明の開示は、生理学的に許容可能な界面活性剤、担体、希釈剤、賦形剤、平滑化剤、懸濁剤、皮膜形成物質及びコーティング助剤或いはその組合せ;並びに本明細書中に開示される化合物又は組合せを含む薬学的組成物に関する。治療的使用のための許容可能な担体又は希釈剤は製薬業界で既知であり、そして、例えば「Remington's Pharmaceutical Sciences」,第18版, Mack Publishing Co., Easton, PA (1990)(これはその全体において参照により本明細書中で援用される)に記載されている。防腐剤、安定剤、染料、甘味剤、芳香剤、香味料等が、薬学的組成物中に提供される。例えば安息香酸ナトリウム、アスコルビン酸、並びにp−ヒドロキシ安息香酸のエステルは、防腐剤として付加され得る。さらに、酸化防止剤及び懸濁剤が用いられ得る。種々の実施形態では、アルコール、エステル、硫酸化脂肪族アルコール等は界面活性剤として用いられ得る;スクロース、グルコース、ラクトース、デンプン、結晶化セルロース、マンニトール、軽質無水ケイ酸塩、アルミン酸マグネシウム、メタケイ酸アルミン酸マグネシウム、合成ケイ酸アルミニウム、炭酸カルシウム、炭酸ナトリウム、リン酸水素カルシウム、カルボキシメチルセルロースカルシウム等は賦形剤として用いられ得る;ステアリン酸マグネシウム、タルク、硬化油等は平滑化剤として用いられ得る;ヤシ油、オリーブ油、ゴマ油、落花
生油、ダイズ油は、懸濁剤又は滑剤として用いられ得る;セルロース又は糖のような炭水化物の誘導体としての酢酸フタル酸セルロース、若しくはポリビニルの誘導体としてのメチルアセテート・メタクリレートコポリマーは、懸濁剤として用いられ得る;そして可塑剤、例えばフタル酸エステル等は懸濁剤として用いられ得る。
【0037】
「薬学的組成物」という用語は、他の化学成分、例えば希釈剤又は担体と本明細書中に開示された化合物の混合物又はその化合物の組合せを指す。薬学的組成物は、生物体への化合物の投与を促す。化合物を投与する多数の技法、例えば経口、注射、エーロゾル、非経口及び局所的投与が当該技術分野に存在するが、これらに限定されない。薬学的組成物は、化合物を無機又は有機酸、例えば塩酸、臭化水素酸、硫酸、硝酸、リン酸、メタンスルホン酸、エタンスルホン酸、p−トルエンスルホン酸、サリチル酸等と反応させることによっても得られる。
【0038】
「担体」という用語は、細胞又は組織中への化合物の組み込みを促す化合物を定義する。例えばジメチルスルホキシド(DMSO)は、生物体の細胞又は組織中への多数の有機化合物の取り込みを促すので、一般に利用される担体である。
【0039】
「希釈剤」という用語は、対象の化合物を溶解し、化合物の生物学的に活性な形態を安定化する水中に希釈される化合物を定義する。緩衝溶液中に溶解される塩は、当該技術分野で希釈剤として利用される。一般に用いられる一緩衝溶液はヒト血液の塩状態を模倣するため、リン酸塩緩衝生理食塩水である。緩衝塩は低濃度で溶液のpHを制御し得るため、緩衝希釈剤は化合物の生物活性をめったに改質しない。
【0040】
「生理学的に許容可能な」という用語は、化合物の生物活性及び特性を阻害しない担体又は希釈剤を定義する。
【0041】
本明細書中に記載される薬学的組成物は、それ自体、又は適切な担体若しくは賦形剤(単数又は複数)と混合される薬学的組成物中で、ヒト患者に投与され得る。本出願の化合物の処方及び投与のための技法は、「Remington's Pharmaceutical Sciences」 Mack Publishing Co., Easton, PA,第18版, 1990に見出され得る。
【0042】
適切な投与経路としては、例えば経口、直腸、経粘膜、局所又は腸投与;非経口的送達、例えば筋肉内、皮下、静脈内、髄内注射、並びにくも膜下腔内、直接脳室内、腹腔内、鼻内又は眼内注射が挙げられる。化合物は、予定速度での長期及び/又は時限の、パルス投与のための、徐放性剤形、例えばデポー注射(depot injection)、浸透圧ポンプ、ピル、
経皮(電気輸送を含めた)パッチ等でも投与され得る。
【0043】
本発明の薬学的組成物は、それ自体既知である様式、例えば従来の混合、溶解、造粒、ドラジェ製法、水簸、乳化、被包、封入又は錠剤法で製造され得る。
【0044】
したがって本発明に従って用いるための薬学的組成物は、薬学的に用いられ得る製剤への活性化合物の加工処理を促す賦形剤及び助剤を含む1つ又は複数の生理学的に許容可能な
担体を用いて、従来の様式で処方され得る。適切な処方物は、選択される投与経路によって決定する。任意の既知の技法、担体及び賦形剤は、当該技術分野で、例えば上記のRemington's Pharmaceutical Sciencesにおいて適切に、且つ理解されるように用いられ得る

【0045】
注射剤は、従来の形態で、注射前に液体中の溶液又は懸濁液に適した固体形態で液体溶液若しくは懸濁液として、又は乳濁液として調製され得る。適切な賦形剤は、例えば水、生理食塩水、デキストロース、マンニトール、ラクトース、レシチン、アルブミン、グルタ
ミン酸ナトリウム、塩酸システイン等である。さらに、所望により、注射可能な薬学的組成物は、少量の非毒性補助物質、例えば湿潤剤、pH緩衝剤等を含有し得る。生理学的適合性緩衝液としては、ハンクス溶液、リンガー溶液又は生理食塩緩衝液が挙げられるが、これらに限定されない。所望により、吸収増強調製物(例えばリポソーム)が利用され得る。
【0046】
経粘膜投与のためには、浸透されるべきバリアに適した浸透剤が処方物中に用いられ得る。
【0047】
例えばボーラス注射又は連続注入による非経口投与のための薬学的処方物としては、水溶性形態の活性化合物の水溶液が挙げられる。さらに活性化合物の懸濁液は、適切な油状注射懸濁液として調製され得る。適切な親油性溶媒若しくはビヒクルとしては、脂肪油、例えばゴマ油、又は他の有機油、例えばダイズ油、グレープフルーツ油若しくはアーモンド油、又は合成脂肪酸エステル、例えばエチルオレエート又はトリグリセリド、若しくはリポソームが挙げられる。水性注射懸濁液は、懸濁液の粘度を増大する物質、例えばカルボキシメチルセルロースナトリウム、ソルビトール又はデキストランを含有し得る。懸濁液は、適切な安定剤、又は高濃度溶液の調製を可能にするために化合物の溶解度を増大する薬剤も適宜含有し得る。注射用の処方物は、単位剤形で、例えばアンプル中で、又は多用量容器中で、付加的防腐剤と共に存在し得る。組成物は、油状ビヒクル又は水性ビヒクル中の懸濁液、溶液又は乳濁液のような形態を取り得て、処方剤、例えば懸濁剤、安定剤及び/又は分散剤を含有し得る。代替的には活性成分は、使用前に適切なビヒクル、例えば発熱物質無含有滅菌水との構成のために粉末形態であり得る。
【0048】
経口投与のためには、活性化合物を当該技術分野で既知の薬学的に許容可能な担体と組合せることにより、化合物は容易に処方され得る。このような担体は、治療されるべき患者による経口摂取のために、本発明の化合物を錠剤、ピル、ドラジェ、カプセル、液体、ゲル、シロップ、スラリー、懸濁液等として処方することができる。経口使用のための薬学的調製物は、活性化合物を固体賦形剤と組合せ、任意にその結果生じる混合物を粉砕し、そして顆粒の混合物を加工処理し、所望により適切な助剤を付加した後、錠剤又はドラジェコアを得ることにより生成され得る。適切な賦形剤は、特に、充填剤、例えば糖(例えばラクトース、スクロース、マンニトール又はソルビトール);セルロース調製物、例えばトウモロコシデンプン、コムギデンプン、コメデンプン、ジャガイモデンプン、ゼラチン、トラガカントゴム、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウム及び/又はポリビニルピロリドン(PVP)である。所望により、崩壊剤、例えば架橋ポリビニルピロリドン、寒天又はアルギン酸又はその塩、例えばアルギン酸ナトリウムが付加され得る。ドラジェコアは、適切なコーティングを備えている。この目的のために、濃縮糖溶液が用いられ、これは任意にアラビアゴム、タルク、ポリビニルピロリドン、カルボポールゲル、ポリエチレングリコール及び/又は二酸化チタン、ラッカー溶液、並びに適切な有機溶媒又は溶媒混合物を含有し得る。染料又は顔料は、同定のために、又は活性化合物用量の異なる組合せを特性化するために、錠剤又はドラジェコーティングに付加され得る。この目的のために、濃縮糖溶液が用いられ、これは、任意にアラビアゴム、タルク、ポリビニルピロリドン、カルボポールゲル、ポリエチレングリコール及び/又は二酸化チタン、ラッカー溶液、並びに適切な有機溶媒又は溶媒混合物を含有し得る。染料又は顔料は、同定のために、又は活性化合物用量の異なる組合せを特性化するために、錠剤又はドラジェコーティングに付加され得る。
【0049】
経口的に用いられ得る薬学的調製物としては、ゼラチン製のプッシュ・フィットカプセル、並びにゼラチン及び可塑剤、例えばグリセロール又はソルビトールから作られる軟質密閉カプセルが挙げられる。プッシュ・フィットカプセルは、ラクトースのような充填剤、デンプンのような結合剤及び/又はタルク又はステアリン酸マグネシウムのような滑剤、
及び任意に安定剤との混合物中に活性成分を含有し得る。軟質カプセル中では、活性化合物は、適切な液体、例えば脂肪油、液体パラフィン又は液体ポリエチレングリコール中に溶解されるか、又は懸濁され得る。さらに、安定剤が付加され得る。経口投与のための処方物はすべて、このような投与に適した投与量であるべきである。
【0050】
頬側投与のためには、組成物は、従来の形態で処方される錠剤又はロゼンジの形態を取り得る。
【0051】
吸入による投与のために、本発明に従って用いる化合物は、適切な噴霧剤、例えばジクロロジフルオロメタン、トリクロロフルオロメタン、ジクロロテトラフルオロエタン、二酸化炭素又は他の適切な気体を用いて、加圧パック又はネブライザーからのエーロゾル噴霧供給(presentation)の形態で簡便に送達される。加圧エーロゾルの場合、投与量単位は、計測量を送達するための弁を提供することにより確定され得る。化合物及び適切な粉末基剤、例えばラクトース又はデンプンの混合粉末を含有する、例えば吸入器又は通気器に用いるためのゼラチンのカプセル及びカートリッジが処方され得る。
【0052】
眼内、鼻内及び耳内送達を含む使用のための製薬業界で既知の種々の薬学的組成物が、さらに本明細書中に開示される。これらの使用のための適切な浸透剤は、当該技術分野で一般的に既知である。眼内送達のための薬学的組成物としては、水溶性形態での、例えば点眼薬中の、又はジェランガム(Shedden他, Clin. Ther., 23(3): 440-50 (2001))又はヒドロゲル(Mayer他, Ophthalmologica, 210(2): 101-3 (1996))中の活性化合物の点眼水溶液;眼軟膏;眼懸濁液、例えば液体担体媒質中に懸濁されるマイクロ粒子、薬剤含有低ポリマー粒子(Joshi, A., J. Ocul. Pharmacol., 10(1): 29-45 (1994))、脂質溶解性
処方物(Alm他, Prog. Clin. Biol. Res., 312: 447-58 (1989))、及びマイクロスフェ
ア(Mordenti, Toxicol. Sci., 52(1): 101-6 (1999));並びに眼球挿入物が挙げられる(上記の参考文献はすべて、その全体において参照により本明細書中で援用される)。このような適切な薬学的処方物は、最も頻繁に、且つ好ましくは安定性及び快適性のために滅菌性で、等張性でありそして緩衝化されるよう処方される。鼻内送達のための薬学的組成物は、正常繊毛作用の維持を保証するために多くの点で鼻分泌物をシミュレートするようにしばしば調製される液滴及び噴霧剤も含み得る。Remington's Pharmaceutical Sciences, 第18版, Mack Publishing Co., Easton, PA (1990)(これはその全体において参
照により本明細書中で援用される)に開示されたように、そして当業者に既知であるように、適切な処方物は最も頻繁に、及び好ましくは等張性で、5.5〜6.5のpHを維持するためにわずかに緩衝化され、そして最も頻繁で、且つ好ましくは、抗細菌性防腐剤及び適切な薬剤安定剤を含む。耳内送達のための薬学的処方物としては、耳における局所的適用のための懸濁剤及び軟膏が挙げられる。このような耳用処方物に一般的な溶媒としては、グリセリン及び水が挙げられる。
【0053】
化合物は、例えば従来の座薬基剤(例えばココアバター又は他のグリセリド)を含有する座薬又は保留浣腸等の直腸用組成物中にも処方され得る。
【0054】
前記の処方物に加えて、化合物は、デポー製剤としても処方され得る。このような長期作用処方物は、埋込み(例えば皮下又は筋肉内)により、又は筋肉内注射により投与され得る。したがって、例えば化合物は、適切な高分子物質若しくは疎水性物質(例えば許容可能な油中の乳濁液として)、又はイオン交換樹脂を用いて、又は難溶性誘導体として、例えば難溶性塩として、処方され得る。
【0055】
疎水性化合物に関しては、適切な薬学的担体は、ベンジルアルコール、非極性界面活性剤、水混和性有機ポリマー及び水相を含む共溶媒系であり得る。用いられる一般的な共溶媒系はVPD共溶媒系であって、これは、無水エタノール中の容量に取り入れられる3%w
/vのベンジルアルコール、8%w/vの非極性界面活性剤ポリソルベート80(商標)及び65%w/vのポリエチレングリコール300の溶液である。当然の帰結として、共溶媒系の割合は、その溶解度及び毒性特質を破壊することなくかなり変化し得る。さらに、共溶媒構成成分の同一性は変更され得る:例えば他の低毒性非極性界面活性剤が、ポリソルベート80(商標)の代わりに用いられ得る;ポリエチレングリコールの画分サイズは、変化し得る;他の生体適合性ポリマー、例えばポリビニルピロリドンが、ポリエチレングリコールに取って代わり得る;そして他の糖又は多糖がデキストロースの代わりになり得る。
【0056】
代替的には、疎水性薬学的化合物のための他の送達系が用いられ得る。リポソーム及び乳濁液は、疎水性薬剤のための送達ビヒクル又は担体の既知の例である。特定の有機溶媒、例えばジメチルスルホキシドも用いられ得るが、通常はより大きな毒性という犠牲を払う。さらに、化合物は、徐放系、例えば治療薬を含有する固体疎水性ポリマーの半透性マトリックスを用いて送達され得る。種々の徐放性物質が確立されており、これは当業者に既知である。徐放性カプセルは、それらの化学的性質によって、数週間から100日を超えるまでの間、化合物を放出し得る。治療用試薬の化学的性質及び生物学的安定性によって、タンパク質安定化のための付加的戦略が用いられ得る。
【0057】
細胞内に投与されるように意図される薬剤は、当業者に既知の技法を用いて投与され得る。例えばこのような薬剤は、リポソーム中に被包され得る。リポソーム形成の時点で水溶液中に存在する分子はすべて、水溶液内部に組み入れられる。リポソーム内容物は、外部ミクロ環境から保護され、そしてリポソームが細胞膜と融合するため、細胞質中に効率的に送達される。リポソームは、組織特異的抗体で被覆され得る。リポソームは、所望の器官により選択的に標的化され、取り込まれる。代替的には疎水性有機低分子は、細胞内に直接投与され得る。
【0058】
付加的治療薬又は診断薬が、薬学的組成物中に組み入れられる。代替的に又は付加的に、薬学的組成物は、他の治療薬又は診断薬を含有する他の組成物と組合され得る。
【0059】
投与方法
化合物又は薬学的組成物は、任意の適切な手段により患者に投与され得る。投与方法の非限定的な例としては、とりわけ、(a)経口経路による投与、この投与としてはカプセル、錠剤、顆粒、スプレー、シロップ又は他のこのような形態での投与が挙げられる;(b)非経口経路、例えば直腸、膣、尿道内、眼球内、鼻内又は耳内による投与、この投与としては水性懸濁液、油状調製物等として、又はドリップ、スプレー、座薬、サルブ(salve)、軟膏等としての投与が挙げられる;(c)注射による皮下、腹腔内、静脈内、筋肉内
、皮内、眼窩内、きょう膜内、脊髄内、胸骨内等、例えば注入ポンプ送達による投与;(d)局在的、例えば腎臓又は心臓域での直接的注射による、例えばデポー剤埋込みによる投与;並びに(e)局所的投与、本発明の化合物を生存組織と接触させるのに適していると当業者に思われるようなもの、が挙げられる。
【0060】
投与に適した薬学的組成物としては、その意図される目的を達成するのに有効な量で活性成分が含有される組成物が挙げられる。単回用量として必要とされる本明細書中に開示される化合物の治療的に有効な量は、投与経路、治療中の動物の種類、例えばヒト、及び考慮中の特定動物の身体的特質によって決まる。用量は所望の作用を達成するよう調整され得るが、体重、食餌、併用薬のような因子、及び医薬業界の当業者が認識するその他の因子によって決まる。さらに具体的には、治療的に有効な量は、疾患の症候を予防、軽減、若しくは改善するのに、又は治療中の被験者を延命させるのに有効な化合物の量を意味する。治療的有効量の確定は、特に本明細書中に提示される詳細な開示の点から見て、十分に当業者の能力内である。
【0061】
当業者に容易に明らかであるように、投与されるべき有用なin vivo投与量並びに
特定の投与方式は、治療される哺乳類の年齢、体重及び種類、用いられる特定化合物、並びにこれらの化合物が用いられる特定用途によって変わる。有効投与量レベル、即ち所望の結果を達成するのに必要な投与量レベルの確定は、決められた薬理学的方法を用いて、当業者により成し遂げられ得る。一般的には、製品のヒト臨床適用は低投与量レベルで開始され、投与量レベルは所望の作用が達成されるまで増大される。代替的には、確立された薬理学的方法を用いて本発明の方法により同定される組成物の有用な用量及び投与経路を確立するために、許容可能なin vitro試験が用いられ得る。
【0062】
非ヒト動物試験では、可能性のある製品の適用は、より高い投与量レベルで開始され、投与量は所望の作用がもはや達成されないか、又は副作用が消失するまで低減される。投与量は、所望の影響及び治療指標によって、広範に変動し得る。一般的には、投与量は、約10μg/体重1kg〜100mg/kg、好ましくは約100μg/kg〜10mg/kgであり得る。代替的には投与量は、当業者に理解されるように、患者の体表面積に基づいて算定され得る。
【0063】
本発明の薬学的組成物の正確な処方、投与経路及び投与量は、患者の症状を考慮して、個々の医者により選択され得る(例えばFingl他(1975)著「The Pharmacological Basis of Therapeutics」を参照されたい)(これは、その全体において参照により、特に第1章1ページを参照することにより、本明細書中で援用される)。一般的には、患者に投与される組成物の用量範囲は、約0.5〜1000mg/患者の体重1kgであり得る。投与は、患者に必要とされる場合、単一回であるか、又は1日若しくはそれ以上の日数の間に投与される一続きの2回以上の投与であり得る。化合物のヒト投与量が少なくともいくつかの症状に関して確立された場合、本発明は、確立されたヒト投与量と同じ投与量、又はその約0.1%〜500%、さらに好ましくは約25%〜250%である投与量を用いる。新たに発見された薬学的化合物の場合のように、ヒト投与量が確立されない場合、適切なヒト投与量はED50値若しくはID50値、又は動物における毒性試験及び有効性試験により制限されるように、in vitro又はin vivo試験から得られる他の適切な値から推測され得る。
【0064】
担当医は、毒性又は器官機能不全のために投与を終結、中断又は調整する方法及び時機を知っていることに留意すべきである。逆に言えば、臨床応答が適切でなかった場合、より高いレベルに治療を調整する(毒性を取り除く)ことも、担当医は知っている。対象の疾病の管理において投与される用量の大きさは、治療されるべき症状の重症度によって、そして投与経路に合わせて変わる。例えば症状の重症度は、一部は、標準的な予後評価法により評価され得る。さらに、用量、そしておそらくは投与頻度も、個々の患者の年齢、体重及び応答によって変わる。上記のものに相当するプログラムが、獣医学で用いられ得る。
【0065】
的確な投与量は薬剤毎に確定されるが、多くの場合、投与量に関する多少の普遍化がなされ得る。成人患者に関する1日の投与量レジメンは、例えば0.1mg〜2000mg、好ましくは1mg〜500mg、例えば5〜200mgの各活性成分の経口用量であり得る。他の実施形態では、0.01mg〜100mg、好ましくは0.1mg〜60mg、例えば1〜40mgの各活性成分の静脈内、皮下又は筋肉内用量が用いられる。薬学的に許容可能な塩の投与の場合、投与量は遊離塩基として算定され得る。いくつかの実施形態では、組成物は1〜4回/日投与される。代替的には本発明の組成物は、好ましくは1000mg/日までの各活性成分の用量で、連続静脈内注入により投与され得る。当業者により理解されるように、特定の状況では、特に侵攻性の疾患又は感染を効果的に且つ積極的に治療するために、上記の好ましい投与量範囲を超えるか、又ははるかに超える量で、
本明細書中に開示される化合物を投与する必要があり得る。いくつかの実施形態では、化合物は、連続治療期間、例えば1週間以上、又は数ヶ月若しくは数年間、投与される。
【0066】
投与量及び投与間隔は、独立して調整されて、調節作用又は最小有効濃度(MEC)を維持するのに十分な血漿レベルの活性部分を提供し得る。MECは各化合物で変わるが、in vitroデータから概算され得る。MECを達成するために必要な投与量は、個体
の特質及び投与経路によって変わる。しかしながらHPLC検定又はバイオアッセイを用いて、血漿濃度を確定し得る。
【0067】
投与間隔は、MEC値を用いても確定され得る。組成物は、時間の10〜90%、好ましくは30〜90%、最も好ましくは50〜90%の間、MECを上回る血漿レベルを維持するレジメンを用いて投与されるべきである。
【0068】
局在投与又は選択的取込みの場合、薬剤の有効局在濃度は、血漿濃度と関連しなくてもよい。
【0069】
投与される組成物の量は、もちろん、治療中の被験者、被験者の体重、罹患重症度、投与様式並びに処方医の判断によって決まる。
【0070】
本明細書中に開示される化合物は、既知の方法を用いて、有効性及び毒性に関して評価され得る。例えば特定の化合物、又は特定の化学的部分を共有するその化合物のサブセットの毒物学は、細胞株、例えば哺乳類、好ましくはヒト細胞株に対するin vitro毒
性を確定することにより確立され得る。このような試験の結果により、動物、例えば哺乳類、さらに具体的にはヒトにおける毒性をしばしば予測できる。代替的には動物モデル、例えばマウス、ラット、ウサギ又はサルにおける特定の化合物の毒性は、既知の方法を用いて確定され得る。特定化合物の有効性は、いくつかの認識された方法、例えばin v
itro方法、動物モデル又はヒト臨床試験を用いて確立され得る。認識されたin v
itroモデルは、ほとんどすべてのクラスの症状、例えば癌、心臓血管性疾患及び種々の免疫不全(これらに限定されない)に存在する。同様に、許容可能な動物モデルは、このような症状を治療するための化学物質の有効性を確立するために用いられ得る。有効性を確定するためにモデルを選択する場合、適切なモデル、投与量及び投与経路、並びにレジメンを選択するように最先端の技術により当業者は指導され得る。もちろん、ヒト臨床試験も、ヒトにおける化合物の有効性を確定するために用いられ得る。
【0071】
組成物は、所望により、活性成分を含有する1つ又は複数の単位剤形を含有し得るパック
又はディスペンサー装置中に提供され得る。このパックは、例えば金属又はプラスチック箔(例えばブリスター包装)を含み得る。パック又はディスペンサー装置は、投与のための取扱説明書を添付し得る。パック又はディスペンサー装置は、薬剤の製造、使用又は販売を規制する政府機関により規定される形態で容器に関連する表示も添付され得るが、この表示は、ヒト投与又は動物投与のための薬剤の形態についての政府機関による承認を反映する。例えばこのような表示は、処方薬剤に関して米国食品医薬品局により認可された標識付け、又は認可製品挿入物であり得る。適合性の薬学的担体で処方した本発明の化合物を含む組成物も調製し、適切な容器に入れて、指示症状の治療のために標識付けし得る。
【実施例1】
【0072】
一般手法
細胞培養及び試薬
Dex感受性MM.1S及びDex耐性MM.1RヒトMM細胞株を、Steven Rosen博士(Northwestern University, Chicago, IL)から入手した(Moalli, P.A., Pillay, S.,
Weiner, D., Leikin, R. & Rosen, S.T. (1992) Blood 79, 213-22及びChauhan, D., Catley, L., Hideshima, T., Li, G., Leblanc, R., Gupta, D., Sattler, M., Richardson,
P., Schlossman, R.L., Podar, K., Weller, E., Munshi, N. & Anderson, K.C. (2002)
Blood 100, 2187-94参照)(これらは共に、その全体において参照により本明細書中で
援用される)。RPMI−8226及びドキソルビシン(Dox)耐性(Dox−40)細胞を、William Dalton博士(Moffit Cancer Center, Tampa, FL)から入手した。U2
66及びOPM2 MM細胞株を、アメリカン・タイプ・カルチャー・コレクション(Rockville, MD)から入手した。ヒト腫瘍細胞株DU145、HT−29、ジャーカット、LoVo、MDA−MB−231、MIA PaCa−2、NCI−H292、OVCAR
−3、PANC−1及びPC−3は、ATCC(Manassas, VA)から購入した。10%熱不活性化ウシ胎仔血清(FBS)、100単位/mlペニシリン、100μg/mlストレプトマイシン及び2mMのL−グルタミンを補充したRPMI−1640培地中で、MM細胞株を増殖させた。複数回の以前の療法、例えばデキサメタゾン(Dex)、メルファラン、サリドマイド又はボルテゾミブ後に再発している患者から、MM細胞を新たに単離した。CD138(シンデカン−1)マイクロビーズ及び自動MACS磁気細胞選別機(Miltenyi Biotec Inc., Auburn, CA)を用いて、CD138陽性選択法により、患者の骨髄試料からMM細胞を精製した(Chauhan, D., Catley, L., Hideshima, T., Li, G., Leblanc, R., Gupta, D., Sattler, M., Richardson, P., Schlossman, R.L., Podar, K., Weller, E., Munshi, N. & Anderson, K.C. (2002) Blood 100, 2187-94参照)(これはそ
の全体において参照により本明細書中で援用される)。正常ヒト皮膚線維芽細胞CCD−27skをATCCから入手して、10%熱不活性化FBS、100単位/mlペニシリン、100μg/mlストレプトマイシン、4mMのL−グルタミン及び1mMのピルビン酸ナトリウムを補充したDMEM中で増殖させた。種々の濃度の式II(X=Cl)の化合物(Nereus Pharmaceuticals, Inc, San Diego, CA)、ボルテゾミブ又はDex(Sigma Chemical Co, St. Louis, MO)で細胞を処理した。
【0073】
細胞生存度及びアポトーシス検定
製造業者の取扱説明書(Roche Molecular Biochemicals, Indianapolis, IN)に従って、及びChauhan, D., Catley, L., Hideshima, T., Li, G., Leblanc, R., Gupta, D., Sattler, M., Richardson, P., Schlossman, R.L., Podar, K., Weller, E., Munshi, N. & Anderson, K.C. (2002) Blood 100, 2187-94(これはその全体において参照により本明細
書中で援用される)に記載されているように、臭化3−(4,5−ジメチルチオゾール−2−イル)−2,5−ジフェニルテトラゾリウム(MTT;Chemicon International Inc., Temecula, CA)検定により、細胞生存度を評価した。細胞死の検出ELISAplu
sを利用して、製造業者の取扱説明書(Roch Applied Sciences, Indianapolis, IN)に
従って、細胞死を定量した。
【実施例2】
【0074】
in vitro20Sプロテアソーム活性検定
Stein, R.L., Melandri, F. & Dick, L. (1996) Biochemistry 35, 3899-908及びLightcap, E.S., McCormack, T.A., Pien, C.S., Chau, V., Adams, J. & Elliott, P.J. (2000)
Clin Chem 46, 673-83(これらは共にその全体において参照により本明細書中で援用さ
れる)に記載されているように、20Sプロテアソームのキモトリプシン様活性を測定した。精製したヒト赤血球由来の20Sプロテアソームを、Biomol, Plymouth Meeting, PAから入手した。それぞれペプチド基質としてSuc−LLVY−AMC、Z−LLE−AMC(Boston Biochem, Cambridge, MA)及びBoc−LRR−AMC(Bachem Bioscience, King of Prussia, PA)を用いて、20Sプロテアソームのキモトリプシン様活性、
カスパーゼ様活性及びトリプシン様活性を測定した。Fluoroskan Ascen
t96ウェルマイクロプレートリーダー(Thermo Electron, Waltham, MA)を用いて、切断ペプチド基質の蛍光を測定した。S字形用量応答可変勾配モデルを用いて、プリズム(
GraphPad Software)により、EC50値を算定した。最大相対蛍光の50%が阻害される
薬剤濃度としてEC50値を定義した。結果(図1にプロットした)は、式(II)(X=Cl)の化合物が異なる濃度ではあるが、3つのプロテアソーム活性すべてを阻害することを示した。
【実施例3】
【0075】
マウス(単回の静脈内投与又は経口投与)における全血液細胞中のex vivo20S
プロテアソーム活性の分析
式(II)(X=Cl)の化合物がin vivoでプロテアソーム活性を阻害するか否
かを直接的に確定するために、100%DMSO中に式(II)(X=Cl)の化合物を溶解し、5%ソルトール(ソルトール(登録商標)HS15;ポリエチレングリコール660 12−ヒドロキシステアレート、BASF、Shreveport, LA)中に順次希釈して、2%
DMSOという最終濃度を生じた。対照ビヒクルは、2%DMSO及び98%(5%ソルトール(登録商標)HS15)で構成された。10mL/kgの容量で静脈内に又は経口的に種々の濃度の化合物を用いて、Bolder BioPATH, Inc. (Boulder, CO)で、雄Swiss−Websterマウス(5匹/群、体重20〜25g)を処理した。1群の動物は、プロテアソーム活性のベースラインを確立するために、未処理であった。化合物投与の90分後に、動物を麻酔し、心臓穿刺により血液を抜き取った。パックした全血液細胞を遠心分離により回収し、PBSで洗浄し、ex vivoプロテアソーム活性の測定のた
めにドライアイス上で凍結した。ペプチド基質suc−LLVY−AMCを用いて、白血球(WBC)溶解物中の20Sプロテアソームのキモトリプシン様活性を測定した。細胞溶解物のタンパク質濃度を用いて、相対蛍光単位(RFU)を正常化した。個々のマウスの20Sプロテアソーム活性を、平均活性を表す水平バーを用いて、図2に示す。ベースラインは、未処理マウスから調製されたWBC溶解物中で観察された20Sプロテアソーム活性を表す。結果(図2に図示)は、式(II)(X=Cl)の化合物が、用量依存的に白血球中の20Sプロテアソームのキモトリプシン様活性を阻害することを示す。重要なことに、これらの発見により、化合物が経口的に活性で、in vivoでプロテアソ
ーム活性を阻害することが確立された。
【実施例4】
【0076】
MM細胞におけるプロテアソーム活性の変化誘発の測定(in vitro)
式(II)(X=Cl)の化合物がin vitroで多発性骨髄腫細胞中のプロテアソ
ーム活性に影響を及ぼすか否かの確定を、AdaY125Iahx3L3VSとの競合実験を
用いて実行した。この検定では、式(II)(X=Cl)の化合物により標的化されない部位は、AdaY(125I)Ahx3L3VSにより標識化され、オートラジオグラフィー
により可視化されるが、一方、式(II)(X=Cl)の化合物により標的化される部位はオートラジオグラムでは観察され得ない。MM.1S MM細胞を式(II)(X=C
l)(7nM)の化合物と共に、30分間、1時間、3時間又は6時間インキュベートし、細胞溶解をガラスビーズを用いて実施した。タンパク質抽出物60μgをヨウ化プロテアソーム阻害薬AdaY125Iahx3L3VSと共に37℃で2時間インキュベートした
。次に、還元試料緩衝液中で煮沸することによりタンパク質を変性させ、12.5%SDS−PAGEゲル上で分離した後、オートラジオグラフィーを行った。図3で示され得るように、プロテアソームのベータ−5(β−5)サブユニットは、対照細胞より処理細胞中で顕著に低くAdaY(125I)Ahx3L3VSにより標識化される。β−5サブユニ
ットがキモトリプシン様活性を媒介するので、これらの結果は、式(II)(X=Cl)の化合物がβ−5サブユニットと結合し、それによりMM.1S細胞中のキモトリプシン様活性を阻害することを示唆する。さらに化合物(7nM)によるMM.1S細胞の6時間の処理は、β−2サブユニット(トリプシン活性)及びβ−1サブユニット(カスパーゼ様活性)の標識化も低減させた(データは示されていない)。
【実施例5】
【0077】
MM細胞におけるプロテアソーム活性の変化誘発の測定(in vivo)
すべての活性プロテアソームサブユニットを共有結合的に修飾するダンシル−Ahx3L3VSを伴う競合実験を用いて、プロテアソーム活性のin vivo測定を実行した。こ
の阻害薬は、ダンシル部分に対する抗体を用いて免疫ブロット法により可視化され得るダンシルスルホンアミドヘキサノイルハプテンを含有する。MM.1S細胞を式(II)(X=Cl)(7nM)の化合物で、30分間、1時間又は3時間処理し、その後、5μMダンシル−Ahx3L3VSと共に37℃で1時間インキュベートした。それらをNP−40溶解緩衝液(50mMのトリス−HCl(pH8.0)、150mMのNaCl、1%NP−40)中で30分間インキュベートすることにより、細胞を溶解し、その後、5分間遠心分離して、膜画分、核及び細胞残屑を除去した。タンパク質抽出物60μgを12.5%SDS−PAGEゲルにより分離し、その後、ポリクローナル抗ダンシルポリクローナル抗体(1:7500、ウサギ、Molecular Probes)及びホースラディッシュペルオキシダーゼ結合ヤギ抗ウサギ二次抗体(Southern Biotech)を用いて免疫ブロット分析した。増感化学発光(Western Lightning, Perkin-Elmer)により、ブロットを展開した。
図4で見られ得るように、式(II)(X=Cl)の化合物によるMM.1S細胞の処理は、β−5サブユニットのダンシルAhx3L3VS標識化を低減する。さらに、この化合物は、より高濃度(それぞれ1nM及び20nM)ではあるが、β−1サブユニット及びβ−2サブユニットのダンシルAhx3L3VS標識も低減する。これに対して、より高用量のボルテゾミブによるMM.1Sの処理は、β−2サブユニットを抑制しない(データは示されていない)。総合すると、これらの発見は、MM細胞中での3つのプロテアソーム活性すべてを阻害する式(II)(X=Cl)の化合物の能力を実証する。
【実施例6】
【0078】
MM細胞生存度に及ぼす作用
製造業者の取扱説明書(Roch Molecular Biochemicals, Indianapolis, IN)に従って、
そしてChauhan, D., Catley, L., Hideshima, T., Li, G., Leblanc, R., Gupta, D., Sattler, M., Richardson, P., Schlossman, R.L., Podar, K., Weller, E., Munshi, N. &
Anderson, K.C. (2002) Blood 100, 2187-94に記載されているように(これらはその全
体において参照により本明細書中で援用される)、臭化3−(4,5−ジメチルチオゾール−2−イル)−2,5−ジフェニルテトラゾリウム(MTT;Chemicon International
Inc., Temecula, CA)検定により、細胞生存度を評価した。式(II)(X=Cl)の
化合物による24時間のMM.1S(−■−)、Dex耐性MM.1R(−□−)、RPMI−8226(−●−)、ドキソルビシン耐性Dox−40(−◆−)、OPM2(−○−)及びU266(−◇−)細胞の処理後の細胞生存度を図5Aに示す。結果は、3つの個々の実験からの平均±SDである(P<0.005;すべての細胞株に関してn=3)。すべての細胞株における細胞生存度の用量依存性の有意の低減が観察された(IC50範囲7〜24nM)。
【0079】
精製した患者MM細胞に関しても、細胞生存度を評価した。Dex、ボルテゾミブ及びサリドマイドを含めた複数の従来療法後に再発している9人のMM患者から新たに単離された腫瘍細胞を、式(II)(X=Cl)の化合物(10nM)で24時間処理し、アポトーシスに関して分析した。図5Bに示すように、DNA断片化検定により測定されるような有意のアポトーシスをこれらの細胞において観察した(P<0.005;n=2)。プロット値は、三重反復実験試料の平均±SDである。重要なことに、実験した患者9人のうち4人はボルテゾミブ療法に対して難治性であり、5人はサリドマイド及びDex療法に対して耐性であった。これらのデータは、1)式(II)(X=Cl)の化合物は従来の治療及びボルテゾミブ療法に感受性及び耐性のMM細胞においてアポトーシスを誘導し;そして2)MM細胞に関する化合物のIC50はナノモル濃度内であることを示唆する。
【実施例7】
【0080】
骨髄間質細胞(BMSC)生存度に及ぼす作用
MM細胞は主として骨髄微小環境中に局在し、BMSCとのそれらの相互作用はMM細胞の増殖を媒介し、且つ薬剤誘導性アポトーシスに対して防御するサイトカインの産生を誘導する(Anderson, K.C. (2003) Cancer 97, 796-801(これはその全体において参照により本明細書中で援用される)参照)。したがって5人の患者MM由来のBMSCに及ぼす式(II)(X=Cl)の化合物の作用を確定した。図6に示すように、DNA断片化検定により立証されるようなこれらの細胞におけるアポトーシスを、式(II)(X=Cl)の化合物(20nM)による24時間のBMSC(患者番号1〜5)の処理は誘導しない。示した陽性対照は、検定に関する内部対照である。5人のMM患者のうちの2人から精製したMM細胞(CD138+)も同じ実験内で調べた。結果は、三重反復実験試料からの平均±SDである。化合物は、精製(CD138陽性)患者MM細胞のアポトーシスの有意の(10〜12倍)増大を誘発した。これらの結果は、式(II)(X=Cl)の化合物がMM細胞に直接的に作用するが、BMSCには直接的に作用しないことを示唆する。
【実施例8】
【0081】
組換えヒトインターロイキン−6(rhIL−6)及び組換えヒトインスリン様成長因子−I(rhIGF−I)抗アポトーシス薬の作用
BMSCへのMM細胞の付着は、BMSCからのIL−6及びIGF−I分泌を誘導し、これはMM細胞の増殖を調節するだけでなく、化学療法に対して防御する(Hardin, J., MacLeod, S., Grigorieva, I., Chang, R., Barlogie, B., Xiao, H. & Epstein, J. (1994) Blood 84, 3063-70及びChauhan, D., Kharbanda, S., Ogata, A., Urashima, M., Teoh, G., Robertson, M., Kufe, D.W. & Anderson, K.C. (1997) Blood 89, 227-234(こ
れらは共にその全体において参照により本明細書中で援用される)参照)。したがって、rhIL−6又はrhIGF−Iが式(II)(X=Cl)の化合物により誘導されるMM細胞におけるアポトーシスを抑制するか否かを評価した。rhIL−6(10ng/ml)又はrhIGF(50ng/ml)の存在下又は非存在下で、式(II)(X=Cl)の化合物(7nM)又はDex(0.5μM)で24時間、MM.1S細胞を処理した。24時間目に細胞を回収し、MTT検定により生存度を分析した。図7に示すように、平均細胞生存度は、化合物単独での処理後では47±2.3%;化合物+rhIL−6では51.2±3.2%(P=0.26、ウィルコクソン試験)及び化合物+rhIGF−Iでは50.3%±2.0%(P=0.28)であった。平均生存度は、Dexでの処理後で51±2.1%、Dex+rhIL−6に関しては92±5.5%(P=0.05、片側ウィルコクソン順位和試験により測定した場合)であった。結果は、3つの個々の実験の平均±SDである。これらの発見は、IL−6もIGF−Iも式(II)(X=Cl)の化合物の抗MM活性を阻害しないことを示唆する。これに対して、他の試験では、IL−6及びIGF−Iは共にDex誘導性低減化MM.1S細胞生存度を阻害する(Chauhan, D., Hideshima, T. & Anderson, K.C. (2003) Int J Hematol 78, 114-20及びMitsiades, C.S., Mitsiades, N., Poulaki, V., Schlossman, R., Akiyama, M., Chauhan, D., Hideshima, T., Treon, S.P., Munshi, N.C., Richardson, P.G. & Anderson, K.C. (2002) Oncogene 21, 5673-83(これらは共にその全体において参照により本明細書中で援
用される)参照)。したがって、式(II)(X=Cl)の化合物は、MM細胞に及ぼすIL−6及びIGF−Iの増殖及び防御作用を克服し、MM細胞に対するこの化合物及びDexに関して異なる作用メカニズムを示すことをデータは示唆する。高血清レベルのIL−6は、IL−6又はIGF−Iの存在下でさえMM細胞アポトーシスを誘導する、式(II)(X=Cl)の化合物の能力と結びつけられる臨床的化学耐性及び治療の失敗をもたらすという報告は、この化合物が進行型MMを有する患者における薬剤耐性を克服し得ることを示唆する(Kyrstsonis, M.C., Dedoussis, G., Baxevanis, C., Stamatelou, M. & Maniatis, A. (1996) Br J Haematol 92, 420-422(これはその全体において参照に
より本明細書中で援用される)参照)。
【実施例9】
【0082】
MM細胞の血管内皮細胞増殖因子(VEGF)誘導性移動に及ぼす影響
VEGFは骨髄微小環境中で増大され、MM細胞における移動、増殖及び新血管形成を誘発する(Podar, K., Tai, Y.T., Lin, B.K., Narsimhan, R.P., Sattler, M., Kijima, T., Salgia, R., Gupta, D., Chauhan, D. & Anderson, K.C. (2002) J Biol Chem 277, 7875-81(これはその全体において参照により本明細書中で援用される)参照)。したがって式(II)(X=Cl)の化合物がMM細胞のVEGF誘導性移動を変えるか否かを評価した。この化合物(7又は10nM)の存在下又は非存在下で、VEGF誘導性移動を実験した。Podar, K., Tai, Y.T., Davies, F.E., Lentzsch, S., Sattler, M., Hideshima, T., Lin, B.K., Gupta, D., Shima, Y., Chauhan, D., Mitsiades, C., Raje, N., Richardson, P. & Anderson, K.C. (2001) Blood 98, 428-35(これはその全体において参照により本明細書中で援用される)でこれまでに記載されるように細胞移動を検定した。図8に示すように、式(II)(X=Cl)の化合物は、MM.1S MM細胞のVEG
F誘導性移動を有意に(P<0.05)低減させる。これらの発見は、この化合物が、骨髄へのMM細胞の回帰(horming)及び末梢血中へのそれらの放出(egress)の両方を負に調
節し得ることを示す。
【実施例10】
【0083】
Bcl2媒介性防御作用に及ぼす影響
Bcl2は、癌細胞、例えばMMにおいて従来の治療に対する耐性を付与する(Cory, S.
& Adams, J.M. (2002) Nat Rev Cancer 2, 647-56及びGazitt, Y., Fey, V., Thomas, C. & Alvarez, R. (1998) Int J Oncol 13, 397-405(これらはその全体において共に参照により本明細書中で援用される)参照)。Bcl2は、ボルテゾミブ誘導性アポトーシスを適度に減衰し得る。したがってMM.1S細胞のBcl2の異所性発現が式(II)(X=Cl)の化合物に対する応答性に影響を及ぼすか否かを評価した。MM.1S細胞を安定的にBcl2構築物でトランスフェクトして、MTT検定を用いて細胞生存度の変化に関して分析した。図9に示すように、式(II)(X=Cl)の化合物は、用量依存的に、Bcl2トランスフェクト化MM.1S細胞の細胞生存度を有意に低減する(P<0.005)。それにもかかわらず、この化合物は、エンプティーベクター(empty vector
:空ベクター)トランスフェクト化MM.1S細胞と比較して、15±1.1%低いBc
l2トランスフェクト化細胞の細胞死を誘導した。結果は、3つの個々の実験の平均±SDである。これらの発見は、この化合物がBcl2媒介性防御を克服し得ることを示唆する。
【実施例11】
【0084】
マウス腫瘍モデルのin vivo評価
6週齢の三重免疫欠損ベージュ・ヌード・xid(BNX)マウスを、Frederick Cancer
Research and Development Center (Frederick, MD)から入手した。動物試験はすべて、Animal Ethics Committee of the Dana-Farber Cancer Instituteにより認可されたプ
ロトコルに従って実行した。毒性の徴候に関して、マウスを毎日観察した。イソフロウラン(isoflourane)吸入を用いて麻酔下で末端放血を実行し、CO2窒息により動物を屠殺した。式(II)(X=Cl)の化合物のin vivo抗MM活性を測定するために、
21匹のBNXマウスに、RPMI−1640培地100μl中の3×107個のRPM
I8226MM細胞を側腹部に皮下接種した。腫瘍が測定可能になったら、式(II)(X=Cl)の化合物0.25mg/kg(n=7)、0.5mg/kg(n=7)を摂取する処理群又はビヒクルのみを摂取する対照群(n=7)にマウスを割り当てた。測定可能腫瘍の発現後に、薬剤処理を開始した。薬剤(0.25mg/kg又は0.5mg/kg)を、週2回、経口的に投与した。垂直直径の連続的なカリパスによる測定を1日おき
に実行して、以下の式:4/24×(最小直径)2×(最大直径)を用いて腫瘍容積を算定した。腫瘍が2cm以上になるか、又は壊死性になった場合、動物を屠殺した。腫瘍増殖試験のために、7匹のマウスを各群で用いた。
【0085】
図10A〜Cに示すように、式(II)(X=Cl)の化合物による腫瘍保有マウスの処理は有意にMM腫瘍増殖を抑制し、これらのマウスを延命させるが、ビヒクル単独ではそうではなかった。対照群のマウスはすべて進行性腫瘍を発症したが、一方、処理マウスの70%において腫瘍の完全退行が観察された。図10Bの上方パネルのマウスは経口用量のビヒクル単独を摂取したが、一方、下方パネルのマウスは式(II)(X=Cl)の化合物(0.25mg/kg)を摂取した。図10Bの左側のパネルは、マウスの右側腹部で増殖中の皮下形質細胞腫の拡大である。処理の第1日から死亡まで、生存率を評価した;マウスの腫瘍直径が2cmに達するか、又はそれらが瀕死状態になった時に、マウスを屠殺した(図10C)。さらに処理12週間後でさえ、神経学的行動変化は観察されなかった。投与された化合物の濃度はマウスにより良好に耐容され、体重損失の徴候はなかった。未処理及び処理群の両方のマウスを、毎週計量した。マウス体重の平均変化を、図10Dに示す。
【0086】
300日目の分析は、式(II)(X=Cl)の化合物処理マウスの57%において腫瘍の再発が認められないことを示した(図10C)。さらに、接種部位で実施した組織学的分析は、式(II)(X=Cl)の化合物処理マウス対ビヒクル処理マウスにおける形質細胞の消失を確認した(それぞれ図10Eの左側のパネル及び右側のパネル)。これらのデータは、この化合物は経口的に活性であり、in vivoでのMM腫瘍増殖を抑制し
、延命させることを示す。
【実施例12】
【0087】
in vivo抗腫瘍活性の比較分析
式(II)の化合物及びボルテゾミブのin vivo活性を比較するために、上記のよ
うなマウスモデルを、週に2回、式(II)(X=Cl)の化合物(0.15mg/kg(静脈内))又はボルテゾミブ(1.0mg/kg(静脈内))で処理した。両方の薬剤は有意に腫瘍進行を低減し(p<0.01)、延命させた(p=0.0137)(図10F及び図10G)。
【実施例13】
【0088】
抗MM活性を媒介するメカニズム
ミトコンドリアは、ストレス中のアポトーシス誘導に重要な役割を果たす(Bossy-Wetzel, E. & Green, D.R. (1999) Mutat Res 434, 243-51及びChauhan, D. & Anderson, K.C. (2003) Apoptosis 8, 337-43(これらは共に参照により本明細書中で援用される)参照)。血清飢餓MM.1S細胞を式(II)(X=Cl)の化合物(7nM)で12時間処理し、最後の20分間CMXRosと共にインキュベートし、37℃で20分間、リン酸緩衝生理食塩水(PBS)中の親油性陽イオン性染料CMXRos(Mitotracker Red)(Molecular Probes, Eugene, OR)で染色し、フローサイトメトリーにより
分析して、ΔΨm(ミトコンドリア膜電位)の変化に関して検定した。最後の15分間、膜透過性染料ジヒドロエチジウム(HE)で細胞を染色することにより、スーパーオキシド(O2-)産生を測定した。スーパーオキシドアニオンはHEを蛍光エチジウムに酸化し、フローサイトメトリーによる分析を可能にする。
【0089】
図11A及び図11Bに示すように、式(II)(X=Cl)の化合物はΔΨmを低減し(CMXRos陰性細胞数の増加(P<0.005、n=2)により立証される)、MM.1S細胞におけるO2-産生を誘発する。結果は、2つの個々の実験の平均±SDである。ΔΨmの変化は、サイトゾルへのミトコンドリアタンパク質cyto−c及びSmac
の放出と、それによるカスパーゼ9及びカスパーゼ3の誘発に関連する(Du, C., Fang, M., Li, Y., Li, L. & Wand, X. (2000) Cell 102, 33-42及びLiu, X., Naekyung Kim, C., Yang, J., Jemmerson, R. & Wang, X. (1996) Cell 86, 147-157(これらはその全体
において共に参照により本明細書中で援用される)参照)。
【0090】
図11Cに示すように、式(II)(X=Cl)の化合物によるMM.1S細胞の処理は、ミトコンドリアcyto−c(上方、左側のパネル)及びsmac(上方、右側のパネル)の低減、並びにサイトゾル画分中のこれらのタンパク質の同時増大を誘発する(それぞれ中央のパネル、左側のパネル及び右側のパネル)。抗Hsp60(下方、左側のパネル)及び抗チューブリン(下方、右側のパネル)抗体による免疫ブロットの再プローブ化は、ミトコンドリア抽出物の精製並びにタンパク質の等負荷を確認する。ミトコンドリアアポトーシス誘導タンパク質cyto−c及びSmac/DIABLOの放出は、カスパーゼ−9及びカスパーゼ−3の活性化を誘導する。MM.1S細胞を式(II)(X=Cl)の化合物(7nM)で24時間処理し、回収し、ミトコンドリア及びサイトゾルタンパク質画分を12.5%SDS−PAGEにより分離して、抗cyto−c(上方のパネル)又は抗Smac(中央のパネル)抗体での免疫ブロット法により分析した。タンパク質の等負荷及びミトコンドリア画分の純度に関する対照として、ぞれぞれ抗チューブリン(下方右側のパネル)及び抗Hsp60抗体(下方左側のパネル)を用いてフィルターも再プローブ化した。ブロットは、3つの個々の実験を代表するものである。
【0091】
MM.1S細胞を式(II)(X=Cl)の化合物(7nM)で24時間処理し、回収し、サイトゾルタンパク質を12.5%SDS−PAGEにより分離して、抗カスパーゼ−8抗体及び抗カスパーゼ−9抗体での免疫ブロット法により分析した。図11Dに示すように、式(II)(X=Cl)の化合物によるMM.1S細胞の処理は、カスパーゼ−9のタンパク質分解性切断を誘導する。さらにこの化合物は、カスパーゼ−8も活性化する(図11E)。カスパーゼ−9(ミトコンドリア依存性)及びカスパーゼ−8(ミトコンドリア非依存性)は共に、一般的な下流のエフェクター、カスパーゼ−3をタンパク質分解的に切断し、活性化して、PARP切断を生じることが既知である(Miller, L.K. (1999) Trends Cell Biol 9, 323-8(これはその全体において参照により本明細書中で援用
される)参照)。したがって、MM.1S又はMM.1R MM細胞を式(II)(X=
Cl)の化合物(7nM)で24時間処理し、PARP及びカスパーゼ−3切断検定の両方によりアポトーシスに関して評価した。全タンパク質溶解物をSDS−PAGE分析に供した。抗PARP(上方のパネル)又は抗カスパーゼ−3(下方のパネル)抗体を用いて、溶解物の免疫ブロット分析を実施した。「FL」は「全長」を示し、「CF」は切断断片を意味する。このデータはさらに、式(II)(X=Cl)の化合物がカスパーゼ−3及びPARP切断を誘発することを示す(図11F)。
【0092】
チトクローム−c、Smac、カスパーゼ−8、カスパーゼ−9又はカスパーゼ−3(Cell Signaling, Beverly, MA)、チューブリン(Sigma, St. Louis, MO)、PARP、H
sp60又はBax(BD Bioscience Pharmingen, San Diego, CA)に対する抗体を用い
て、免疫ブロット分析を実施した。増感化学発光(ECL;Amersham Arlington Heights, IL)により、ブロットを現像した。
【実施例14】
【0093】
ボルテゾミブと比較した、MM細胞のアポトーシスの機構的差異
カスパーゼ−9阻害薬(LEHD−FMK)、カスパーゼ−8阻害薬(IETD−fmk)又はカスパーゼ−3阻害薬(Z−Val−Ala−Asp−フルオロメチルケトン、z−VAD−fmk)の存在下又は非存在下で、式(II)(X=Cl)の化合物又はボルテゾミブでMM.1S細胞を処理した。図12Aに示すように、カスパーゼ−3阻害は、式(II)(X=Cl)の化合物及びボルテゾミブ誘導性アポトーシスの両方を顕著に抑
制する。結果は、4つの個々の実験の平均±SDである(P<0.004)。カスパーゼ−8の阻害は式(II)(X=Cl)の化合物により誘発される細胞死の有意の低減をもたらした(P<0.005、n=4)が、一方、カスパーゼ−9のみの阻害はこの化合物により誘発されるMM.1S細胞の生存度の低減を中等度に阻害した。これに対して、MM.1S細胞におけるボルテゾミブ誘導性の生存度の低減は、カスパーゼ−8阻害薬又はカスパーゼ−9阻害薬の存在下で等しく阻害される(P<0.005)。同時に、これらのデータは、カスパーゼ−8及びカスパーゼ−9の活性化はボルテゾミブ誘発性の細胞死中に等しく一因となるが、一方、式(II)(X=Cl)の化合物により誘発されるアポトーシスは主にカスパーゼ−8シグナル伝達経路を経由して進行することを示唆する。
【0094】
優性−陰性(DN)戦略を用いた遺伝子試験により、これらの生化学的データを確認した。ベクター単独、DN−カスパーゼ−8、DN−カスパーゼ−9又はDN−FADDを用いて製造業者の取扱説明書(Amaxa Biosystems, Germany)に従って、細胞株Nucle
ofectoキットVを用いてMM.1S細胞を一過的にトランスフェクトし、緑色蛍光タンパク質(GFP)単独を含有するベクターで同時トランスフェクトした。トランスフェクト後、GFP陽性細胞をフローサイトメトリーにより選択し、式(II)(X=Cl)の化合物又はボルテゾミブで処理し、生存度に関して分析した。式(II)(X=Cl)の化合物(IC50、7nM)によるDN−カスパーゼ−8トランスフェクト化MM細胞の処理は、DN−カスパーゼ−9でトランスフェクトされた細胞と比較して、これらの細胞の生存を顕著に増大させた(図12B)。これに対して、ボルテゾミブ(IC50、5nM)を用いたDN−カスパーゼ−8又はDN−カスパーゼ−9トランスフェクト化MM.1S細胞の処理は、生存を同程度に増大させた。これらの細胞中のカスパーゼ−9(Dex)及びカスパーゼ−8の既知の誘導物質(抗Fas MoAb)(Chauhan他, 1997)を用いたMM.1S細胞の処理により、DN−カスパーゼ−8又はDN−カスパーゼ−9の機能的特異性を確認した(図12C)。これらのデータは、(1)式(II)(X=Cl)の化合物誘導性MM細胞アポトーシスは主にカスパーゼ−8により媒介され;そして(2)ボルテゾミブ誘導性アポトーシスはカスパーゼ−8及びカスパーゼ−9活性化の両方を必要とすることを示唆する。
【0095】
次に、カスパーゼ−8活性化をもたらす上流シグナル伝達経路の抑制が式(II)(X=Cl)の化合物又はボルテゾミブに対する応答に影響を及ぼすか否かを確定した。Fas会合デスドメイン(FADD)タンパク質は、TNF受容体ファミリーメンバー、例えばFasの結合時に集合して、プロカスパーゼ−8のタンパク質分解性プロセシング及び自己活性化を生じる死誘導性シグナル伝達複合体(DISC)の重要な部分である。式(II)(X=Cl)の化合物及びボルテゾミブは共にカスパーゼ−8活性化を誘発するため、MM細胞中でのこの事象の間のFADDの役割を、DN−FADDを用いて評価した。DN−FADDによるFADDの阻害は、エンプティーベクタートランスフェクト化MM.1S細胞と比較して、式(II)(X=Cl)の化合物誘導性細胞傷害性を有意に減衰した(ベクタートランスフェクト化細胞における生存可能細胞42%±2.0%対DN−FADDトランスフェクト化細胞における生存可能細胞76%±5.1%;p<0.05)(図12D)。DN−FADDは、式(II)(X=Cl)の化合物誘導性カスパーゼ−8活性化を低減させた。しかしながら最小量のカスパーゼ−8活性化は依然として認められ(データは示されていない)、これはFADD以外のカスパーゼ−8の上流活性化因子によるものであり得る。ボルテゾミブによるDN−FADDトランスフェクト化MM.1S細胞の処理は、ベクタートランスフェクト化細胞と比較して生存率が16%だけ増大させたことは重要であった(ベクタートランスフェクト化細胞における生存可能細胞39%±2.4%対DN−FADDトランスフェクト化細胞における生存可能細胞55%±4.1%;p<0.05)(図12D)。これらのデータは、カスパーゼ−8又はカスパーゼ−9阻害試験と結びつけて考えると、式(II)の化合物がボルテゾミブより強くFADD−カスパーゼ−8シグナル伝達軸に依存していることを示唆し、これはさらに、MM
細胞中での式(II)の化合物対ボルテゾミブの作用の示差的メカニズムを確認する。
【0096】
Baxはミトコンドリア・アポトーシス経路を誘導することを従来の試験は確立している(Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., MacGregor, G.R., Thompson, C.B. & Korsmeyer, S.J. (2001) Science 292, 727-30及びLei, K., Nimnual, A., Zong, W.X., Kennedy, N.J., Flavell, R.A., Thompson, C.B., Bar-Sagi, D. & Davis, R.J. (2002) Mol Cell Biol 22, 4929-42(
これらは共にその全体において参照により本明細書中で援用される)参照)。したがって式(II)(X=Cl)の化合物により誘導されるMM細胞アポトーシスがBaxの変化と相関するか否かを評価した。MM.1S MM細胞を式(II)(X=Cl)の化合物
又はボルテゾミブで処理し、ミトコンドリアタンパク質抽出物を抗Bax又は抗Hsp60抗体を用いた免疫ブロット分析に供した。図12Eに示すように、式(II)(X=Cl)の化合物は、ミトコンドリア中のBaxレベルの増大を、例えあったとしても、ほとんど誘導しない。ブロットは、3つの個々の実験を代表する。ボルテゾミブがミトコンドリア中のBaxの有意な蓄積を誘発することは重要である。
【0097】
野生型Bax又はノックアウトを保有するマウス胚線維芽細胞(MEF)を、式(II)(X=Cl)の化合物又はボルテゾミブで48時間処理し、MTT検定により細胞生存度に関して分析した。図12Fに示すように、式(II)(X=Cl)の化合物はBax(WT)及びBax(ノックアウト)の両方の生存度を低減させるが、一方、Baxの欠失はボルテゾミブに対する有意な耐性を付与する。結果は、3つの個々の実験の平均±SDである(P<0.05)。これらのデータは、式(II)(X=Cl)の化合物及びボルテゾミブにより誘導されるアポトーシス中のBaxの示差的要求を示し、これらの薬剤の異なる作用メカニズムを示唆する。
【実施例15】
【0098】
ボルテゾミブと比較した場合の正常リンパ球に及ぼす示差的影響
ボルテゾミブ療法は、患者における毒性と関連している。したがって正常細胞に及ぼす式(II)(X=Cl)の化合物及びボルテゾミブの影響を比較した。5人の健常ドナーからのリンパ球を、種々の濃度(0〜20nM)の式(II)(X=Cl)の化合物又はボルテゾミブ(0〜20nM)で72時間処理し、MTT検定により細胞傷害性に関して分析した。図13に示すように、式(II)(X=Cl)の化合物は、より高い用量(20nM)でさえ、正常リンパ球の生存を有意に低減しない(P=0.27、J−T傾向検定から)。結果は、3つの個々の実験の平均±SDである。これに対して、ボルテゾミブは、6〜10nMの低濃度でさえ、リンパ球の生存度を有意に低減させる。患者MM細胞のIC50は、正常リンパ球に影響を及ぼさない式(II)(X=Cl)の化合物の濃度で達成されるが、一方、MM細胞に関するボルテゾミブのIC50は正常リンパ球の生存度の50%の低減を誘発することは注目すべきである。同時に、これらのデータは、式(II)(X=Cl)の化合物は選択的な抗MM活性を有し、特に、それはボルテゾミブより正常細胞に対して低毒性であることを示唆する。
【0099】
式(II)の化合物又はボルテゾミブが正常リンパ球及び皮膚線維芽細胞におけるプロテアソーム活性を変えるか否かにおいても調べた。式(II)(X=Cl)の化合物及びボルテゾミブは、これらの細胞におけるプロテアソーム活性を有意に阻害した。20nMの式(II)(X=Cl)の化合物及びボルテゾミブは、キモトリプシン様プロテアソーム活性のそれぞれ99%又は59±11%の阻害を誘発した(データは示されていない)。したがって20nMの式(II)(X=Cl)の化合物は正常リンパ球における有意の細胞傷害性を誘発しなかったが、これらの細胞中でのキモトリプシン様プロテアソーム活性を低減させた。同様に、式(II)(X=Cl)の化合物(317nM)又はボルテゾミブ(15nM)に関するIC50での正常CCD−27sk線維芽細胞の処理も、プロテア
ソーム活性を阻害した(データは示されていない)。
【実施例16】
【0100】
ボルテゾミブと比較した場合のBcl−2過剰発現MM細胞に及ぼす示差的影響
アポトーシス中、BaxはBcl−2の抗アポトーシス機能を中和し、それによりcyto−c放出及びカスパーゼ−9活性化を促す。Bcl−2は、癌細胞、例えばMMにおける薬剤耐性を付与し、ボルテゾミブ誘導性致死に対する部分的防御を提供する。したがってMM.1S細胞におけるBcl−2の異所性発現が、MM細胞における細胞傷害性及び後ミトコンドリア・アポトーシスシグナル伝達を誘発する式(II)の化合物又はボルテゾミブの能力に影響を及ぼすか否かを評価した。Bcl−2の過剰発現は、両方の薬剤で処理された細胞の生存度の適度の増大を促進した:式(II)(X=Cl)の化合物に関しては、Bcl−2トランスフェクト化細胞の生存度50%±2.6%対ベクタートランスフェクト化細胞の生存度39%±1.5%(p<0.05);及びボルテゾミブに関しては、Bcl−2トランスフェクト化細胞の生存度61%±2.9%対ベクタートランスフェクト化細胞の生存度40%±2.1%(p<0.05)(図14A)。ボルテゾミブに応答するBcl−2トランスフェクト体の生存増大は、式(II)(X=Cl)の化合物に応答するもの(11%)より大きかった(21%)(p<0.04;n=3)(図14A)。さらにボルテゾミブは対照ベクタートランスフェクト化細胞における有意なカスパーゼ−9切断を誘発したが、これは、Bcl−2−トランスフェクト化細胞では顕著に減衰される(濃度計で3倍低減)。これに対して、式(II)(X=Cl)の化合物誘導性カスパーゼ−9切断は、Bcl−2過剰発現により最小限に影響される(図14B)。これらの発見は、生存度結果と合わせて考えると、Bcl−2は式(II)の化合物より多くのボルテゾミブに対する防御を提供することを示唆する。
【実施例17】
【0101】
組合せ治療
図15に示すように、式(II)(X=Cl)の化合物をボルテゾミブと組合せて用いた24時間のMM.1S又はMM.1R MM細胞の処理は、相乗的増殖抑制を誘導する。
結果は、3つの個々の実験の平均±SDである(P<0.005)。「CalcuSyn」ソフトウエアプログラム(Biosoft, Ferguson, MO及びCambridge, UK)によるアイソボログラム分析を用いて、式(II)(X=Cl)の抗MM薬剤及びボルテゾミブ間の相互作用を分析した。細胞生存度検定(MTT)のデータを、薬剤処理細胞対未処理細胞において増殖が影響された細胞の画分(FA)として表した。CalcuSynプログラムは、以下の方程式:「CI=(D)1/(Dx)1+(D)2/(Dx)2+(D)1(D)2/(Dx)1(Dx)2」(式中、(D)1及び(D)2は、組合せて用いた場合に×作用を有する薬剤1及び薬剤2の用量であり、(Dx)1及び(Dx)2は、単独で用いた場合に、同じ×作用を有する薬剤1及び薬剤2の用量である)に従ってチョウ・タラレイ法に基づいている。CI=1である場合、この方程式は保存アイソボログラムを表し、相加的作用を示す。1.0未満のCI値は、相乗的作用を示す。ボルテゾミブ+NPI−0052に関して1.0未満の組合せ指数(CI)を得たが、これは相乗的作用を示す。さらに、他の治療計画というよりむしろ、併用して投与された場合、最大の抗MM活性を得た。低用量の式(II)(X=Cl)の化合物とボルテゾミブとの併用は、正常PBMNCの生存度に有意に影響を及ぼさない(データは示されていない)。したがってボルテゾミブと式(II)(X=Cl)の化合物とによる組合せ療法は、1)毒性以下(sub-toxic)濃度の各薬剤の使用を可能にし、2)薬剤耐性の発現を遅延するか又は防止し、3
)これらの薬剤の相乗的用量の増大を可能にして、アポトーシス閾値を増大させることができる。

【特許請求の範囲】
【請求項1】
腫瘍性疾患患者における腫瘍性疾患を治療するための医薬であって、式(I):
【化1】

(式中、Xはフッ素、塩素、臭素又はヨウ素から成る群から選択される)
の化合物又はその薬学的に許容可能な塩を含み、該腫瘍性疾患が少なくとも1つの他の化学療法剤に耐性である、医薬。
【請求項2】
Xが塩素である、請求項1に記載の医薬。
【請求項3】
前記式(I)の化合物が式(II):
【化2】

の構造を有する、請求項1に記載の医薬。
【請求項4】
前記腫瘍性疾患が癌である、請求項1〜3のいずれか1項に記載の医薬。
【請求項5】
前記癌が乳癌、肉腫、白血病、卵巣癌、子宮癌、膀胱癌、前立腺癌、結腸癌、直腸癌、胃癌、肺癌、リンパ腫、多発性骨髄腫、膵臓癌、肝臓癌、腎臓癌、内分泌癌、皮膚癌、黒色腫、血管腫、及び脳又は中枢神経系(CNS)癌から成る群から選択される、請求項4
に記載の医薬。
【請求項6】
前記癌が多発性骨髄腫、結腸直腸癌、前立腺癌、乳腺癌、非小細胞肺癌及び卵巣癌又は黒色腫から成る群から選択される、請求項5に記載の医薬。
【請求項7】
前記癌が多発性骨髄腫である、請求項6に記載の医薬。
【請求項8】
前記患者がヒトである、請求項1〜7のいずれか1項に記載の医薬。
【請求項9】
腫瘍性疾患患者における腫瘍性疾患を治療するための医薬であって、少なくとも1つの付加的な化学療法剤と組合わせて、式(I):
【化3】

(式中、Xはフッ素、塩素、臭素又はヨウ素から成る群から選択される)
の化合物又はその薬学的に許容可能な塩を含む医薬。
【請求項10】
Xが塩素である、請求項9に記載の医薬。
【請求項11】
前記式(I)の化合物が式(II):
【化4】

の構造を有する、請求項9に記載の医薬。
【請求項12】
前記腫瘍性疾患が癌である、請求項9〜11のいずれか1項に記載の医薬。
【請求項13】
前記癌が乳癌、肉腫、白血病、卵巣癌、子宮癌、膀胱癌、前立腺癌、結腸癌、直腸癌、胃癌、肺癌、リンパ腫、多発性骨髄腫、膵臓癌、肝臓癌、腎臓癌、内分泌癌、皮膚癌、黒色腫、血管腫、及び脳又は中枢神経系(CNS)癌から成る群から選択される、請求項12に記載の医薬。
【請求項14】
前記癌が多発性骨髄腫、結腸直腸癌、前立腺癌、乳腺癌、非小細胞肺癌及び卵巣癌又は黒色腫から成る群から選択される、請求項13に記載の医薬。
【請求項15】
前記癌が多発性骨髄腫である、請求項14に記載の医薬。
【請求項16】
前記患者がヒトである、請求項9〜15のいずれか1項に記載の医薬。
【請求項17】
前記他の化学療法剤がデキサメタゾンである、請求項9〜16のいずれか1項に記載の医薬。
【請求項18】
前記他の化学療法剤がサリドマイドである、請求項9〜16のいずれか1項に記載の医薬。
【請求項19】
前記組合せが相乗的である、請求項9〜18のいずれか1項に記載の医薬。
【請求項20】
前記組合せが相加的である、請求項9〜18のいずれか1項に記載の医薬。
【請求項21】
式(I):
【化5】

(式中、Xはフッ素、塩素、臭素又はヨウ素から成る群から選択される)
の化合物又はその薬学的に許容可能な塩、並びに少なくとも1つの付加的化学療法剤を含む薬学的組成物。
【請求項22】
Xが塩素である、請求項21に記載の薬学的組成物。
【請求項23】
前記式(I)の化合物が式(II):
【化6】

の構造を有する、請求項21に記載の薬学的組成物。
【請求項24】
前記他の化学療法剤がデキサメタゾンである、請求項21〜23のいずれか1項に記載の薬学的組成物。
【請求項25】
前記他の化学療法剤がサリドマイドである、請求項21〜23のいずれか1項に記載の薬学的組成物。
【請求項26】
式(I):
【化7】

(式中、Xはフッ素、塩素、臭素又はヨウ素から成る群から選択される)
の化合物又はその薬学的に許容可能な塩と、プロテアソーム阻害薬の相乗的組合せを含む、腫瘍性疾患患者における腫瘍性疾患を治療するための医薬。
【請求項27】
前記腫瘍性疾患が癌である、請求項26に記載の医薬。
【請求項28】
前記癌が乳癌、肉腫、白血病、卵巣癌、子宮癌、膀胱癌、前立腺癌、結腸癌、直腸癌、
胃癌、肺癌、リンパ腫、多発性骨髄腫、膵臓癌、肝臓癌、腎臓癌、内分泌癌、皮膚癌、黒色腫、血管腫、及び脳又は中枢神経系(CNS)癌から成る群から選択される、請求項27に記載の医薬。
【請求項29】
前記癌が多発性骨髄腫、結腸直腸癌、前立腺癌、乳腺癌、非小細胞肺癌及び卵巣癌又は黒色腫から成る群から選択される、請求項28に記載の医薬。
【請求項30】
前記癌が多発性骨髄腫である、請求項29に記載の医薬。
【請求項31】
前記患者がヒトである、請求項26〜30のいずれか1項に記載の医薬。
【請求項32】
前記式(I)の化合物が式(II):
【化8】

の構造を有する、請求項26〜31のいずれか1項に記載の医薬。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図10D】
image rotate

【図10E】
image rotate

【図10F】
image rotate

【図10G】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図11C】
image rotate

【図11D】
image rotate

【図11E】
image rotate

【図11F】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図12C】
image rotate

【図12D】
image rotate

【図12E】
image rotate

【図12F】
image rotate

【図13】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図15】
image rotate


【公開番号】特開2012−236862(P2012−236862A)
【公開日】平成24年12月6日(2012.12.6)
【国際特許分類】
【出願番号】特願2012−198263(P2012−198263)
【出願日】平成24年9月10日(2012.9.10)
【分割の表示】特願2007−544545(P2007−544545)の分割
【原出願日】平成17年12月2日(2005.12.2)
【出願人】(507183952)ダナ ファーバー キャンサー インスティテュート,インコーポレイテッド (2)
【Fターム(参考)】