説明

自動溶接システムにおける溶接方法および自動溶接システム

【課題】レーザセンサを溶接トーチの近傍に取り付けている為に定期的な保守作業が必要になり、生産性を低下させる。
【解決手段】レーザセンサLSで溶接部位Wsを検出して教示データを補正し、溶接トーチTにより加工する自動溶接システム1である。溶接ロボットMPは溶接トーチ又はレーザセンサのどちらかを取り付けるためのツール着脱機構を有する。溶接トーチを待避させるためのツールスタンド11およびレーザセンサを待避させるためのツールスタンド12を備える。まず、溶接トーチをツールスタンド11に待避させ、レーザセンサを取り付ける。次にレーザセンサを取付けた状態のときに作成した教示データを補正する。次にレーザセンサをツールスタンド12に待避させ、溶接トーチを取付ける。補正後の教示データを再生することにより溶接加工を行う。輻射熱やヒュームからレーザセンサを保護することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザセンサ等の非接触式センサによって教示データを補正してからアーク溶接加工を行う自動溶接システムの溶接方法および自動溶接システムに関するものである。
【背景技術】
【0002】
従来、被溶接物に対して溶接を行う際に、レーザ光、赤外線、超音波等を用いた非接触式センサにより被溶接物の位置や形状を検出し、溶接ロボットに正確な作業を行わせるようにした技術が知られている(例えば、特許文献1参照)。
【0003】
例えば、レーザ光を用いたレーザセンサを搭載したアーク溶接ロボット(以下では単に溶接ロボットという)の場合は、レーザセンサの発光部から被溶接物に対してレーザを照射し、その反射光を受光部で受光することにより、被溶接物までの距離を計測して被溶接物の位置や形状を検出するようにしている。また、このような溶接ロボットは、溶接を行う際に発生する火の粉(スパッタ、チリ等)や煙霧(ヒューム)がレーザセンサの発光部または受光部に付着して測距の機能が損なわれないように、保護ガラス等の遮蔽機構がレーザの光路上に配置されている。また、溶接加工中に発生する熱の影響で測距の機構が損なわれないように、レーザセンサ自身を冷却するための冷却機構も備わっている。
【0004】
図13は、上記したレーザセンサを溶接ロボットに搭載した、従来の自動溶接システム51の構成図である。同図に示すように、自動溶接システム51は、溶接ロボットMP、ティーチペンダントTP、ロボット制御装置RCおよび溶接電源WPによって大略構成される。
【0005】
同図において、溶接ロボットMPは、被溶接物Wに対してアーク溶接を自動で行うものであり、複数のアーム部および手首部と、これらを回転駆動するための複数のサーボモータ(いずれも図示せず)とによって構成されており、フロアBに固定されている。溶接ロボットMPの上アームの先端部分には、溶接トーチTおよびレーザセンサLSが取り付けられている。溶接トーチTは、ワイヤリール(図示せず)に巻回された直径1mm程度の溶接ワイヤを、上アーム後部に搭載したワイヤ送給装置52によって、被溶接物W上の教示された溶接線Wsに導くためのものである。レーザセンサLSは、レーザの発光および受光により被溶接物Wまでの距離を測定する走査型のレーザセンサであり、溶接トーチTに隣接して搭載される。レーザセンサLSは、レーザを被溶接物Wに向けて発光する発光部と、被溶接物Wで反射したレーザを受光する受光部等(ともに図示しない)を備える。発光部で発光されたレーザは、被溶接物Wで乱反射され、受光部で受光される。受光部は、例えばCCDラインセンサ(ラインレーザセンサ)により構成されており、その視野範囲におけるレーザセンサLSから被溶接物Wまでの距離を測定するようにされている。
【0006】
ティーチペンダントTPは、溶接加工を行うための溶接線を定める教示点、溶接条件(溶接電流、溶接電圧、溶接速度等)を教示データとして入力するためのものであり、これらはロボット制御装置RCに入力され、記憶される。溶接電源WPは、ロボット制御装置RCからの溶接制御信号を入力として、溶接トーチTと被溶接物Wとの間の電力供給を行う。
【0007】
ロボット制御装置RCは、ティーチペンダントTPから入力された教示データを解釈し、解釈結果に基づいた所定のタイミングで、動作制御信号を溶接ロボットMPに出力する。同様に、溶接制御信号を溶接電源WPに出力する。また、ロボット制御装置RCは、レーザセンサLSを制御し、測定されるレーザセンサLSと被溶接物W間の距離(距離情報)に基づいて開先位置を検出する。
【0008】
図14は、図13で示したC部を拡大した図であり、溶接ロボットMPの手首部に溶接トーチTおよびレーザセンサLSを取り付けた状態を示している。同図に示すように、溶接ロボットMPの手首部フランジ面61に、溶接トーチTがブラケット64を介して取り付けられている。レーザセンサLSは、溶接トーチTの近傍に取り付けられている。より具体的には、レーザ照射方向が溶接ロボットMPのツール座標系のいずれかの軸と平行となるようにセンサヘッドが取り付けられている。保護プレート63は、溶接中のスパッタ等の有害物質からレーザセンサLSを保護する遮蔽機構である。配管接続口62は、外部から冷却水を供給するための図示しないホースが接続される。外部から供給される冷却水がレーザセンサLS内を循環することによって、レーザセンサLS自身が冷却され、溶接中の輻射熱から保護する。すなわち、レーザセンサLSは、冷却機構を有している。配管接続口65は、外部からエアを供給するための図示しないホースが接続される。外部から供給されるエアがレーザセンサLS内を循環し、外部へ放出されることにより、溶接中のヒュームを排除する。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2007−237319号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
上述したように、レーザセンサLSは溶接トーチTの近傍に取り付けられているために、溶接中のヒューム、スパッタ、輻射熱等からレーザセンサLSを保護する必要がある。このための遮蔽機構や冷却機構が設けられているが、ヒューム、スパッタ、輻射熱等がレーザセンサLSに与える影響を完全に防止することはできない。したがって、長期間使用すると、溶接線の検出が不安定になったり、レーザセンサLSそのものの耐久性が損なわれたりするために、レーザセンサLSの信頼性を低下させることがある。このようなことがないようにするためには、点検や部品の交換等、保守作業を定期的に実施する必要がある。しかしながら、この保守作業は、いわゆる保守費用を増加させることになる。さらには、保守作業は生産を止めて行わなければならないために、生産性を低下させる要因にもなる。
【0011】
また、遮蔽機構や冷却機構が設けられているために、図13に示すように、溶接トーチ周りが非常にかさばってしまう。このため、狭小な領域に入り込んで溶接加工を行わなければならない場合は、教示や再生の際にレーザセンサLSが被溶接物Wまたは周辺治具等と干渉する恐れがある。干渉を避けるには、レーザセンサLSの取り付け位置を溶接線Wsから遠ざけたり、溶接線Wsから離れた地点を検出させたりするなどの方法が採用することが考えられるが、この場合は、検出精度が低下しまうために溶接品質を悪化させてしまう恐れがある。
【0012】
そこで、本発明は、溶接中の輻射熱、ヒューム、スパッタ等の劣悪な環境から、非接触式センサを保護し、非接触式センサの保守作業を極力必要ないようにして生産性を向上させることができる自動溶接システムにおける溶接方法および自動溶接システムを提供することを目的とする。
【課題を解決するための手段】
【0013】
上記目的を達成するために、請求項1の発明は、
非接触式センサによって被溶接物の溶接部位を検出し、検出結果に基づき、予め入力された教示データを補正し、溶接トーチにより溶接加工を行う自動溶接システムにおける溶接方法において、
前記溶接トーチまたは前記非接触式センサのいずれか一方を取り付けるためのツール着脱機構を有するマニピュレータと、前記溶接トーチを待避させるための第1ツールスタンドと、前記非接触式センサを待避させるための第2ツールスタンドと、を有し、
前記溶接トーチを前記第1ツールスタンドに待避させる一方、前記第2ツールスタンドから前記ツール着脱機構によって前記非接触式センサを取り付けるセンサ取付工程と、
前記非接触センサを取り付けた状態で前記教示データを入力する教示工程と、
前記教示データを再生し、前記非接触式センサによって前記溶接部位を検出して前記教示データを補正する補正工程と、
前記非接触式センサを前記第2ツールスタンドに待避させる一方、前記第1ツールスタンドから前記ツール着脱機構によって前記溶接トーチを取り付けるトーチ取付工程と、
前記溶接トーチを取り付けた状態で前記補正工程で補正された教示データを再生することにより溶接加工を行う加工工程と、
を含むことを特徴とする自動溶接システムにおける溶接方法である。
【0014】
請求項2の発明は、前記非接触式センサは、溶接加工時に発生する有害物質から自身を遮蔽するための遮蔽手段および輻射熱から保護するための冷却機構を有しないことを特徴とする請求項1記載の自動溶接システムにおける溶接方法である。
【0015】
請求項3の発明は、前記第2ツールスタンドは、溶接加工時に発生する有害物質および輻射熱の影響を受けない位置に配置されたことを特徴とする請求項2または請求項3に記載の自動溶接システムにおける溶接方法
【0016】
請求項4の発明は、
非接触式センサによって被溶接物の溶接部位を検出し、検出結果に基づいて予め作成された教示データを補正して溶接トーチにより溶接加工を行う自動溶接システムの溶接方法において、
前記非接触式センサを取り付けた第1マニピュレータまたはセンサ移載手段、および前記溶接トーチを取り付けた第2マニピュレータを有し、
前記第1マニピュレータまたは前記センサ移載手段による検出用教示データを入力する教示工程と、
前記検出用教示データを再生し、前記非接触式センサによって前記溶接部位を検出して前記検出用教示データを補正する補正工程と、
この補正工程によって補正された前記検出用教示データに基づき、前記第2マニピュレータによる加工用教示データを生成する生成工程と、
前記加工用教示データを再生することにより前記第2マニピュレータによって溶接加工を行う加工工程と、
を備えたことを特徴とする自動溶接システムにおける溶接方法である。
【0017】
請求項5の発明は、
非接触式センサによって被溶接物の溶接部位を検出し、検出結果に基づき、予め入力された教示データを補正し、溶接トーチにより溶接加工を行う自動溶接システムにおいて、
前記溶接トーチまたは前記非接触式センサのいずれか一方を取り付けるためのツール着脱機構を有するマニピュレータと、
前記溶接トーチを待避させるための第1ツールスタンドと、
前記非接触式センサを待避させるための第2ツールスタンドと、
前記溶接トーチを前記第1ツールスタンドに待避させる一方、前記第2ツールスタンドから前記ツール着脱機構によって前記非接触式センサを取り付けるセンサ取付処理手段と、
前記非接触センサを取り付けた状態のときに前記教示データを作成処理する教示処理手段と、
前記教示データを再生し、前記非接触式センサによって前記溶接部位を検出して前記教示データを補正する補正手段と、
前記非接触式センサを前記第2ツールスタンドに待避させる一方、前記第1ツールスタンドから前記ツール着脱機構によって前記溶接トーチを取り付けるトーチ取付処理手段と、
前記溶接トーチを取り付けた状態のときに前記補正された教示データを再生することにより溶接加工を行う加工制御手段と、
を備えたことを特徴とする自動溶接システムである。
【0018】
請求項6の発明は、前記非接触式センサは、溶接加工時に発生する有害物質から自身を遮蔽するための遮蔽手段および輻射熱から保護するための冷却機構を有しないことを特徴とする請求項5記載の自動溶接システムである。
【0019】
請求項7の発明は、前記第2ツールスタンドは、溶接加工時に発生する有害物質および輻射熱の影響を受けない位置に配置されたことを特徴とする請求項5または請求項6に記載の自動溶接システムである。
【0020】
請求項8の発明は、前記溶接トーチを前記第1ツールスタンドに待避させるとともに前記第2ツールスタンドから前記ツール着脱機構によって前記非接触式センサを取り付けるための動作を定めた第1プリセット教示データ、および前記非接触式センサを前記第2ツールスタンドに待避させるとともに前記第1ツールスタンドから前記ツール着脱機構によって前記溶接トーチを取り付けるための動作を定めた第2プリセット教示データを記憶した記憶手段をさらに備え、
前記センサ取付処理手段は、前記第1プリセット教示データを再生することにより前記マニピュレータに前記非接触式センサを取り付け、前記トーチ取付処理手段は、前記第2プリセット教示データを再生することにより前記マニピュレータに前記溶接トーチを取り付けることを特徴とする請求項5〜7のいずれか1項に記載の自動溶接システムである。
【発明の効果】
【0021】
請求項1の発明によれば、非接触式センサを溶接トーチの近傍に取り付けなくても、溶接加工ができるようにしたことによって、溶接中の輻射熱、ヒューム、スパッタ等の劣悪な環境から、非接触式センサを保護することができる。すなわち、非接触式センサに対する保守作業を極力必要ないようにしたことによって、生産性を向上させることができる。
【0022】
請求項2の発明によれば、非接触式センサとして、溶接加工時に発生する有害物質から自身を遮蔽するための遮蔽手段および輻射熱から保護するための冷却機構を有しないものを採用できるようにした。このようにすることによって、自動溶接システムを構築する際のコストを低減することができる。
【0023】
請求項3の発明によれば、非接触式センサを待避させるツールスタンドを、溶接加工時に発生する有害物質および輻射熱の影響を受けない位置に配置するようにしたことによって、非接触式センサの劣化を防止することができる。
【0024】
請求項4の発明によれば、2台のマニピュレータに非接触式センサおよび溶接トーチをそれぞれ取り付け、教示および補正は非接触式センサを取り付けたマニピュレータで行い、溶接加工は溶接トーチを取り付けたマニピュレータで行うようにした。このようにすることによって、溶接中の輻射熱、ヒューム、スパッタ等の劣悪な環境から、非接触式センサを保護することができる。すなわち、非接触式センサに対する保守作業を極力必要ないようにしたことによって、生産性を向上させることができる。
【0025】
請求項5の発明によれば、非接触式センサを溶接トーチの近傍に取り付けなくても、溶接加工ができるようにしたことによって、溶接中の輻射熱、ヒューム、スパッタ等の劣悪な環境から、非接触式センサを保護することができる。すなわち、非接触式センサに対する保守作業を極力必要ないようにしたことによって、生産性を向上させることができる自動溶接システムを提供することができる。
【0026】
請求項6の発明によれば、非接触式センサとして、溶接加工時に発生する有害物質から自身を遮蔽するための遮蔽手段および輻射熱から保護するための冷却機構を有しないものを採用できるようにした。このようにすることによって、構築時のコストを低減することができる自動溶接システムを提供することができる。
【0027】
請求項7の発明によれば、非接触式センサを待避させるツールスタンドを、溶接加工時に発生する有害物質および輻射熱の影響を受けない位置に配置するようにしたことによって、非接触式センサの劣化を防止することができる自動溶接システムを提供することができる。
【0028】
請求項8の発明によれば、非接触式センサを取り付けるための動作を定めた第1プリセット教示データ、および溶接トーチを取り付けるための動作を定めた第2プリセット教示データを記憶しておき、非接触式センサまたは溶接トーチの取り付け作業を自動化するようにした。このようにすることによって、自動溶接システムにおける作業を、より一層、自動化することができる。
【図面の簡単な説明】
【0029】
【図1】本発明の実施形態1に係る自動溶接システムの一形態を示す構成図である。
【図2】溶接ロボットの手首部にレーザセンサのみを取り付けた状態を示す図である。
【図3】ツールスタンドに溶接トーチを待避させた状態を示す図である。
【図4】被溶接物に対する教示例を示す図である。
【図5】本発明の実施形態1に係る自動溶接システムの別の形態を示す構成図である。
【図6】溶接ロボットの手首部に溶接トーチのみを取り付けた状態を示す図である。
【図7】ツールスタンドにレーザセンサを待避させた状態を示す図である。
【図8】本発明の実施形態1に係るロボット制御装置の機能ブロック図である。
【図9】本発明の実施形態1に係る自動溶接システム全体の処理の流れを示すフローチャートである。
【図10】本発明の実施形態2に係る自動溶接システムの構成図である。
【図11】本発明の実施形態2に係るロボット制御装置の機能ブロック図である。
【図12】本発明の実施形態2に係る自動溶接システム全体の処理の流れを示すフローチャートである。
【図13】従来の自動溶接システムの構成図である。
【図14】溶接ロボットの手首部に溶接トーチおよびレーザセンサを取り付けた状態を示す図である。
【発明を実施するための形態】
【0030】
発明の実施の形態を実施例に基づき図面を参照して説明する。
【0031】
[実施の形態1]
図1は、本発明の実施形態1に係る自動溶接システム1の一形態を示す構成図である。同図は、溶接ロボットMPにレーザセンサLSのみを取り付けたときの様子を示している。同図において、従来技術として示した図13との相違は、溶接ロボットMPの手首部の機構、レーザセンサLS、ツールスタンド11、ツールスタンド12およびロボット制御装置RCである。その他は、図13と同符号を付与した同一のものである。以下、従来技術との相違点を中心に説明する。
【0032】
図2は、図1のA部を拡大したものであり、溶接ロボットMPの手首部にレーザセンサLSのみを取り付けた状態を示している。溶接ロボットMPの手首部フランジ面3に、ツール着脱機構4が備わっており、この機構によって溶接トーチTまたはレーザセンサLSのいずれか一方を取り付けることが可能となっている。また、本発明においては、レーザセンサLSを再生時(アーク溶接時)に使用しないため、溶接加工時に発生する有害物質から自身を遮蔽するための遮蔽手段、輻射熱から保護するための冷却機構、ヒュームを排除する排除機構等を備える必要がない。この実施例では、同図に示すように、図14で説明した保護プレート63、冷却水供給用の配管接続口62、エア供給用の配管接続口65、および各配管接続口に接続されるホースを備えていないレーザセンサLSを採用している。
【0033】
なお、上記ツール着脱機構4は一般的に使用される公知のものでよく、エア等を駆動源としたロック機構が備わっており、手首部フランジ面3に容易に取り付けることができる。ロックの開閉動作は、後述するティーチペンダントTPからの操作信号、または、教示データに含まれる開閉信号によって制御される。
【0034】
図1に戻り、ツールスタンド11は、溶接ロボットMPの手首部にレーザセンサLSを取り付けているときに、溶接トーチTを待避させるためのスタンドである。図3に示すように、ツールスタンド11に溶接トーチTを仮置きしておくことができる。ツールスタンド11は、溶接ロボットMPの動作範囲内に配置しておく。再度図1に戻り、ツールスタンド12は、溶接ロボットMPの手首部に溶接トーチTを取り付けているときに、レーザセンサLSを待避させるためのスタンドである。このツールスタンド12は、溶接ロボットMPの動作範囲内であって、且つ、溶接加工時に発生する有害物質および輻射熱の影響を受けない程度の位置に配置しておくとよい。
【0035】
ロボット制御装置RCは、ティーチペンダントTPから入力された教示データを解釈し、解釈結果に基づいて溶接ロボットMP、溶接電源WPおよびレーザセンサLSを制御するものである。このロボット制御装置RCは、センサ取付処理手段、教示処理手段、補正手段、トーチ取付処理手段および加工制御手段に相当するものである。ロボット制御装置RCの詳細については、後述する。
【0036】
図5は、本発明の実施形態1に係る自動溶接システム1の別の形態を示す構成図である。図1では、溶接ロボットMPにレーザセンサLSのみを取り付けたときの様子を示したが、同図では、溶接トーチTのみを取り付けたときの様子を示している。図5のB部を拡大した図6に示すように、溶接トーチTがツール着脱機構4によって溶接ロボットMPの手首部フランジ面3に取り付けられている。このとき、レーザセンサLSは、図7に示すように、ツールスタンド12に仮置きされている。
【0037】
上述したように、自動溶接システム1は、溶接ロボットMPの手首部に備えたツール着脱機構4によって、溶接トーチTまたはレーザセンサLSのいずれか一方が取り付けられるようになっている。また、溶接ロボットMPにレーザセンサLSが取り付けられているときはツールスタンド11に溶接トーチTを待避させ、溶接ロボットMPに溶接トーチTが取り付けられているときはツールスタンド12にレーザセンサLSを待避させることができるよう、構成されている。
【0038】
次に、ロボット制御装置RCについて説明する。ロボット制御装置RCは、センサ取付処理手段として機能し、溶接トーチTをツールスタンド11に待避させる一方、ツールスタンド12からツール着脱機構4によってレーザセンサLSを取り付ける。また、教示処理手段として機能し、レーザセンサLSを取り付けた状態のときに教示データを作成処理する。また、補正手段として機能し、教示データを再生し、レーザセンサLSによって溶接部位を検出して教示データを補正する。また、トーチ取付処理手段として機能し、レーザセンサLSをツールスタンド12に待避させる一方、ツールスタンド11からツール着脱機構4によって溶接トーチTを取り付ける。また、加工制御手段として機能し、溶接トーチTを取り付けた状態のときに補正された教示データを再生することにより溶接加工を行う。
【0039】
図8は、ロボット制御装置RCの機能ブロック図である。ロボット制御装置RCは、図示しないCPU、ROM、RAM、各種メモリ等を含むマイクロコンピュータによって構成されている。TPインターフェース21は、上述したティーチペンダントTPを接続するためのものである。入出力インターフェース22は、ロボット制御装置RCに、教示データを再生するための起動信号等を与える上位コントローラMCからの信号線を接続するためのものである。センサインターフェース23は、レーザセンサLSを接続するためのものである。
【0040】
ロボット制御装置RCの図示しないROMには、各種処理を行うための制御ソフトウェアが記憶されている。本実施形態においては、同図に示すように、教示処理部24、モード選択処理部25、センサ制御部27、補正部28、解釈実行部31、駆動指令部32および溶接制御部33の各処理部を備えている。これらの各処理は、図示しないCPUに読み込まれて実行される。
【0041】
教示処理部24は、ティーチペンダントTPからの入力に応じ、教示点および各種命令を後述するハードディスク29に記憶する処理を行う。解釈実行部31は、ハードディスク29に格納されている教示データTdを読み出してその内容を解析し、駆動指令部32、溶接制御部33、センサ制御部27に各種制御信号を出力する。この結果、溶接ロボットMPが駆動制御されると共に、溶接制御信号が溶接電源WP出力されて所定のタイミングで溶接電力の供給、シールドガスの出力等の処理が行われる。
【0042】
センサ制御部27は、解釈実行部31からの制御信号に基づいて、レーザセンサLSを駆動制御する。この結果、レーザセンサLSは教示点の検出動作を行い、補正量をセンサ制御部27を介して補正部28に通知する。補正部28は、通知された補正量を教示点の位置姿勢データに反映し、教示データTd’としてハードディスク29に記憶する。説明の便宜上、教示データTdを補正し、別の教示データTd’として記憶しているが、本来は、教示データTdをそのまま上書きするのが望ましい。以下では、教示データTd’を補正後の教示データTd’とも呼ぶことがある。
【0043】
記憶手段としてのハードディスク29は不揮発性メモリであり、上述した教示データTdおよび補正後の教示データTd’を記憶する。好ましくは、このハードディスク29に、以下のプリセット教示データを記憶しておくと、さらに良い。1つは、溶接トーチTをツールスタンド11に待避させるとともに、ツールスタンド12からツール着脱機構4によってレーザセンサLSを取り付けるための一連の動作を定めたセンサ取付用教示データD1である。もう1つは、レーザセンサLSをツールスタンド12に待避させるとともに、ツールスタンド11からツール着脱機構4によって溶接トーチTを取り付けるための一連動作を定めたトーチ取付用教示用データD2である。
【0044】
次に、自動溶接システム1の作用について説明する。
【0045】
図9は、本発明の実施形態1に係る自動溶接システム1全体の処理の流れを示すフローチャートである。以下では、溶接トーチTが溶接ロボットMPに取り付けられた状態を初期状態とし、溶接ロボットMPにレーザセンサLSを取り付けて教示を行い、溶接トーチTに持ち替えて溶接加工するまでの一連の流れについて説明する。
【0046】
(1.センサ取付工程)
ステップS1において、溶接ロボットMPをティーチペンダントTPによってツールスタンド11側に移動して、ツール着脱機構4のロックを解除し、溶接トーチTをツールスタンド11に待避させる。その後、溶接ロボットMPをティーチペンダントTPによってツールスタンド12側に移動して、ツール着脱機構4のロックを作動させ、レーザセンサLSを溶接ロボットMPに取り付ける。このように、作業者による操作によって溶接トーチTの待避およびレーザセンサLSの取り付けが可能であるが、好ましくは、上述したセンサ取付用教示データD1を再生することによって自動的に行うようにすると良い。
【0047】
(2.教示工程)
ステップS2において、レーザセンサLSを取り付けた状態で、ティーチペンダントTPからの入力に応じて教示データTdを作成し、ハードディスク29に記憶する。より具体的には、図4に示すような被溶接物Wの場合、溶接線Wsの開始点P1、中間点P2および終了点P3がそれぞれ検出可能な位置に、レーザセンサLSから発光されるレーザ光の視野範囲が入るよう移動してから、教示点P1’、P2’、P3’として入力する。図示しているように、教示点P1’、P2’、P3’は、本来の溶接線Wsの位置から上方に離れた位置(レーザセンサLSによって測定可能な位置)に教示される。
【0048】
(3.補正工程)
ステップS3において、作成した教示データTdを再生することによって、レーザセンサLSによって被溶接物Wの開先情報を検出し、教示データTdを補正する(教示データTd’を作成する)。より具体的には、教示点P1’、P2’、P3’を含む教示データTdを再生することによって、レーザセンサLSの制御点が教示点P1’、P2’、P3’に各々到達したタイミングで、解釈実行部31がセンサ制御部27にレーザセンサLSの駆動信号を出力する。そして、レーザセンサLSによって各々の教示点において開先情報の検出動作が行われ、各教示点の補正量がセンサ制御部27を介して補正部28に通知される。補正部28は、通知された補正量を教示点P1’、P2’、P3’の位置姿勢データに反映し、すなわち、溶接線Wsの開始点P1、中間点P2および終了点P3に補正し、教示データTd’としてハードディスク29に記憶する。
【0049】
(4.トーチ取付工程)
ステップS4において、溶接ロボットMPをティーチペンダントTPによってツールスタンド12側に移動して、ツール着脱機構4のロックを解除し、レーザセンサLSをツールスタンド12に待避させる。その後、溶接ロボットMPをティーチペンダントTPによってツールスタンド11側に移動して、ツール着脱機構4のロックを作動させ、溶接トーチTを溶接ロボットMPに取り付ける。このように、作業者による操作によってレーザセンサLSの待避および溶接トーチTの取り付けが可能であるが、好ましくは、上述したトーチ取付用教示データD2を再生することによって自動的に行うようにすると良い。
【0050】
(5.加工工程)
ステップS5において、補正後の教示データTd’を再生し、被溶接物Wに対して溶接加工を行う。より具体的には、解釈実行部31が教示データTd’を読み出してその内容を解析し、駆動指令部32、溶接制御部33に各種制御信号を出力する。この結果、溶接ロボットMPが駆動制御されると共に、溶接制御信号が溶接電源WP出力されて所定のタイミングで溶接電力の供給、シールドガスの出力等の処理が行われることによって、被溶接物Wに対して溶接加工が行われる。
【0051】
以上説明したように、レーザセンサLSを溶接トーチTの近傍に取り付けなくても、溶接加工ができるようにしたことによって、溶接中の輻射熱、ヒューム、スパッタ等の劣悪な環境から、レーザセンサLSを保護することができる。すなわち、レーザセンサLSに対する保守作業を極力必要ないようにしたことによって、生産性を向上させることができる。また、溶接ロボットMPに取り付けるツールを、レーザセンサLSまたは溶接トーチTのいずれか一方としたことによって、可搬重量の大きい溶接ロボットを採用する必要がない。一般的に、可搬重量の大きいロボットほど高価になるため、本願発明により、比較的安価な可搬重量の小さいロボットを採用できる。すなわち、自動溶接システムを構築する際のコストを低減することができる。
【0052】
また、レーザセンサLSとして、溶接加工時に発生する有害物質から自身を遮蔽するための遮蔽手段および輻射熱から保護するための冷却機構を有しないものを採用できるようにした。このようにすることによって、自動溶接システムを構築する際のコストを低減することができる。
【0053】
また、レーザセンサLSを待避させるツールスタンド12を、溶接加工時に発生する有害物質および輻射熱の影響を受けない位置に配置するようにしたことによって、レーザセンサLSの劣化を防止することができる。
【0054】
また、レーザセンサLSを取り付けるための動作を定めた第1プリセット教示データとしてのセンサ取付用教示データD1、および溶接トーチを取り付けるための動作を定めた第2プリセット教示データとしてのトーチ取付用教示データD2を記憶しておき、レーザセンサLSまたは溶接トーチの取り付け作業を自動化するようにした。このようにすることによって、自動溶接システムにおける作業を、より一層、自動化することができる。
【0055】
[実施の形態2]
以下、本発明の実施形態2について説明する。実施形態1との相違は、2台のロボットにレーザセンサLSおよび溶接トーチTをそれぞれ取り付け、教示および補正はレーザセンサLSを取り付けたロボットで行い、溶接加工は溶接トーチTを取り付けたロボットで行うように構成した点である。以下、実施形態1との相違部分について説明する。なお、本実施形態2では、レーザセンサLSを取り付けるロボットとして、6軸の垂直多関節型ロボットを採用しているが、これに代えて、センサ移載手段として、ロボット制御装置RCによって制御される1軸の走行軸にレーザセンサLSを取り付けたものを採用してもよい。
【0056】
図10は、本発明の実施形態2に係る自動溶接システム1Aの構成図である。センサロボットMP1には、レーザセンサLSが取り付けられている。レーザセンサLSは、実施形態1と同様に、保護プレート63、冷却水供給用の配管接続口62、エア供給用の配管接続口65、およびホースを備えていないものでよい。一方、溶接ロボットMP2には、溶接トーチTが取り付けられている。
【0057】
図11は、本発明の実施形態2に係るロボット制御装置RCの機能ブロック図である。実施形態1との相違は、ハードディスク29および生成部26である。ハードディスク29には、センサロボットMP1の動作を規定するための検出用教示データTd1、溶接ロボットMP2の動作を規定するための加工用教示データTd2が記憶される。また、制御定数Pmが予め記憶されている。この制御定数Pmは、座標系関連パラメータや設置関係パラメータ等を含んでいる。座標系関連パラメータとは、両ロボットに各々固有の座標系である機械座標系や自動溶接システム1Aに固有の座標系である絶対座標系の原点および軸方向を定めるためのパラメータ、座標変換のための同次変換行列を規定するパラメータ等を指す。また、設置関係パラメータとは、両ロボットの設置関係を定めるためのパラメータ等を指す。
【0058】
生成部26は、センサロボットMP1の動作を規定するために作成された検出用教示データTd1がレーザセンサLSによって補正された後に、補正後の検出用教示データTd1を、溶接ロボットMP2の動作を規定するための加工用教示データTd2に変換する処理を行う。
【0059】
図12は、本発明の実施形態2に係る自動溶接システム1A全体の処理の流れを示すフローチャートである。以下では、レーザセンサLSを取り付けたセンサロボットMP1で教示を行い、教示結果を補正し、溶接トーチTを取り付けた溶接ロボットMP2で溶接加工するまでの一連の流れについて説明する。
【0060】
(1.教示工程)
ステップS11において、レーザセンサLSを取り付けたセンサロボットMP1を移動させて、ティーチペンダントTPからの入力に応じて検出用教示データTd1を作成し、ハードディスク29に記憶する。このとき、教示する際の基準となる座標系は、上記した自動溶接システム1Aを基準とした絶対座標系としておくことが望ましい。
【0061】
(2.補正工程)
ステップS12において、検出用教示データTd1を再生することによって、レーザセンサLSによって被溶接物Wの開先情報を検出し、検出用教示データTd1を補正する。
【0062】
(3.生成工程)
ステップS13において、補正後の検出用教示データTd1を、溶接ロボットMP2の動作を規定する加工用教示データTd2に変換する。すなわち、生成部26が、補正後の検出用教示データTd1を、制御定数Pmに基づき、溶接ロボットMP2の動作を規定するための加工用教示データTd2に変換する。より具体的には、検出用教示データTd1内ではセンサロボットMP1のみを動作対象とするパラメータが教示されているが、このパラメータを書き換えて溶接ロボットMP2が動作対象となるようにして、加工用教示データTd2とする。各教示点の位置姿勢座標値については、以下のようにすればよい。すなわち、上記した絶対座標系で各教示点が記憶されている場合は、その位置姿勢座標値をそのまま用いて加工用教示データTd2に含めればよい。絶対座標系で記憶されていない場合は、両ロボットの設置関係パラメータに基づいて位置姿勢座標値のシフト処理を行ってから、加工用教示データTd2に含めればよい。シフト処理は、公知のものであるので、詳細については割愛する。
【0063】
(4.加工工程)
ステップS14において、加工用教示データTd2を再生し、被溶接物Wに対して溶接加工を行う。
【0064】
以上説明したように、実施形態2においては、2台のロボットにレーザセンサLSおよび溶接トーチTをそれぞれ取り付け、教示および補正はレーザセンサLSを取り付けたロボットで行い、溶接加工は溶接トーチTを取り付けたロボットで行うようにした。このようにすることによって、溶接中の輻射熱、ヒューム、スパッタ等の劣悪な環境から、レーザセンサLSを保護することができる。すなわち、レーザセンサLSに対する保守作業を極力必要ないようにしたことによって、生産性を向上させることができる。
【符号の説明】
【0065】
1 自動溶接システム(実施形態1)
1A 自動溶接システム(実施形態2)
3 手首部フランジ面
4 ツール着脱機構
11 ツールスタンド(第1ツールスタンド)
12 ツールスタンド(第2ツールスタンド)
21 インターフェース
22 入出力インターフェース
23 センサインターフェース
24 教示処理部
25 モード選択処理部
26 生成部
27 センサ制御部
28 補正部
29 ハードディスク
31 解釈実行部
32 駆動指令部
33 溶接制御部
51 自動溶接システム
52 ワイヤ送給装置
61 手首部フランジ面
62 配管接続口
63 保護プレート
64 ブラケット
65 配管接続口
D1 センサ取付用教示データ
D2 トーチ取付用教示データ
LS レーザセンサ
MC 上位コントローラ
MP 溶接ロボット
MP1 センサロボット
MP2 溶接ロボット
P1 開始点
P2 中間点
P3 終了点
Pm 制御定数
RC ロボット制御装置
T 溶接トーチ
Td 教示データ
Td1 検出用教示データ
Td2 加工用教示データ
TP ティーチペンダント
W 被溶接物
WP 溶接電源
Ws 溶接線

【特許請求の範囲】
【請求項1】
非接触式センサによって被溶接物の溶接部位を検出し、検出結果に基づき、予め入力された教示データを補正し、溶接トーチにより溶接加工を行う自動溶接システムにおける溶接方法において、
前記溶接トーチまたは前記非接触式センサのいずれか一方を取り付けるためのツール着脱機構を有するマニピュレータと、前記溶接トーチを待避させるための第1ツールスタンドと、前記非接触式センサを待避させるための第2ツールスタンドと、を有し、
前記溶接トーチを前記第1ツールスタンドに待避させる一方、前記第2ツールスタンドから前記ツール着脱機構によって前記非接触式センサを取り付けるセンサ取付工程と、
前記非接触センサを取り付けた状態で前記教示データを入力する教示工程と、
前記教示データを再生し、前記非接触式センサによって前記溶接部位を検出して前記教示データを補正する補正工程と、
前記非接触式センサを前記第2ツールスタンドに待避させる一方、前記第1ツールスタンドから前記ツール着脱機構によって前記溶接トーチを取り付けるトーチ取付工程と、
前記溶接トーチを取り付けた状態で前記補正工程で補正された教示データを再生することにより溶接加工を行う加工工程と、
を含むことを特徴とする自動溶接システムにおける溶接方法。
【請求項2】
前記非接触式センサは、溶接加工時に発生する有害物質から自身を遮蔽するための遮蔽手段および輻射熱から保護するための冷却機構を有しないことを特徴とする請求項1記載の自動溶接システムにおける溶接方法。
【請求項3】
前記第2ツールスタンドは、溶接加工時に発生する有害物質および輻射熱の影響を受けない位置に配置されたことを特徴とする請求項2または請求項3に記載の自動溶接システムにおける溶接方法。
【請求項4】
非接触式センサによって被溶接物の溶接部位を検出し、検出結果に基づいて予め作成された教示データを補正して溶接トーチにより溶接加工を行う自動溶接システムの溶接方法において、
前記非接触式センサを取り付けた第1マニピュレータまたはセンサ移載手段、および前記溶接トーチを取り付けた第2マニピュレータを有し、
前記第1マニピュレータまたは前記センサ移載手段による検出用教示データを入力する教示工程と、
前記検出用教示データを再生し、前記非接触式センサによって前記溶接部位を検出して前記検出用教示データを補正する補正工程と、
この補正工程によって補正された前記検出用教示データに基づき、前記第2マニピュレータによる加工用教示データを生成する生成工程と、
前記加工用教示データを再生することにより前記第2マニピュレータによって溶接加工を行う加工工程と、
を備えたことを特徴とする自動溶接システムにおける溶接方法。
【請求項5】
非接触式センサによって被溶接物の溶接部位を検出し、検出結果に基づき、予め入力された教示データを補正し、溶接トーチにより溶接加工を行う自動溶接システムにおいて、
前記溶接トーチまたは前記非接触式センサのいずれか一方を取り付けるためのツール着脱機構を有するマニピュレータと、
前記溶接トーチを待避させるための第1ツールスタンドと、
前記非接触式センサを待避させるための第2ツールスタンドと、
前記溶接トーチを前記第1ツールスタンドに待避させる一方、前記第2ツールスタンドから前記ツール着脱機構によって前記非接触式センサを取り付けるセンサ取付処理手段と、
前記非接触センサを取り付けた状態のときに前記教示データを作成処理する教示処理手段と、
前記教示データを再生し、前記非接触式センサによって前記溶接部位を検出して前記教示データを補正する補正手段と、
前記非接触式センサを前記第2ツールスタンドに待避させる一方、前記第1ツールスタンドから前記ツール着脱機構によって前記溶接トーチを取り付けるトーチ取付処理手段と、
前記溶接トーチを取り付けた状態のときに前記補正された教示データを再生することにより溶接加工を行う加工制御手段と、
を備えたことを特徴とする自動溶接システム。
【請求項6】
前記非接触式センサは、溶接加工時に発生する有害物質から自身を遮蔽するための遮蔽手段および輻射熱から保護するための冷却機構を有しないことを特徴とする請求項5記載の自動溶接システム。
【請求項7】
前記第2ツールスタンドは、溶接加工時に発生する有害物質および輻射熱の影響を受けない位置に配置されたことを特徴とする請求項5または請求項6に記載の自動溶接システム。
【請求項8】
前記溶接トーチを前記第1ツールスタンドに待避させるとともに前記第2ツールスタンドから前記ツール着脱機構によって前記非接触式センサを取り付けるための動作を定めた第1プリセット教示データ、および前記非接触式センサを前記第2ツールスタンドに待避させるとともに前記第1ツールスタンドから前記ツール着脱機構によって前記溶接トーチを取り付けるための動作を定めた第2プリセット教示データを記憶した記憶手段をさらに備え、
前記センサ取付処理手段は、前記第1プリセット教示データを再生することにより前記マニピュレータに前記非接触式センサを取り付け、前記トーチ取付処理手段は、前記第2プリセット教示データを再生することにより前記マニピュレータに前記溶接トーチを取り付けることを特徴とする請求項5〜7のいずれか1項に記載の自動溶接システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2012−51051(P2012−51051A)
【公開日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2010−194304(P2010−194304)
【出願日】平成22年8月31日(2010.8.31)
【出願人】(000000262)株式会社ダイヘン (990)
【Fターム(参考)】