説明

自在継手

【課題】長寿命で低コストであり、生産性にも優れ、環境への負荷低減を同時に達成できる発泡固形潤滑剤を封入した自在継手を提供する。
【解決手段】トルク伝達部材(ボール)6の周囲に発泡固形潤滑剤10を封入してなる自在継手であって、発泡固形潤滑剤10は、潤滑成分と、樹脂成分と、硬化剤と、発泡剤とを含む混合物を発泡・硬化させてなり、上記潤滑成分は潤滑油および/またはグリースから選ばれた少なくとも1つの潤滑成分であり、樹脂成分はイソシアネート基含有量が 2 重量%以上 6 重量%未満のウレタンプレポリマーであり、上記発泡剤が水であり、上記混合物は、混合物全体に対して、上記潤滑成分を 30 〜 70 重量%含み、発泡後の連続気泡率が 50 %以上である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は自在継手(ジョイント)に関する。
【背景技術】
【0002】
近年、自動車の高性能化、コンパクト化および軽量化のための技術的改良が進み、自動車部品や産業機械の駆動伝達に用いられる等速ジョイントなどの自在継手についても小型化、高性能化および長寿命化の要求が高まっている。
コンパクト化や軽量化の進展とともに、自在継手にも高い負荷が加わることになり、従来のグリースによる潤滑では、充分な長寿命化が困難な場合がある。今後ますます高性能化が求められることからグリースの封入量や添加剤を最適化するだけでは、高温、高速、高負荷の使用環境下での潤滑剤の飛散や垂れ落ちを防止するには限界がある。
【0003】
従来から、等速ジョイントには、内部空間容積の 70% 以上のグリースが封入されている。この等速ジョイントに封入されるグリースは、ジョイント内の転がり・すべりの潤滑を円滑に行なうために封入されており必要不可欠なものである。実際にグリースが潤滑剤として必要なのは外輪内部に納められた外輪−ボール−ケージ−内輪から構成される摺動部であり、本来であれば、グリースは外輪内にのみ存在していれば潤滑へ寄与できるわけで、空間容積の 70% 以上もグリースを封入する必要はない。しかし、外輪側へ封入されたグリースは等速ジョイント回転中にブーツ側へも移動してしまう。よって、外輪内にのみグリースを封入した場合、グリースがブーツ側へ移動してしまい、肝心の摺動部ではグリースが枯渇してしまう現象が起こる。それを防ぐために、潤滑に必要量以上のグリースを封入しているのが現状である。
また、ブーツ側へ移動したグリースはブーツ蛇腹の屈曲運動によって再びジョイント内部側へ戻ってくる。ブーツを含めた等速ジョイントの空間内でこれが繰り返されて、グリースがジョイント内部-ブーツ内部を循環している。グリース封入量が少ないと、この循環が円滑に行なわれないためにジョイント内部に存在するグリース量が不足気味となり耐久性が悪くなる。
【0004】
また、ブーツ側に存在するグリースはその「潤滑」の役目は何も果たしておらず、ただそこに存在しているだけである。ブーツ側に存在するグリースは、(1)〜(3)に述べるような悪影響をブーツに及ぼすことが多い。
(1)回転時の遠心力でブーツを押し広げることにより、回転膨張の問題が発生する。この現象が過大となるとブーツの破裂を引き起こす。
(2)グリースの基油や添加剤によりブーツ材の劣化が促進されるため、ブーツの早期破損の原因ともなる。
(3)低温回転始動時において、グリースが硬いためブーツの蛇腹の動きにグリースの変形が対応できず、へこみ等のブーツの変形を引き起こし破損の原因となる。
【0005】
このような問題に対して、固形成分を発泡体化し、これに潤滑油を充填させる発泡潤滑剤が報告されている(特許文献1参照)。
この発泡潤滑剤は、等速ジョイントの屈曲により変形するブーツに追従して固形状となった潤滑剤が圧縮される。ここで固形状となった潤滑剤より滲み出た液状潤滑剤が必要部位に供給され、良好な潤滑を可能にするものである。
【0006】
特許文献1に開示されている潤滑剤は発泡樹脂に潤滑油を含浸させるという後含浸型のものである。後含浸型の場合、潤滑油は発泡樹脂の発泡空間には含浸されるが、発泡樹脂そのものには殆ど含浸しない。そのため、発泡樹脂と潤滑油との親和性が弱い場合など、潤滑油保持力が小さく、高速条件下で使用した場合には潤滑油が一度に抜け出てしまうという問題がある。このような発泡潤滑剤においては短時間での潤滑や密閉空間においては使用可能であるが、長時間や開放空間で使用することが困難である。また、油保持性が高くないため、潤滑油の放出と発泡体への吸収を繰り返しながら潤滑油は絶えず空間内を流動する。このような場合、潤滑油やそれに含まれる添加剤の化学的性質によってはブーツ材を攻撃、劣化させる可能性があり、潤滑剤またはブーツ材のどちらか一方の材料選択が制限されるという問題がある。また、後含浸に伴う製造工程の工数増加や、製造時間の増加、それらに伴うコストアップは避けられないという問題がある。
【0007】
一方、ポリオール成分とイソシアネート成分とで生成されるポリウレタン樹脂内に潤滑油を含ませた潤滑性組成物が知られている(特許文献2〜特許文献5参照)。
また、瀝青などによる油展が可能な原料として水酸基末端ポリジエン化合物がこれまでに報告されている(特許文献6参照)。
しかしながら、圧縮・屈曲などの外部応力の働く部位において使用できるようなゴム弾性を有し、潤滑剤の保持性が高く、かつ大きな変形を許容する発泡固形潤滑剤は知られていない。
【0008】
そこで上記のような理由から潤滑剤の保持性が高く、かつ大きな変形を許容する固形潤滑剤を用いた自在継手が求められている。特に固形樹脂成分内にも潤滑油等を含有させ、潤滑剤保持力を高める必要がある。
このように自在継手に求められている潤滑剤は工業的に汎用されているようなグリース潤滑と比較しても、必要量を必要箇所に供給することが可能であるため、従来のグリース使用量の低減によるコストダウン、ブーツ材への負荷低減、自在継手の軽量化とコンパクト化を可能にする技術であるという利点があり、工業的に有利な経済的側面だけでなく環境に対する負荷低減、設計の自由度という複数の観点からも社会的重要度の高い技術であるといえる。
【特許文献1】特開平9−42297号公報
【特許文献2】特開昭60−173010号公報
【特許文献3】特開昭62−241997号公報
【特許文献4】特開平8−3259号公報
【特許文献5】特開平6−172770号公報
【特許文献6】特開昭58−189243号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明は、このような課題に対処するためになされたものであり、潤滑が必要な部分には潤滑剤の存在を維持しながら、回転膨張によるブーツの破損や、潤滑成分によるブーツ材の劣化、低温状態での起動時におけるブーツの破損やブーツバンド部のズレを防ぐことができる自在継手の提供を目的とする。
【課題を解決するための手段】
【0010】
本発明の自在継手は、外方部材の内面および内方部材の外面に形成された複数のトラック溝と、このトラック溝とトルク伝達部材との係り合いによって回転トルクが伝達され、上記トルク伝達部材が上記トラック溝に沿って転動することによって軸方向移動がなされるジョイント部と、このジョイント部端部となる上記外方部材の外周と一方の軸部材の外周とがブーツで覆われたブーツ部とを有する自在継手であって、上記ジョイント部は、潤滑成分と、樹脂成分と、硬化剤と、発泡剤とを含む混合物を発泡・硬化が完了する前にジョイント部の内部に封入し、発泡・硬化させてなる発泡固形潤滑剤が封入され、上記ブーツ部は上記発泡固形潤滑剤が封入されていないことを特徴とする。
【0011】
上記発泡固形潤滑剤のうち第1の発泡固形潤滑剤を構成する潤滑成分は炭化水素系潤滑油および炭化水素系グリースから選ばれた少なくとも1つの潤滑成分であり、上記樹脂成分は分子内に水酸基を有する液状ゴムであり、該液状ゴムは高分子主鎖が炭化水素から構成され、該主鎖末端に水酸基価が 25 〜 110 mgKOH/g となる量の水酸基を有する液状ゴムであり、上記硬化剤は分子内にイソシアネート基を有する有機化合物であり、上記発泡剤が水であり、上記液状ゴムと上記硬化剤との割合は、上記液状ゴムに含まれる水酸基と上記硬化剤に含まれるイソシアネート基とが当量比で(OH/NCO)=1/( 1.0 〜 2.0 )の範囲であり、上記混合物は、混合物全体に対して、上記潤滑成分を 40 〜80 重量%、上記液状ゴムを 5 〜45 重量%含むことを特徴とする。
また、上記液状ゴムがブタジエンもしくはイソプレンの重合体の主鎖末端に水酸基を有する数平均分子量 1000〜3500 の水酸基末端ジエン系重合体、または該ジエン系重合体を水添処理した変性水酸基末端ジエン系重合体であることを特徴とする。
また、上記分子内にイソシアネート基を持つ有機化合物は、分子内に2個以上のイソシアネート基を有し、イソシアネート基の割合が 2.5 〜 5.0 NCO%からなるプレポリマーか、または芳香族ポリイソシアネートであることを特徴とする。
【0012】
上記発泡固形潤滑剤のうち第2の発泡固形潤滑剤を構成する潤滑成分は潤滑油およびグリースから選ばれた少なくとも1つの潤滑成分であり、上記樹脂成分は分子内にイソシアネート基を 2 重量%以上 6 重量%未満含有するウレタンプレポリマーであり、上記発泡剤が水であり、上記混合物は、混合物全体に対して、上記潤滑成分を 30 〜 70 重量%含み、発泡後の連続気泡率が 50 %以上であることを特徴とする。
また、上記ウレタンプレポリマーは、エステル系ウレタンプレポリマー、カプロラクトン系ウレタンプレポリマー、およびエーテル系ウレタンプレポリマーから選ばれた少なくとも1つのウレタンプレポリマーであることを特徴とする。
また、上記イソシアネート基と、該イソシアネート基と反応する上記硬化剤の官能基との割合が当量比で(硬化剤の官能基/NCO)=1/(1.1〜2.5)の範囲であることを特徴とする。
また、上記水の水酸基と、上記硬化剤の官能基との割合が当量比で(水の水酸基/硬化剤の官能基)=1/(0.7〜2.0)の範囲であることを特徴とする。
また、上記硬化剤が芳香族ポリアミノ化合物であることを特徴とする。
【0013】
本発明の自在継手は、等速自在継手であることを特徴とする。また、上記トルク伝達部材がボールであり、該ボールが3個、6個または8個の固定式であることを特徴とする。
【発明の効果】
【0014】
本発明の自在継手は、潤滑成分と、樹脂成分と、硬化剤と、発泡剤とを含む混合物を発泡・硬化が完了する前にジョイント部の内部に封入し、発泡・硬化させてなる発泡固形潤滑剤がジョイント部のみに封入され、ブーツ部には発泡固形潤滑剤が封入されていないので、潤滑を必要とする部分には潤滑剤の存在を維持しながら、等速ジョイント内に封入する潤滑剤を削減できるため、省資源に寄与する。また、ブーツ内に潤滑剤が存在しないため、回転膨張によるブーツの破損や、潤滑成分によるブーツ材の劣化、低温状態での起動時におけるブーツの破損やブーツバンド部のズレを防ぐことができ、等速ジョイントの耐久性が向上する。
また、本発明の自在継手に用いる発泡固形潤滑剤は、非発泡の自在継手用固形潤滑剤と比較して屈曲時に必要なエネルギーが非常に小さく、潤滑成分を高密度に保持しながら柔軟な変形が可能である。よって、該自在継手用発泡固形潤滑剤を固化させた後冷却する過程において、固形潤滑剤が収縮しトルク伝達部材を抱き込んだとしても屈曲・変形時に必要なエネルギーが小さいために容易に変形することができ、自在継手に印加されるトルクが大きくなるという問題を防ぐことができる。
【発明を実施するための最良の形態】
【0015】
本発明の自在継手を図1〜図3に基づいて説明する。図1はボールフィクストジョイント(以下、BJと記す)の一部切欠断面図を、図2はダブルオフセットジョイント(以下、DOJと記す)の一部切欠断面図を、図3はトリポードジョイント(以下、TJと記す)の一部切欠断面図を、それぞれ示す。
図1に示すように、BJ1は外方部材2としての外輪の内面および球形の内方部材3としての内輪の外面に軸方向の六本のトラック溝4、5を等角度に形成し、そのトラック溝4、5間に組み込んだトルク伝達部材6をケージ7で支持し、このケージ7の外周を球面7aとし、かつ内周を内方部材3の外周に適合する球面7bとしている。
トラック溝4、5とトルク伝達部材6との係り合いによって回転トルクが伝達され、トルク伝達部材6がトラック溝4、5に沿って転動することによって軸方向移動がなされる機構となっており、ジョイント部Jを形成する。ジョイント部Jの空間は、外方部材2と、球形の内方部材3と、トラック溝4、5と、トルク伝達部材6と、ケージ7と、シャフト8とに囲まれた空間であり、この空間に発泡固形潤滑剤10が封入されている。
また、外方部材2の外周とシャフト8の外周とがブーツ9で覆われており、ブーツ部Bを形成する。ブーツ部Bの空間には発泡固形潤滑剤10が封入されていない。
【0016】
図2に示すように、DOJ11は外方部材12としての外輪の内面および球形の内方部材13としての内輪の外面に軸方向の六本のトラック溝14、15を等角度に形成し、そのトラック溝14、15間に組み込んだトルク伝達部材16をケージ17で支持し、このケージ17の外周を球面17aとし、かつ内周を内方部材13の外周に適合する球面17bとし、各球面17a、17bの中心(イ)、(ロ)を外方部材12の軸心上において軸方向に位置をずらしてある。
トラック溝14、15とトルク伝達部材16との係り合いによって回転トルクが伝達され、トルク伝達部材16がトラック溝14、15に沿って転動することによって軸方向移動がなされる機構となっており、ジョイント部Jを形成する。ジョイント部Jの空間は、外方部材12と、球形の内方部材13と、トラック溝14、15と、トルク伝達部材16と、ケージ17と、シャフト18とに囲まれた空間であり、この空間に発泡固形潤滑剤20が封入されている。
また、外方部材12の外周とシャフト18の外周とがブーツ19で覆われており、ブーツ部Bを形成する。ブーツ部Bの空間には発泡固形潤滑剤20が封入されていない。
【0017】
図3に示すように、TJ21は外方部材22としての外輪の内面に軸方向の三本の円筒形トラック溝23を等角度に形成し、外方部材22の内側に組み込んだトリポード部材24には三本の脚軸25を設け、各脚軸25の外側にトルク伝達部材である球面ローラ26を嵌合し、そのトルク伝達部材である球面ローラ26と脚軸25との間にニードル27を組み込んでトルク伝達部材である球面ローラ26を回転可能に、かつ軸方向にスライド可能に支持し、そのトルク伝達部材である球面ローラ26を上記トラック溝23に嵌合してある。
トラック溝23と球面ローラ26との係り合いによって回転トルクが伝達され、球面ローラ26がトラック溝23に沿って転動することによって軸方向移動がなされる機構となっており、ジョイント部Jを形成する。ジョイント部Jの空間は、外方部材22と、トラック溝23と、トリポード部材24と、シャフト28とに囲まれた空間であり、この空間に発泡固形潤滑剤30が封入されている。
また、外方部材22の外周とシャフト28の外周とがブーツ29で覆われており、ブーツ部Bを形成する。ブーツ部Bの空間には発泡固形潤滑剤30が封入されていない。
【0018】
本発明の自在継手を等速ジョイントに利用した例としては、上記BJ、DOJ、TJの他、アンダーカットフリージョイント(以下、UJと記す)、クロスグルーブジョイントなどが挙げられる。このような等速ジョイントのトルク伝達部材(ボール)数は6個または8個の場合がある。
BJやUJに発泡固形潤滑剤を封入した場合、潤滑剤が必要な部位のみに充填されることになるため、低コスト化・軽量化に寄与できると共に、使用される作動角が大きいことから圧縮・屈曲を受けやすく、摺動部へ潤滑剤が供給されやすい。
なお、不等速ジョイントとしては、クロスジョイントなどが挙げられる。
【0019】
このようなTJやDOJについては、軸方向に摺動しろが必要なため、グリースなどの既存の潤滑剤を用いた場合は上述したBJなどの固定式ジョイントよりも封入空間容積が多くなる。
しかしながら発泡固形潤滑剤(図1の10、図2の20、図3の30)は、必要な部位であるジョイント部Jにのみ充填されているため、DOJやTJに発泡固形潤滑剤を封入する場合に低コスト化と軽量化への寄与度がより大きくなる。
【0020】
本発明の自在継手は、後述する原料の各成分を混合して混合物を得る混合工程と、上記混合物の発泡・硬化が完了する前に、上記混合物をジョイント部に充填する充填工程と、上記充填された上記混合物を発泡・硬化させ固形物を得る発泡・硬化工程とにより製造される。
上記混合物を自在継手サブアッシーに充填し発泡・硬化させるだけであるので、形状が複雑な自在継手内の任意の部位にも容易に充填することが可能であり、得られる自在継手には既に潤滑剤が含浸されている。このため発泡成形体を得るための成形金型や潤滑剤の後含浸工程等も不要である。
【0021】
上記混合工程は、原料の各成分を混合して混合物を得る工程である。混合方法は、特に限定されることなく、例えばヘンシェルミキサー、リボンミキサー、ジューサーミキサー、ミキシングヘッド等、一般に用いられる撹拌機を使用して混合することができる。
混合物は、市販のシリコーン系整泡剤などの界面活性剤を使用し、各原料分子を均一に分散させておくことが望ましい。また、この整泡剤の種類によって表面張力を制御し、生じる気泡の種類を連続気泡または独立気泡に制御することが可能となる。このような界面活性剤としては陰イオン系界面活性剤、非イオン系界面活性剤、陽イオン系界面活性剤、両性界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤などが挙げられる。
【0022】
上記充填工程は、混合物が発泡・硬化する前にこの混合物をジョイント部に充填する工程である。発泡・硬化する前の混合物は流動性があるので形状が複雑な自在継手内の任意の部位にも容易に充填することが可能である。なお、混合物を充填する際は、必要に応じてジョイント部内の所定空間の側面に金具等の治具で蓋をすることにより、所定の形状に成形することができる。
【0023】
上記発泡・硬化工程は、充填された混合物をジョイント部内で発泡・硬化させる工程である。
樹脂成分を発泡させる手段としては後述する発泡手段を採用することができる。本発明においては原料として反応性の高いイソシアネート基を持つ化合物を使用して、イソシアネート化合物と水分子との化学反応によって生じる二酸化炭素による化学的発泡を用いている。また、このような反応を伴う発泡を用いる場合には必要に応じて触媒を使用することが好ましい。また、発泡により得られる気泡は連続気泡であることが好ましい。
【0024】
従来の自在継手ではブーツ破損などでグリースが流出し、その結果潤滑不良にいたるような場合でも、本発明の自在継手においては潤滑剤が徐放されるためブーツ破損は寿命に直接的な要因とはならず、また、外部からの塵や水分等の侵入に対してはシールの役割をも果たす。
【0025】
本発明の自在継手において、発泡固形潤滑剤中に含浸された状態で含まれる潤滑成分は、外力による発泡体の変形によっても急激に滲み出すことがなく、潤滑成分を効率よく摺動面に滲み出させて用いることができる。その結果、潤滑成分量は必要最小限でよく、しかも長寿命でゴムまたはエラストマー製ブーツの劣化も少ない自在継手が得られる。このため本発明の自在継手は各種産業用自在継手に、好ましくは自動車用自在継手に、特に好ましくは自動車用等速ジョイントに用いることができる。
【0026】
自在継手、特に等速自在継手のジョイント部の内部に封入される発泡固形潤滑剤は、等速自在継手が角度を有して回転する際に、様々な力が作用する。作動角を有して軸が回転するとき、各部品は軸方向に往復運動するため、内部に封入された発泡固形潤滑剤に作用する力も大きく変動だけでなく、引張り・圧縮や曲げ、せん断と様々な力が作用することとなる。そのため、封入される発泡固形潤滑剤はそれに適した物性が要求される。
【0027】
本発明に用いることができる発泡固形潤滑剤を構成する樹脂成分としては、発泡・硬化後にゴム状弾性を有し、変形により潤滑成分の滲出性を有するものが好ましい。
発泡・硬化は、樹脂生成時に発泡・硬化させる形式であっても、樹脂成分に発泡剤を配合して成形時に発泡・硬化させる形式であってもよい。本発明においては、樹脂生成時に発泡・硬化させる形式が好ましい。ここで硬化は架橋反応および/または液状物が固体化する現象を意味する。また、ゴム状弾性とは、ゴム弾性を意味するとともに、外力により加えられた変形がその外力を無くすことにより元の形状に復帰することを意味する。
【0028】
本発明の自在継手用発泡固形潤滑剤の樹脂成分には耐熱性および柔軟性に優れ、低コスト化が可能となるウレタン樹脂を用いるのが好ましい。樹脂成分として、以下に説明する分子内に水酸基を有する液状ゴムを用いる第1の発泡固形潤滑剤、所定のNCOを含有するウレタンプレポリマーを用いる第2の発泡固形潤滑剤が自在継手用発泡固形潤滑剤として好ましい。
また、ポリオールとしてのポリエーテルポリオールとポリイソシアネートとを反応させて得られる樹脂成分を用いることができる。
【0029】
上記第1の発泡固形潤滑剤に用いられる樹脂成分には耐熱性および柔軟性に優れ、低コスト化が可能となるウレタン樹脂を用いるのが好ましい。ウレタン樹脂を形成する水酸基含有成分としては、分子内に水酸基を有する液状ゴムが好ましく、この液状ゴムは高分子主鎖が炭化水素から構成され、該主鎖末端に水酸基価が 25〜110 mgKOH/g となる量の水酸基を有する液状ゴムであることが好ましい。水酸基価が 25 mg KOH/g 未満では、発泡・硬化が十分でなく、水酸基価が 110 mg KOH/g をこえると、発泡固形潤滑剤の弾力性が失われる場合がある。
この液状ゴムは、ブタジエンもしくはイソプレンの重合体の主鎖末端に水酸基を有する数平均分子量 1000〜3500 の水酸基末端ジエン系重合体、または該ジエン系重合体を水添処理した変性水酸基末端ジエン系重合体を用いることができる。
水酸基末端液状ポリブタジエンとしては、poly-bd R45HT(出光興産社製)、poly-bd R15HT(出光興産社製)、NISSO−PB G−1000、G−2000、G−3000(日本曹達社製)が挙げられ、水酸基末端液状ポリイソプレンとしては、poly-ip(出光興産社製)が挙げられ、水添処理した水酸基末端ポリジエン化合物としては、エポール(出光興産社製)、NISSO−PB GI−1000、GI−2000、GI−3000(日本曹達社製)等が挙げられる。
【0030】
また、これら水酸基末端ポリジエン化合物または水添処理した水酸基末端ポリジエン化合物の末端水酸基をイソシアネート基やエポキシ基などで一部変性した水酸基末端ポリジエン化合物または水添処理した水酸基末端ポリジエン化合物も水酸基が末端に含まれれば使用することができる。製造された発泡体の物性を制御するなどの目的でこれら化合物を2種類以上混合して用いてもよい。
【0031】
上記水酸基末端ポリジエン系重合体または水添処理した水酸基末端ポリジエン系重合体は、後述する炭化水素から構成されるパラフィン系やナフテン系の鉱物油からなる潤滑成分と分子構造が類似するので、潤滑成分を構成する分子との化学的親和性に優れ、水酸基末端ポリジエン系重合体または水添処理した水酸基末端ポリジエン系重合体と潤滑成分分子とが比較的弱い相互作用によって絡み合っていると考えられる。そのため多くの潤滑成分をその水酸基末端ポリジエン系重合体または水添処理した水酸基末端ポリジエン系重合体の分子内に含浸させることが可能であり、高い潤滑成分保持性を発揮することができる。これに熱や遠心力などの強い力を加えることで、水酸基末端ポリジエン系重合体または水添処理した水酸基末端ポリジエン系重合体と潤滑成分の相互作用が壊され、潤滑成分を徐放させることができる。
【0032】
液状ゴムを硬化させる硬化剤としての分子内にイソシアネート基を有する有機化合物は、液状ゴム内の水酸基と反応し、分子鎖を延長させ、または架橋させるイソシアネート化合物であれば、特に制限なく使用できる。好ましいイソシアネート化合物としては、ポリイソシアネート類を挙げることができる。ポリイソシアネート類は後述する発泡剤となる水と反応して気体を発生させることができるので特に好ましい。
ポリイソシアネート類としては、ポリイソシアネートおよび/または分子内に2個以上のイソシアネート基を有するプレポリマーが挙げられる。
【0033】
ポリイソシアネート類は芳香族、脂肪族、または脂環族ポリイソシアネート類を挙げることができる。
芳香族ポリイソシアネート類としては、トリレンジイソシアネート(以下、TDIと記す)、ジフェニルメタンジイソシアネート(以下、MDIと記す)、TDIの多量体、MDIの多量体、ナフタレンジイソシアネート(NDI)、フェニレンジイソシアネート、ジフェニレンジイソシアネート等が挙げられる。
脂肪族ポリイソシアネート類としては、オクタデカメチレンジイソシアネート、デカメチレンジイソシアネート、へキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネート等が挙げられる。
脂環族ポリイソシアネート類としては、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等が挙げられる。
また、上記ポリイソシアネート類とトリメチロールプロパンなどのポリオールとの付加物も使用できる。
液状ゴムの末端官能基である水酸基との反応を高温度で行なう場合は、フェノール類、ラクタム類、アルコール類、オキシム類などのブロック剤でイソシアネート基をブロックしたブロックイソシアネート等を使用することができる。
【0034】
水酸基末端ポリジエン系重合体と反応させる場合、ポリイソシアネート類の中で芳香族ポリイソシアネート類が好ましく、更には水酸基末端ポリジエン系重合体等との発泡性および反応性に優れるTDIが好ましい。
【0035】
分子内に2個以上のイソシアネート基を有するプレポリマーとしては、イソシアネート基の割合が 2.5〜5.0 NCO%からなるプレポリマーであれば使用できる。なお、NCO%はプレポリマー中におけるNCO基としての重量%である。2.5〜5.0 NCO%のプレポリマーは水酸基末端ポリジエン系重合体等と反応して弾力性に富んだウレタンを得ることができる。
プレポリマー類には重合させるモノマーの種類によりPPG系、PTMG系、エステル系、カプロラクトン系などに分類される。PPG系にはタケネートL-1170(三井化学ポリウレタン社製)、L-1158(三井化学ポリウレタン社製)があり、PTMG系にはコロネート4090(日本ポリウレタン社製)などがある。また、エステル系としてはコロネート4047(日本ポリウレタン社製)などがあり、カプロラクトン系にはタケネートL-1350(三井化学ポリウレタン社製)、タケネートL-1680(三井化学ポリウレタン社製)、サイアナプレン7-QM(三井化学ポリウレタン社製)、プラクセルEP1130(ダイセル化学工業社製)などを挙げることができる。上記プレポリマーは、目的に応じて2種類以上を混合して使用することもできる。
【0036】
末端水酸基を有する水酸基末端ポリジエン系重合体または水添処理した水酸基末端ポリジエン系重合体とイソシアネート基を有するイソシアネート化合物との配合割合は、水酸基(−OH)とイソシアネート基(−NCO)との当量比で(OH/NCO)=1/( 1.0 〜 2.0 )の範囲が好ましく、特に優れた発泡性および弾力性を考慮すると、(OH/NCO)=1/( 1.1 〜 1.9 )の範囲が好ましい。(OH/NCO)が1/ 2.0 より小さいときはイソシアネート基が過剰となり、架橋密度が大きく弾性に劣る場合がある。また、(OH/NCO)が1/ 1.0 より大きいときには架橋するイソシアネート基が不足するため硬化が十分でなくなる。
【0037】
第1の発泡固形潤滑剤に使用できる潤滑成分は、発泡体を形成する固形成分を溶解しないものであれば使用することができる。潤滑成分としては、炭化水素系潤滑油、炭化水素系グリース、または炭化水素系潤滑油と炭化水素系グリースとの混合物が挙げられる。
炭化水素系潤滑油としては、パラフィン系やナフテン系の鉱物油、炭化水素系合成油、GTL基油等が挙げられる。これらは単独でも混合油としても使用できる。
炭化水素系グリースは炭化水素油を基油とするグリースであり、基油としては上述の炭化水素系潤滑油を挙げることができる。増ちょう剤としては、リチウム石けん、リチウムコンプレックス石けん、カルシウム石けん、カルシウムコンプレックス石けん、アルミニウム石けん、アルミニウムコンプレックス石けん等の石けん類、ジウレア化合物、ポリウレア化合物等のウレア系化合物が挙げられるが、特に限定されるものではない。ジウレア化合物はジイソシアネートとモノアミンの反応で、ポリウレア化合物はジイソシアネートとポリアミンの反応で、それぞれ得られる。
【0038】
上記潤滑成分には、炭化水素系合成ワックス、ポリエチレンワックス、高級脂肪酸エステル系ワックス、高級脂肪酸アミド系ワックス、ケトン・アミン類、水素硬化油などを混合して使用することができる。
【0039】
第1の発泡固形潤滑剤を発泡させる手段は、原料にイソシアネート化合物を用いることから、イソシアネート化合物と反応して二酸化炭素ガスを発生させる水を用いることが好ましい。
【0040】
第1の発泡固形潤滑剤は、上記潤滑成分と、液状ゴムと、硬化剤と、発泡剤とを含む混合物を発泡・硬化させて得られる。
上記潤滑成分の配合割合は、混合物全体に対して、40〜80 重量%である。潤滑成分が 40 重量%未満であると、潤滑油などの供給量が少なく発泡固形潤滑剤としての機能を発揮できず、80 重量%より多いときには固化しなくなる。
上記液状ゴムの配合割合は、混合物全体に対して、5〜45 重量%、好ましくは 9〜42 重量%である。5 重量%より少ないときは固化しないため発泡固形潤滑剤としての機能を持たず、45 重量%より多いときには潤滑剤の供給が少なく、発泡固形潤滑剤としての機能を持たない。
【0041】
第1の発泡固形潤滑剤において発泡倍率は 1.1〜50 倍であることが好ましく、より好ましくは 1.1〜10 倍である。発泡倍率 1.1 倍未満の場合は気泡体積が小さく、外部応力が加わったときに変形を許容できない。また、50 倍をこえる場合は外部応力に耐える強度を得ることが困難となる。
【0042】
また、第1の発泡固形潤滑剤の硬化速度を促進させるために、3級アミン系触媒や有機金属触媒などを用いることができる。使用する3級アミン系触媒としてはモノアミン類、ジアミン類、トリアミン類、環状アミン類、アルコールアミン類、エーテルアミン類などが挙げられる。また、有機金属触媒としてはスタナオクタエート、ジブチルチンジアセテート、ジブチルチンジラウレート、ジブチルチンメルカプチド、ジブチルチンチオカルボキシレート、ジブチルチンマレエート、ジオクチルチンジメルカプチド、ジオクチルチンチオカルボキシレートなどが挙げられる。また、反応のバランスを整えるなどの目的でこれら複数種類を混合して用いてもよい。
【0043】
本発明の第2の発泡固形潤滑剤の樹脂成分として使用できるウレタンプレポリマーは、活性水素基を有する化合物とポリイソシアネートとの反応によって得られ、イソシアネート基は、分子鎖末端であっても、あるいは分子鎖内から分岐した側鎖末端に含まれていてもよい。また、ウレタンプレポリマーは分子鎖内にウレタン結合を有していてもよい。
反応するモノマー(=活性水素基を有する化合物)の種類によって、カプロラクトン系、エステル系、エーテル系などに分類される。エーテル系にはタケネートL-1170(三井化学ポリウレタン社製)、L-1158(三井化学ポリウレタン社製)、コロネート4090(日本ポリウレタン社製)がある。また、エステル系としてはコロネート4047(日本ポリウレタン社製)などがあり、カプロラクトン系にはタケネートL-1350(三井化学ポリウレタン社製)、タケネートL-1680(三井化学ポリウレタン社製)、サイアナプレン7-QM(三井化学ポリウレタン社製)、プラクセルEP1130(ダイセル化学工業社製)などが挙げられる。
また、末端基をイソシアネート基に変性したオリゴマーやプレポリマー化合物も使用することが出来る。このような化合物としては末端イソシアネート変性ポリエーテルポリオールや水酸基末端ポリブタジエンのイソシアネート変性体が挙げられる。末端イソシアネート変性ポリエーテルポリオールにはコロネート1050(日本ポリウレタン社製)などが挙げられる。また、水酸基末端ポリブタジエンのイソシアネート変性体にはpoly-bd MC50(出光興産社製)やpoly-bd HTP9(出光興産社製)が挙げられる。
これらのウレタンプレポリマーは、目的とする機械的性質などに応じて2種類以上を混合して使用することもできる。
【0044】
第2の発泡固形潤滑剤は、イソシアネート基含有量が 2 重量%以上 6 重量%未満のウレタンプレポリマーを使用できる。イソシアネート基(NCO)の含有量が 2 重量%未満であると発泡性と弾力性の両立が難しくなるし、6 重量%以上であると硬度が大きくなりすぎて反発弾性が大きくなり外力による変形を受けるときに発熱等を起こしやすくなる。
また、イソシアネート基は、フェノール類、ラクタム類、アルコール類、オキシム類などのブロック剤でイソシアネート基をブロックしたブロックイソシアネート等を使用することができる。
【0045】
上記ウレタンプレポリマーを硬化させる硬化剤としては、活性水素を有する化合物が好ましく、官能基がアミノ基であるポリアミノ化合物、官能基が水酸基であるポリオール化合物が挙げられる。
ポリアミノ化合物としては、3,3′-ジクロロ-4,4′-ジアミノジフェニルメタン(以下、MOCAと記す)、3,3′-ジメチル-4,4′-ジアミノジフェニルメタン、3,3′-ジメトキシ-4,4′-ジアミノジフェニルメタン、4,4′-ジアミノ-3,3′-ジエチル-5,5′-ジメチルジフェニルメタン、トリメチレン-ビス-(4-アミノベンゾアート)、ビス(メチルチオ)-2,4-トルエンジアミン、ビス(メチルチオ)-2,6-トルエンジアミン、メチルチオトルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミンに代表される芳香族ポリアミノ化合物が挙げられる。
【0046】
上記ポリアミノ化合物の中でも芳香族アミノ化合物が低コストであり、物性が優れているため、好ましく、特にアミノ基の隣接位に置換基を有する芳香族ジアミノ化合物が好ましい。第2の発泡固形潤滑剤においては、発泡と共に硬化させる工程を経るため、隣接位の置換基によりアミノ基の反応性が抑制されるためと考えられる。
【0047】
ウレタンプレポリマーをポリアミノ化合物で硬化させるとウレタンおよびウレア結合を分子内に有する発泡固形潤滑剤となる。ウレア結合を生成させることによって分子中のウレタン結合密度を下げることになり、伸びや反発弾性が向上する。また、ウレア結合を生成させることによって剛性を与えることができる。
【0048】
ポリオール化合物としては、1,4-ブタングリコールやトリメチロールプロパンに代表される低分子ポリオール、ポリエーテルポリオール、ひまし油系ポリオール、ポリエステル系ポリオールが挙げられる。ポリオール化合物の中では、ポリエーテルポリオール、トリメチロールプロパンが好ましい。
【0049】
ウレタンプレポリマーに含まれるイソシアネート基(−NCO)と、該イソシアネート基と反応する硬化剤の官能基との割合は、官能基がアミノ基または水酸基である場合、当量比で(硬化剤の官能基/NCO)=1/(1.1〜2.5)の範囲である。
ウレタンプレポリマーに含まれるイソシアネート基と硬化剤のアミノ基(−NH2)または水酸基(−OH)、そして発泡剤である水の水酸基(−OH)との割合で発泡固形潤滑剤の発泡倍率や柔軟性、弾力性等が定まる。硬化剤のアミノ基(−NH2)または水酸基(−OH)とウレタンプレポリマーのイソシアネート基(−NCO)とを当量で反応させると、発泡剤である水と反応するイソシアネート基(−NCO)が消失してしまうため、(硬化剤の官能基/NCO)=1/(1.1〜2.5)の範囲が好ましい。また、発泡剤である水の水酸基と、硬化剤の官能基との割合が当量比で(水の水酸基/硬化剤の官能基)=1/(0.7〜2.0)の範囲である。
上記範囲よりも硬化剤の量が少なくなると発泡固形潤滑剤の強度等の物性が著しく低下するばかりでなく、ウレタンエラストマーとして硬化しない場合もある。
【0050】
第2の発泡固形潤滑剤に使用できる潤滑成分は、第1の発泡固形潤滑剤と同様に、発泡体を形成する固形成分を溶解しないものであれば使用することができる。潤滑成分としては、例えば潤滑油、グリース、ワックスなどを単独でもしくは混合して使用できる。特に好ましいものとして炭化水素系潤滑油、炭化水素系グリース、または炭化水素系潤滑油と炭化水素系グリースとの混合物が挙げられる。
炭化水素系潤滑油としては、第1の発泡固形潤滑剤と同様のものを使用できる。また、エステル系合成油、エーテル系合成油、フッ素油、シリコーン油等も使用することができる。これらは単独でも混合油としても使用できる。
グリースとしては第1の発泡固形潤滑剤と同様のグリースの他に、エステル系合成油、エーテル系合成油、GTL基油、フッ素油、シリコーン油等を基油としたグリースも使用できる。
また、第1の発泡固形潤滑剤と同様の炭化水素系合成ワックス、ポリエチレンワックス、高級脂肪酸エステル系ワックス、高級脂肪酸アミド系ワックス、ケトン・アミン類、水素硬化油などを混合して使用することができる。
【0051】
第2の発泡固形潤滑剤を発泡させる発泡剤としては、原料にイソシアネート化合物を用いることから、イソシアネート化合物と反応して二酸化炭素ガスを発生させる水を用いることが好ましい。
また、第2の発泡固形潤滑剤の硬化速度を促進させるために、上述した3級アミン系触媒や有機金属触媒などを用いることができる。
【0052】
第2の発泡固形潤滑剤は、上記潤滑成分と、樹脂成分と、硬化剤と、発泡剤とを含む混合物を発泡・硬化させて得られる。
上記潤滑成分の配合割合は、混合物全体に対して、30〜70 重量%、好ましくは 40〜60 重量%である。潤滑成分が 30 重量%未満であると、潤滑油などの供給量が少なく発泡固形潤滑剤としての機能を発揮できず、70 重量%より多いときには固化しなくなる。
【0053】
第2の発泡固形潤滑剤の発泡後の連続気泡率は 50 %以上である。さらに好ましくは50 %以上 90 %以下である。連続気泡率が 50%未満の場合は、樹脂成分(固形成分)の潤滑油が一時的に独立気泡中に取り込まれている割合が多くなり、必要な時に外部へ供給されない場合がある。なお、90%をこえると、発泡体自体の強度が低下しやすくなるし、潤滑成分の保持力が低下するために潤滑成分の放出が多くなり、長期使用には不利となる。
【0054】
第2の発泡固形潤滑剤の連続気泡率は以下の手順で算出できる。
(1)発泡硬化した発泡固形潤滑剤を適当な大きさにカットし、試料Aを得る。試料Aの重量を測定する。
(2)Aを 3 時間ソックスレー洗浄(溶剤:石油ベンジン)する。その後 80℃で 2 時間恒温槽に放置し、有機溶剤を完全に乾燥させ、試料Bを得る。試料Bの重量を測定する。
(3)連続気泡率を以下の手順で算出する。
連続気泡率=(1−(試料Bの樹脂成分重量−試料Aの樹脂成分重量)/試料Aの潤滑成分重量)×100
なお、試料A、Bの樹脂成分重量、潤滑成分重量は、試料A、Bの重量に組成の仕込み割合を乗じて算出する。
連続していない独立気泡中に取り込まれた潤滑成分は 3 時間ソックスレー洗浄では外部へ放出されないため試料Bの重量を減少させることがないので、上記の操作で試料Bの重量減少分は連続気泡からの潤滑成分の放出によるものとして連続気泡率が算出できる。
【0055】
なお、第1および第2の発泡固形潤滑剤には必要に応じて顔料や帯電防止剤、難燃剤、防黴剤、補強剤、無機充填剤、老化防止剤、フィラーなどの各種添加剤等を添加することができる。補強剤としてはカーボンブラック、ホワイトカーボン、コロイダルシリカなどが挙げられ、無機充填剤としては炭酸カルシウム、硫酸バリウム、タルク、クレイ、硅石粉などが挙げられる。
さらに二硫化モリブデン、グラファイト等の固体潤滑剤、有機モリブデン等の摩擦調整剤、アミン、脂肪酸、油脂類等の油性剤、アミン系、フェノール系などの酸化防止剤、石油スルフォネート、ジノニルナフタレンスルフォネート、ソルビタンエステルなどの錆止め剤、イオウ系、イオウ−リン系などの極圧剤、有機亜鉛、リン系などの摩耗防止剤、ベンゾトリアゾール、亜硝酸ソーダなどの金属不活性剤、ポリメタクリレート、ポリスチレンなどの粘度指数向上剤などの各種添加剤を含んでいてもよい。
【0056】
第1および第2の発泡固形潤滑剤は、潤滑油などの潤滑成分存在下で発泡反応と硬化反応とを同時に行なう反応型含浸法を用いることが、潤滑成分の高充填化と材料物性の高伸化を同時に両立させるためには望ましい。これは発泡体形成段階において発泡体に形成された気泡に潤滑剤が均一に含浸されるとともに、潤滑成分が発泡・硬化した固形成分内に吸蔵されることにより潤滑剤の高充填化と材料物性の高伸化が両立するものと考えられる。
これに対してあらかじめ発泡体を製造しておき、これに潤滑剤を含浸させる後含浸法では潤滑剤保持力が十分でなく、短時間で潤滑剤が放出され長期的に使用すると潤滑剤が供給不足となる。
【実施例】
【0057】
以下に本発明の実施例を挙げ、本発明をさらに説明するが、本発明はこれにより何ら制限されるものではない。
実施例1〜実施例15および比較例1〜比較例4
実施例1〜実施例15および比較例1〜比較例4に用いた潤滑成分、液状ゴム、硬化剤、発泡剤、触媒を以下に示す。なお、( )内は表中での略号を表す。
潤滑成分
潤滑油(潤滑油):タービン100(新日本石油社製)
潤滑グリース(グリース1):NTG2218M(協同油脂社製)
液状ゴム
水酸基末端ポリブタジエン(PBOH1):Poly-bd R45HT(水酸基価:46.6 mgKOH/g、数平均分子量:2,800、出光興産社製)
水酸基末端ポリブタジエン(PBOH2):Poly-bd R15HT(水酸基価:102.7 mgKOH/g 、数平均分子量:1,200、出光興産社製)
水酸基末端ポリイソプレン(PipOH):Poly-ip(水酸基価:46.6 mgKOH/g 、数平均分子量:2,500、出光興産社製)
水添水酸基末端ポリイソプレン(HPipOH):エポール(水酸基価:50.5 mgKOH/g 、数平均分子量:2,500、出光興産社製)
硬化剤
イソシアネート化合物(TDI):コロネートT-80(日本ポリウレタン社製)
エラストマ1(UE1):コロネート4090(4.4 NCO% 日本ポリウレタン社製)
エラストマ2(UE2):プラクセルEP1130(3.3 NCO% ダイセル化学工業社製)
発泡剤(発泡剤) イオン交換水
整泡剤(整泡剤) SRX298(東レダウ社製)
触媒(触媒1) DM70(東ソー社製)
【0058】
硬化剤(イソシアネート)を除く配合材料を表1〜表3に示す配合割合でよく混合し、最後に硬化剤を加えて素早く混合した混合物 40 g を、ポリテトラフルオロエチレン樹脂製容器(直径 70 mm×高さ 150 mm )に充填した。数秒後に発泡反応が始まり、常温で数時間放置し硬化させて円柱試験片を得た。この試験片を目視および光学顕微鏡を用いて観察した。試験片に 30Nの力を試験片の円柱軸方向に印加したときに油が滲み出す形状の弾性ゴムの発泡体であるものを優れた発泡固形潤滑剤であると評価して「○」印を、また、発泡体として硬化しない場合、潤滑油が分離したり放出したりしない場合を「×」印を付して表1〜表3に併記した。
また、「○」印と評価された試験片は試験片の円柱軸方向に 20%伸張させても油が滲み出すことはなかった。
【0059】
【表1】

【表2】

【表3】

【0060】
表1〜表3に示すように、実施例1〜実施例15の発泡固形潤滑剤では指で押したとき相当する力を加えたときに油が滲み出す形状の弾性ゴムの発泡体であり、優れた発泡固形潤滑剤であると認められたが、比較例1〜比較例4では発泡はしたものの一部固化せず、発泡固形潤滑剤としては機能しないことがわかった。
次に、実施例1〜実施例15の発泡固形潤滑剤成分を図1に示す固定式8個ボールジョイントサブアッシー(NTN株式会社製、EBJ82 外径サイズ 72.6 mm )に 17.0 g 封入した。数秒後に発泡反応が始まり、100℃で 30分間放置し発泡・硬化させた後、ブーツ、シャフトなど他の部材を組み付け発泡固形潤滑剤を封入した試験用等速ジョイントを得た。
この自在継手は、内部に発泡固形潤滑剤が封入されているので、実施例16で述べる運転時間 300 時間の条件での実機耐久試験において、継続運転可能であった。
【0061】
実施例16〜実施例30および比較例5〜比較例7
実施例16〜実施例30および比較例5〜比較例7に用いた潤滑成分、ウレタンプレポリマー、硬化剤、発泡剤、触媒を以下に示す。なお、( )内は表中での略号を表す。
潤滑成分
潤滑油(潤滑油1):タービン100(パラフィン系鉱油、新日本石油社製)
潤滑油(潤滑油2):クリセフ150(ナフテン系鉱油、新日本石油社製)
潤滑油(潤滑油3):シンフルード801(ポリ-α-オレフィン、新日鉄化学社製)
潤滑グリース(グリース2):パイロノックユニバーサルN6C(新日本石油社製)
ウレタンプレポリマー
カプロラクタン系ウレタンプレポリマー1(プレポリマー1):プラクセルEP1130(NCO 3.3%、ダイセル化学工業社製)
エーテル系ウレタンプレポリマー(プレポリマー2):コロネート4090(NCO 4.3%、日本ポリウレタン社製)
エステル系ウレタンプレポリマー(プレポリマー3):コロネート4047(NCO 4.3%、日本ポリウレタン社製)
カプロラクタン系ウレタンプレポリマー(プレポリマー4):タケネートL-1350(NCO 2.3%、三井化学ポリウレタン社製)
エーテル系ウレタンプレポリマー(プレポリマー5):タケネートL-1170(NCO 2.4%、三井化学ポリウレタン社製)
カプロラクタン系ウレタンプレポリマー(プレポリマー6):タケネートL-1680(NCO 3.2%、三井化学ポリウレタン社製)
カプロラクタン系ウレタンプレポリマー(プレポリマー7):サイアナプレン7−QM(NCO 2.3%、三井化学ポリウレタン社製)
硬化剤
MOCA(MOCA):イハラキュアミンMT(イハラケミカル社製)
トリメチレン-ビス-(4-アミノベンゾアート)(CUA−4):CUA-4(イハラケミカル社製)
ビス(メチルチオ)-2,4-トルエンジアミン、ビス(メチルチオ)-2,6-トルエンジアミンおよびメチルチオトルエンジアミンの混合物(エタキュア300):エタキュア300(アルベマール社製)
トリメチロールプロパン:試薬
発泡剤(発泡剤) イオン交換水
整泡剤(整泡剤) SRX298(東レダウ社製)
触媒(触媒1) DM70(東ソー社製)
【0062】
表4および表5に示す配合割合で、ウレタンプレポリマー、整泡剤、潤滑油、グリースをよく混合し、次に、硬化剤を加えて素早く混合した。なお、硬化剤がMOCAの場合は、混合温度を 80℃として、MOCAは 120℃で溶解して加えた。硬化剤がCUA−4の場合は、混合温度を 100℃として、CUA−4は 140℃で溶解して加えた。硬化剤がエタキュア300およびトリメチロールプロパンの場合は、混合温度を 80℃とした。最後に発泡剤およびアミン触媒を投入し撹拌した後、外方部材2、内方部材3、ケージ7およびトルク伝達部材6を組み付けた図1に示す固定式8個ボールジョイントサブアッシー(NTN株式会社製、EBJ82 外径サイズ 72.6 mm )に 17.0 g 封入した。数秒後に発泡反応が始まり、100℃で 30分間放置し発泡・硬化させた後、ブーツ、シャフトなど他の部材を組み付け発泡固形潤滑剤を封入した試験用等速ジョイントを得た。この試験用等速ジョイントを用いて以下に示す高角度試験および実機耐久試験を行ない、実機での耐久性を評価した。結果を表4および表5に併記する。また、発泡固形潤滑剤の引張強さ、伸び、40 %圧縮時応力を以下の方法で測定した。さらに前述の連続気泡率の算出法に基づき発泡固形潤滑剤の連続気泡率を測定した。結果を表4および表5に併記する。
【0063】
比較例5
潤滑油を用いずに発泡・硬化させた後、潤滑油を後含浸したこと以外は実施例16と同様に処理して試験用等速ジョイントを得た。この試験用等速ジョイントを用いて以下に示す実機耐久試験を行ない、実機での耐久性を評価した。結果を表5に併記する。
【0064】
<引張強さおよび伸びの測定>
発泡固形潤滑剤を幅 13〜15mm 、高さ 10〜15mm 、長さ 70mm 程度の試験片に切り出し、JIS K6400−5に準拠して試験を行ない、引張強さおよび伸びを求めた。結果を表4および表5に併記する。
<40 %圧縮時応力の測定>
発泡固形潤滑剤を直径 70mm 、高さ 20mm に調整し、JIS K6400−2に準拠して試験を行ない、40 %圧縮時応力値を求めた。結果を表4および表5に併記する。
<高角度試験1>
試験用等速ジョイントをトルク負荷 0 N・m、回転数 200 rpm、角度 30deg にて運転時間 10 時間の条件で台上運転を行なった。外輪の温度変化が 10 ℃未満であったものを○とした。結果を表4および表5に併記する。
<高角度試験2>
試験用等速ジョイントをトルク負荷 0 N・m、回転数 80 rpm、角度 40deg にて運転時間 10 時間の条件で台上運転を行なった。等速ジョイントに封入した試験後の発泡固形潤滑剤を目視で確認し、破断していないものを○とした。結果を表4および表5に併記する。
【0065】
<実機耐久試験>
試験用等速ジョイントをトルク負荷 186 N・m 、回転数 1700 rpm、角度 6 deg にて運転時間 300 時間の条件で実機耐久試験を行なった。試験後に試験用等速ジョイント内部を点検し、継続運転可能なものを可として「○」を、損傷が激しく、継続運転不可能なものを不可として「×」を、また、試験中に外方部材表面温度が100℃をこえたものは、異常温度上昇として不可とし「×」を表4および表5に併記した。
【0066】
【表4】

【表5】

【0067】
実施例16〜実施例30は、実機を用いた耐久試験において良好な結果を示した。比較例5〜7は、引張強さが 50 kPa 以上、伸びが 200 %以上、40 %圧縮時応力が 15 kPa 未満であるとの全ての条件を満たさないため、高角度試験1には適合したが、高角度試験2で破断してしまい、実機耐久試験においても損傷が大きかった。
【産業上の利用可能性】
【0068】
本発明の自在継手は、潤滑成分を効率よく滲み出させることができ、潤滑成分量は必要最小限でよく、しかも長期間潤滑性を保持できるので、撚線機、電動機器、印刷機、自動車部品、電装補機、建設機械等の各種産業用機械用の自在継手として、特に自動車用等速ジョイントとして好適に利用できる。
【図面の簡単な説明】
【0069】
【図1】本発明の一実施例に係る等速ジョイントの断面図である。
【図2】本発明の他の実施例に係る等速ジョイントの断面図である。
【図3】本発明の他の実施例に係る等速ジョイントの断面図である。
【符号の説明】
【0070】
1、11、21 等速ジョイント
2、12、22 外方部材
3、13 内方部材
4、5、14、15、23 トラック溝
6、16 トルク伝達部材(ボール)
7、17 ケージ
7a、17a 球面
7b、17b 球面
8、18、28 シャフト
9、19、29 ブーツ
10、20、30 発泡固形潤滑剤
24 トリポード部材
25 脚軸
26 トルク伝達部材(球面ローラ)
27 ニードル

【特許請求の範囲】
【請求項1】
外方部材の内面および内方部材の外面に形成された複数のトラック溝と、このトラック溝とトルク伝達部材との係り合いによって回転トルクが伝達され、前記トルク伝達部材が前記トラック溝に沿って転動することによって軸方向移動がなされるジョイント部と、このジョイント部端部となる前記外方部材の外周と一方の軸部材の外周とがブーツで覆われたブーツ部とを有する自在継手であって、
前記ジョイント部は、潤滑成分と、樹脂成分と、硬化剤と、発泡剤とを含む混合物を発泡・硬化が完了する前に前記ジョイント部の内部に封入し、発泡・硬化させてなる発泡固形潤滑剤が封入され、前記ブーツ部は前記発泡固形潤滑剤が封入されていないことを特徴とする自在継手。
【請求項2】
前記潤滑成分は炭化水素系潤滑油および炭化水素系グリースから選ばれた少なくとも1つの潤滑成分であり、
前記樹脂成分は分子内に水酸基を有する液状ゴムであり、該液状ゴムは高分子主鎖が炭化水素から構成され、該主鎖末端に水酸基価が 25 〜 110 mgKOH/g となる量の水酸基を有する液状ゴムであり、
前記硬化剤は分子内にイソシアネート基を有する有機化合物であり、
前記発泡剤が水であり、
前記液状ゴムと前記硬化剤との割合は、前記液状ゴムに含まれる水酸基と前記硬化剤に含まれるイソシアネート基とが当量比で(OH/NCO)=1/( 1.0 〜 2.0 )の範囲であり、
前記混合物は、混合物全体に対して、前記潤滑成分を 40 〜80 重量%、前記液状ゴムを 5 〜45 重量%含むことを特徴とする請求項1記載の自在継手。
【請求項3】
前記液状ゴムがブタジエンもしくはイソプレンの重合体の主鎖末端に水酸基を有する数平均分子量 1000〜3500 の水酸基末端ジエン系重合体、または該ジエン系重合体を水添処理した変性水酸基末端ジエン系重合体であることを特徴とする請求項2記載の自在継手。
【請求項4】
前記分子内にイソシアネート基を持つ有機化合物は、分子内に2個以上のイソシアネート基を有し、イソシアネート基の割合が 2.5 〜 5.0 NCO%からなるプレポリマーか、または芳香族ポリイソシアネートであることを特徴とする請求項2または請求項3記載の自在継手。
【請求項5】
前記潤滑成分は潤滑油およびグリースから選ばれた少なくとも1つの潤滑成分であり、
前記樹脂成分は分子内にイソシアネート基を 2 重量%以上 6 重量%未満含有するウレタンプレポリマーであり、
前記発泡剤が水であり、
前記混合物は、混合物全体に対して、前記潤滑成分を 30 〜 70 重量%含み、発泡後の連続気泡率が 50 %以上であることを特徴とする請求項1記載の自在継手。
【請求項6】
前記ウレタンプレポリマーは、エステル系ウレタンプレポリマー、カプロラクトン系ウレタンプレポリマー、およびエーテル系ウレタンプレポリマーから選ばれた少なくとも1つのウレタンプレポリマーであることを特徴とする請求項5記載の自在継手。
【請求項7】
前記イソシアネート基と、該イソシアネート基と反応する前記硬化剤の官能基との割合が当量比で(硬化剤の官能基/NCO)=1/(1.1〜2.5)の範囲であることを特徴とする請求項5または請求項6記載の自在継手。
【請求項8】
前記水の水酸基と、前記硬化剤の官能基との割合が当量比で(水の水酸基/硬化剤の官能基)=1/(0.7〜2.0)の範囲であることを特徴とする請求項5、請求項6または請求項7記載の自在継手。
【請求項9】
前記硬化剤が芳香族ポリアミノ化合物であることを特徴とする請求項5ないし請求項8のいずれか一項記載の自在継手。
【請求項10】
前記自在継手が等速自在継手であることを特徴とする請求項1ないし請求項9のいずれか一項記載の自在継手。
【請求項11】
前記トルク伝達部材がボールであり、該ボールが3個、6個または8個の固定式であることを特徴とする請求項10記載の自在継手。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2008−298114(P2008−298114A)
【公開日】平成20年12月11日(2008.12.11)
【国際特許分類】
【出願番号】特願2007−142678(P2007−142678)
【出願日】平成19年5月29日(2007.5.29)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】